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The structure and dynamics of 2D discrete solitons are analyzed on the basis of a
2D discrete nonlinear Schrodinger equation. The discrete nature of the

situation modifies the dynamics of the corresponding 2D continuum model. A
quasicollapse mechanism for energy condensation into large-amplitude

discrete states is discussed. © 1994 American Institute of Physics.

In this letter we are interested in the distinctive features in the behavior of nonlinear
systems which stem from the fact that they are discrete. A discrete nature can substan-
tially change the structure and influence the stability of localized states!™* and topological
excitations.” It can have nontrivial effects on a modulational instability,® wave-collapse
phenomena,”® and other properties of continuum models. The dynamics of discrete sys-
tems is richer than that of the corresponding continuum models, because the latter de-
scribe only limiting cases of discrete problems. We should stress that the subjects of this
letter are not conversions of continuum systems to a discrete form but problems which
are fundamentally discrete. In addition to being of fundamental physical interest, discrete
models are of interest for practical applications, such as systems of coupled optical
waveguidesf‘g"]1 models for energy transport in biophysical systems proposed by Davy-
dov and Holstein, discrete models of Sheibe aggregations,'? electrical arrays,'>'* and
systems which model the dynamics of DNA.>>~!7 Even in the 1D case, discrete models
exhibit a fairly complicated behavior. Localized 1D states in discrete nonlinear systems
have recently been the subject of active research (see, for example, Refs. 1-4, 8—10, and
15-20). There has been less study of multidimensional models.'*?!~** Qur purpose in the
present letter is to analyze localized 2D structures on the basis of a discrete nonlinear
Schrodinger equation. This equation and other equations of similar structure describe 2D
systems of coupled optical fibers, the dynamics of Sheibe aggregations, and the dynamics
of envelope solitons in nonlinear lattices. In the present letter, however, we examine this
equation not from the standpoint of specific applications but as an example of a discrete
nonlinear system which can reveal general aspects of the dynamics of localized 2D
structures. We demonstrate a new mechanism for the onset of narrow, large-amplitude
states in multidimensional discrete models. We also show how the discrete nature of this
system affects the stability of solitons and the phenomenon of collapse.

The basic equation of the model can be written
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Equation (1) has the Hamiltonian structure
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with the Hamiltonian
HZE l\pn,m—\pn—l,mlz_*-z 'q’n,m_q’n,m—l'z—z |‘P,,,,,,|4=const, (3)
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In addition, Eq. (1) conserves the quantity P=2|‘I’,,‘,,,|2. To show that the properties of
a discrete nonlinear system may depend on the dimensionality of the problem, we first
consider the continuum limit of Eq. (1). This limit can be found in the case of “broad”
distributions, which involve many modes. Introducing the coordinate x in the “n”’ direc-
tion, and y in the “m” direction, we find a continuum approximation for Eq. (1):

iU+U,+U,,+2|UPU=0. 4)

This is the well-known 2D Schrodinger equation, which describes (in particular) the
steady-state self-focusing of light beams. Let us briefly review the basic propertics of Eq.
(4). The integrals of motion mentioned above have continuum analogs,

P=j |U|*dxdy and H=J (|Ux|2+|U,|2)dxdy—f |U|*dxdy=I,—1,.

A so-called virial theorem holds for Eq. (4) (Ref. 24):

E J’ (x2+y3)|U|?dxdy=8H. (5)

Since H is a conserved quantity, this equation can be solved:
<R2>=J' (x> +y))|U|?dxdy=4Ht*+At+B,

where

d(R?)
A:—dl‘.—,t=0 and B=(R?)|,—,.

It is easy to show that, if the integral H is negative on some initial distribution, then
U(t,x,y) becomes singular over a finite time. The condition for collapse can be refor-
mulated as a condition on the quantity P (the beam power in the optical case):

P p
H=11—12211—‘P—11=11 1_"P- . (6)
cr cr

Here we are using the known inequality
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where P, is the value of the integral P for the basic soliton solution of Eq. (4). It is thus
clear that in the case P<<P_, and without any special ‘“fine focusing” of the original
wave packet, collapse does not occur. In the case P> P, H can be negative, and one can
show that a singularity of the wave field forms over a finite time. In the course of the
self-focusing, a critical power P= P is asymptotically reached. We need to stress that a
singularity cannot form in the discrete case, because the integral P=X, ,|¥, |* is
conserved. As a result of compression in the initial stage, all the energy may condense in
a few modes. A self-localization of energy which was initially distributed over a nonlin-
ear discrete system was studied in Refs. 7, 8, 11, and 15. This problem has attracted
attention because of (in particular) the important role which localized, narrow, large-
amplitude states may play in the dynamics of DNA'®!" and in nonlinear optics.!! In
discrete 1D systems, the following would appear to be a typical scenario for the onset of
narrow states: In the first step, initial perturbations cluster as the result of the onset of a
modulational instability. Small-amplitude solitons appear in this step. In the next step,
inelastic collisions of solitons lead to a transfer of energy from relatively small-amplitude
solitons to relatively large-amplitude ones. In the final step, large-amplitude self-localized
states form.!> We should point out that wave collapse is a typical version of wave
dynamics in multidimensional nonlinear systems, in contrast with the 1D case. The onset
of a singularity in multidimensional continuum models corresponds to the condensation
of all the energy in a few modes in discrete nonlinear systems. This mechanism for
energy localization is quite common in multidimensional systems and is relatively insen-
sitive to the details of the particular model. Quasicollapse thus plays the role of the
mechanism for the formation of very narrow self-localized states’®* from initially broad
wave packets for many nonlinear discrete systems.

Let us examine some steady-state solutions of our basic model, (1). We write them
as V¥, ,=F » meXp(iA*t), where the envelope F «.m 1S given by '

Fn+1,m+Fn—1,m+Fn.m+1+Fn,m+1—(4+)\2)Fn,m+21Fn,ml2Fn,m:0~ (8)

This equation can be thought of as a nonlinear algebraic eigenvalue problem for A\? and
F, . Soliton solutions arise from a balance between nonlinear and dispersive effects,
modified because of the discrete nature of this system. In the present letter we focus on
an analysis of the case in which there is a finite number of coupled equations with
homogeneous or periodic boundary conditions: ¥ _y ,=W¥ ., and ¥, =¥,k ;. To
prove that solutions of Eq. (8) exist it is sufficient to consider the problem of minimizing
H at a fixed P (see also Refs. 8 and 9). This approach has the advantage that at the same
time we prove the stability of the solutions which are found with respect to perturbations
that conserve P. The boundedness of Hamiltonian H follows from the chain of inequali-
ties

H:E |\Pn.m_q'rnfl,m]2+2 I‘Pn.m_\yn,m41|2_2 |\Pn.m|4

n,m n,m n,m

=—-max|¥, ,|°P=—P% (9)
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FIG. 1.

For finite values of N and M, the minimum of the Hamiltonian is reached on some
solution which is obviously stable with respect to perturbations that conserve P. As was
mentioned in Ref. 8, this circumstance does not mean that a solution exists for any
arbitrary (continuous) A2, since \? is a Lagrange multiplier to be determined. This fact
follows from the absence of gauge invariance, which holds in the continuum limit.

Perturbation theory can be used to find one type of discrete solitons, namely, a very
narrow symmetric state. We assume that nearly ali the energy is localized symmetrically
in only a few modes, and that the inequalities |Fg|>|F .|, |Fg .| hold. The central
mode is designated Fo=F,q here. By virtue of the symmetry of the problem we can
write F .| g=Fq.,=F;. For the central mode we then have the equation

4F,— (N2 +4)F+2|F|*F¢=0, (10)
while for the nearest neighbors we have
Fo—(N>+4)F | +2|F{|*F,+3F,=0. (11)

Here F, represents small corrections for the effects of more-remote neighbors. In the
limit of large values of A2 in which we are interested here, these equations lead to
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FIG. 2. The integral P as a function of . The dot-dashed curve corresponds to the parabola P=X2/2+2.
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In this limit we have the integral P~X\?/2+ 2. These expressions, found by perturbation
theory, are in excellent agreement with the results of a numerical analysis. Figure 1 shows
two types of discrete solitons. Figure 1a shows an approximate solution of (12) found for
a large value of A.

(12)

In the limit of small values of A, the solution tends toward the ground state of the
continuum problem: a wide distribution including many modes. Figure 1b shows a dis-
crete soliton of this sort, corresponding to the value A =0.02.

The factor which primarily determines the physical significance of discrete solitons
is their stability. As in the continuum case, some reliable qualitative conclusions can be
drawn from an analysis of an important characteristic of a nonlinear system: the depen-
dence of P on the parameter A (Refs. 8 and 26). Figure 2 shows curves of P(\) for
several values of the size of the discrete file, N=M; large values of A correspond to
narrow, large-amplitude distributions. We see that, beginning at A =1, P(\) is essentially
the same as the asymptotic result derived above and is independent of N. As N increases,
the maximum of the distribution in the region of small values of N approaches a constant
corresponding to the continuum case. It was shown in Ref. 8 that the sign of the expres-
sion dP/d\ plays a decisive 1ole in the stability of solitons in the case of the 1D discrete
nonlinear Schrodinger equation. We believe that the powerful method for studying sta-
bility which was developed by Laedke ef al.® can also be applied to 2D systems. This
assertion is supported by a numerical simulation of the dynamics of discrete solitons
which we have carried out. Solitons corresponding to a positive sign of dP/d\ exhibit a
tendency toward a stable dynamics, in contrast with negative solitons. The situation is
illustrated by Figs. 1 and 3. Figure 1 shows a steady-state solution, which remains of the
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FIG. 3. Onset of an instability of a discrete 2D soliton. a—Time evolution of the ‘virial”

I =z:z'!’,3;;;ﬁ/3 wp(m?+n?)|¥,,,|2/P; b—state corresponding to the minimum value of I; c—state corre-

sponding to the maximum value of /.

same form, without any changes, up to a time ¢t =40. Figure 3 demonstrates the onset of
an instability of a soliton in the region of decreasing P(\). We see that the nonlinear
stage of the instability leads to the formation of “breather” or “pulson” entities. The
nontrivial dynamics of such structures over long time intervals will be examined in the
future.

An important new feature which stems from the discrete nature of the system is the
coexistence of stable solitons and unstable states. Interestingly, the effects which stem
from the discrete nature of the system stabilize the ground state of the corresponding
continuum problem (this ground state is known to be slightly unstable).

In summary, we have analyzed the structure of the ground states of a 2D discrete
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nonlinear Schrodinger equation. We have found how effects stemming from the discrete
nature of the system stop the collapse which occurs in the continuum case. The instability
of a wide initial distribution in the nonlinear stage leads to a localization of energy in a
few modes over a finite time. This process may be the mechanism for the formation of
narrow, large-amplitude states in multidimensional discrete systems.
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