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Abstract 
We determine analytically all stationary states of an inhomogeneous three 
coupler model in which two nonlinear waveguides interact with a third 
linear guide. The stability of these states is investigated and bifurcation 
points are determined. 

All-optical switching devices have been a subject of intensive 
investigations during the past few years because of their 
potential applications in high-speed communication devices 
[1]-[9]. In this context, a number of different waveguide 
configurations have been studied ranging from standard 
two-waveguide coupler systems to arrays of coupled non- 
linear optical waveguides. It has been found that three- 
waveguide nonlinear couplers demonstrate some distinct 
features in comparison with two coupled guides. In particu- 
lar, three-waveguide couplers have more output states, 
sharper switching characteristics and are more sensitive to 
the input states in comparison with two-waveguide cou- 
plers. These features are of importance for applications even 
though improved switching characteristics are typically 
accompanied by undesired features, such as the increase in 
the required switching power. 

A system of nonlinear couplers is described by the well- 
known discrete self-trapping equation (DST) [4, lo]. The 
latter was introduced in Ref. [lo] as a general discrete 
system of equations occurring in a variety of nonlinear 
problems. This equation models, in particular, the so-called 
self-trapping phenomenon that may be considered as a 
rather universal mechanism of energy localization in the 
physics of condensed matter. Using the notation of Ref. [lo] 
we write the DST in the form 

where A, denotes the time derivative of the amplitude in the 
j-th node or coupler, mjk is related to the evanescence coup- 
ling of neighboring nodes and y incorporates the Kerr- 
medium nonlinearity as well as the initial input power. 
Equation (1) can be solved analytically only in some special 
cases such as the dimer [l-3, 10-131, some configurations of 
the trimer [7, 14-16] and some other very specific configu- 
rations [17, 181. In the case of the dimer the self-trapping 
transition can be studied analytically both in what regards 
the occurrence of a bifurcation in the stationary states of the 
system [lo] but also in investigating its complete time 
dependent properties [l l-131. 
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A model describing selftrapping in a nonlinear dimer 
interacting with an additional “linear” lattice site has been 
introduced in [19]. This model, describes in an optics 
context a system of two nonlinear couplers interacting with 
a third linear coupler. It has been found [8, 91, that such a 
system allows to improve switching characteristics of non- 
linear directional couplers. Lower power level is required for 
the device to operate and more abrupt switching is possible 
when the additional third linear coupler is added. The basic 
equations that describe the dynamics of a doubly nonlinear 
trimer (DONT) with the third site being “linear” may be 
written in the following form: 

iA,, - A,  - W A ,  + y )  A ,  I2A, = 0, (2) 
iA2, - A ,  - W A ,  + yIA212A, = 0, 

iA,, = W A ,  + W A , ,  
(3) 

(4) 
with y the nonlinearity parameter and W being responsible 
for the energy exchange between different modes (in optics 
W corresponds to the normalized linear coupling constant). 
The value of P = I A ,  1’ + I A ,  1’ + I A ,  1’ is a constant and 
it is customary to normalize it to one, i.e. P = 1. The system 
of eqs (2)-(4) represents a conservative system with the 
Hamiltonian H = A , A l  + AfA,  + W(AfA,  + A,A: 
+ AT A ,  + A,  AS) - (y/2)(I A ,  l4 + I A ,  14). Our primary 
motivation in this paper is to find stationary solutions of 
eqs (2)-(4) and to investigate their stability. 

Consider the stationary solutions of eqs (2)-(4) of the 
form A j  = exp (iwt)4j. After substituting these expressions 
into eqs (2)-(4) we obtain the following algebraic equations 
for 4 j .  

041 +d)?+w#’,-yl$11~4i=o, ( 5 )  

0 4 2 + 4 1 +  ~ ~ 3 - Y ~ ~ 2 ~ 2 ~ 2 = o ,  (6) 

043 + w4, + w4, = 0. (7) 
After resolving these algebraic relations we find analytic 
expressions for the stationary solutions of eqs (2)-(4); these 
results are plotted in Fig. 1. We follow the notation of [lo], 
and use the symbols t, 1 and 0 to denote the symmetric, 
antisymmetric and localized solutions, respectively, in the 
limit y -, CL). It can be easily checked by direct substitution 
that the following parametric forms provide analytical 
expressions for the different stationary state branches. We 
assume, without any loss of generality, that W > 1 and dis- 
tinguish two cases. For 0 > W 2  we obtain the explicit 
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20’o 1 y  i / 

expressions : 

$1 = (1 - W2/w)1/2 exp ( - z ) ,  

42 = -(1 - W2/w)”2 exp ( + z ) ,  

43 = (W/o)(l - W2/0)1i22 sinh ( z ) ,  

(8) 

(9) 

(10) 

where the parameter z was introduced using the relation 
2 cosh (22) = (w2 - W 2 ) / ( o  - W2) .  The low-frequency 
branches (0 < W 2 )  can be expressed similarly by 

$ J ~  = (W2/w  - 1)lI2 exp ( - z ) ,  . ( 1  1 )  

42 = (W2/w  - exp ( + z ) ,  (12) 
c$3 = -(W/O)(W’/O - 1)’122 cosh (z) ,  (13) 
with the parameter z determined now through the condition 
2 cosh (22)  = (0’ - W2) / (W2 - w). The critical point at 
U,, = - 1 + (1 + 3W2)’12, is a right bifurcation point. The 
branch emanating from this point for w > U,, is described 
analytically by y = (a4 - 2wW2 + W4)/w3.  

Using the analytical expressions provided through eqs 
(8)-(13) we can describe all solution regimes that appear in 
Fig. 1. The antisymmetric dimer solution with 41 = - 42 = 
I/$ and d3 = 0 is given by y = 2(w - 1). This branch 
starts at the point (0, y) = (1, 0) in Fig. 1 and experiences 
a stability change at (U, y) = [ W 2 ,  2(W2 - l)] equal to 
(4, 6 )  in the figure. The symmetric dimer solutions are 
obtained for 41 = 4 ~ ~ .  On these branches, 43 = 
- 2 W 4 , / 0  and 4; = 1 + w - 2W2w, leading to 
y = 2 ( 0 2  + 2W2)(w + w2 - 2W2)/w3. These expressions 
give both branches labeled with two up-arrows. The change 
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in the stability on the right-hand branch occurs at w = W 2  
as well. One may see that the self-trapped branch (labeled 
by two up arrows and a bullet) changes sign in at  
the point w = W 2 .  Finally, the state that appears as a 
result of the bifurcation is marked with one up-arrow 
and two bullets and is given by the expression 
y = (w4 - 2wW2 + W4)/w3. The intersections of the curves 
with the y = 0 axis are the eigenvalues of the linear spectral 
problem for the matrix mij  introduced in eq. (1). The stabil- 
ity of the stationary states under small perturbations is an 
important issue for optical applications of the systems (2)- 
(4). We have investigated the stability of the different 
branches numerically. The resulting unstable regimes are 
presented in Fig. 1 by dashed lines in contrast to solid lines 
corresponding to states that seem to be stable. 

In conclusion, we found the selftrapped steady state solu- 
tions for a coupler system of three-waveguides constructed 
as a nonlinear twin core coupler connected with a third 
linear core. We have investigated numerically the stability of 
these states and have determined the stable and unstable 
regimes. We note that other inhomogeneous configurations 
of linear and nonlinear elements, such as those studied in 
[ 9 ] ,  do not lead to similar selftrapping bifurcations. 
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