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Abstract

We review the main physical and mathematical properties of dispersion-managed (DM) optical solitons. Theory of DM
solitons can be presented at two levels of accuracy: first, simple, but nevertheless, quantitative models based on ordinary
differential equations governing evolution of the soliton width and phase parameter (the so-called chirp); and second, a
comprehensive path-average theory that is capable of describing in detail both the fine structure of DM soliton form and its
evolution along the fiber line. An analogy between DM soliton and a macroscopic nonlinear quantum oscillator model is also
discussedTo citethisarticle: S.K. Turitsyn et al., C. R. Physique 4 (2003).
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Résumé

Nous passons en revue les principales propriétés physiques et mathématiques des solitons dits managés par la dispersion
(DM). La théorie des solitions DM peut étre développée selon deux niveaux de précision : le premier reléve de modeles simples,
mais toutefois quantitatifs, tels que basés sur des équations différentielles ordinaires gouvernant les deux parametres solitons
que sont la largeur temporelle et la phase (le soit-disant ‘chirp’ ou dérive temporelle de fréquence) ; le deuxieme reléve d’'une
théorie poussée de cheminement-moyen, laquelle est en mesure de décrire en détail et la structure fine de I'enveloppe du soliton
DM, et son évolution tout au long de la ligne de fibre. Nous présentons également une discussion sur une analogie entre le DM
soliton et un modéle d’oscillateur quantique non-linéaire a I'échelle macroscoplowreciter cet article: S.K. Turitsyn et al.,

C. R. Physique 4 (2003).
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1. Introduction

The soliton is one of the fundamental unifying ideas in modern theoretical physics and mathematics [1-10]. During
the past few decades soliton theory has been applied to numerous practical and fundamental problems in areas as diverse
as hydrodynamics, plasma, nonlinear optics, molecular biology, field theory, and astrophysics. Because of their stability
and robustness, solitons provide a convenient and adequate language to describe many nonlinear phenomena. Note that
the term soliton (formed from Latisolitarius — solitary) is used in a variety connotations in physics and mathematics. In
the mathematical literature this term is typically associated with particle-like solutions of integrable equations that interact
elastically and regain their forms after collisions. In physics and in applications we usually are not really concerned with
the integrability (and hence with a strict definition of soliton) of the mathematical models involved, because anyway, a more
careful consideration of practical perturbations or realistic boundary conditions leads to non-integrable systems. Fortunately,
many characteristics of the soliton that are important for applications are not related to its strict mathematical definition and
integrability. Non-integrable nonlinear models can possess solutions corresponding to spatially or temporally coherent, localized
structures. If such localised objects/solutions are stable and robust, or at least are observable, having a reasonably large decay
time (or distance), they are often also called solitons in the physical literature. Stable particle-like behavior is the key feature
in such a physical definition of a soliton. We use here the term soliton for a localized (in time) electromagnetic wave that can
propagate without significant distortion of its form even in the presence of a substantial nonlinear response of the waveguide
medium.

An impressive practical implementation of the soliton concept has been achieved in fiber optics, where soliton pulses are
used as the information carriers (elementary ‘bits’) to transmit digital signals over long distances. Optical soliton research, full
of innovative spirit, has recently arrived at the stage of a first real-world implementation of the soliton concept in communication
systems. Realization of soliton-based transmission has clearly demonstrated how the results of the fundamental soliton theory
can be successfully exploited in very important practical applications. On the other hand, the experimental implementation of
DM soliton fiber transmission lines and the increasing demand for capacities of communication systems has stimulated further
research in soliton theory.

Linear optical fiber communication technologies are essentially based on the same principles as radio frequency systems.
Soliton-based (or generabnlinear) fiber communication systems are fundamentally different, because they make positive
use of such an inherent fiber property as nonlinearity. Rapid progress in nonlinear lightwave communications is stimulated by
increasing demand for telecommunications services. Practical and research interest is directed mostly toward two main goals:
development of effective high capacity long-haul transmission systems and the upgrade of existing terrestrial fiber networks.
There are two principal approaches to overcome these limitations: in the first (that can be called ‘linear’) both the chromatic
dispersion and nonlinearity are considered to be detrimental factors while in the second the nonlinear and dispersive effects
are counterbalanced (such systems can be called ‘nonlinear’). Nonlinear effects that are detrimental in the ‘linear’ systems can
be used to improve transmission characteristics of optical communication systems. For instance, in soliton transmission the
effects of nonlinearity and chromatic dispersion are balanced making positive use of the nonlinearity. Recall that there are three
major factors that cause optical signal degradation and distortion in long-haul high bit-rates fiber communication systems: fiber
loss, group-velocity dispersion (GVD) and nonlinearity. Signal power attenuation can be compensated using the optical fiber
amplifiers (though recovery is not complete, because amplified spontaneous emission noise is added to the signal, degrading
signal-to-noise ratio). Revolutionary development ofribelinear lightwave communications has been triggered by advent and
deployment of optical amplifiers [11] providing periodic amplification of optical signals. Until the advent of the erbium-doped
fiber amplifier (EDFA) optical signals were regenerated electronically to overcome the attenuation in the silica fiber. Electronic
regenerators have two important drawbacks: they are expensive and they limit system performance, because each regenerator
can operate at only one predetermined bit-rate, in one data modulation format and at one operating wavelength. Because the
EDFA amplifier has many important advantages (such as large bandwidth, high gain, simplicity and others) over optoelectronic
regenerators, they quickly became the amplifier of choice in communication systems. As a result, fiber loss is no longer a major
limitation in optical fiber transmission and the performance of optical amplifier systems is then limited by chromatic dispersion
and nonlinearity. Note that whereas a regenerator re-creates a perfect digital output signal, the fiber amplifier uses whatever it
receives. Therefore, dispersive pulse broadening and other degrading effects are accumulated along a fiber line.

2. Physical medium: fiber waveguide dispersion and nonlinearity

A light pulse is an electromagnetic wave packet built from a continuum of elementary optical carriers oscillating at different
frequencies. In other words, any optical wave-packet contains a range of frequency components. Since any optical fiber is a
dispersive medium, each of these spectral components travels at different group velocities, causing the pulse energy to spread
over time as the pulse propagates through the medium. Fiber group velocity dispersion is measured either in units of picoseconds



SK. Turitsyn et al. / C. R. Physique 4 (2003) 145-161 147

squared per kilometer or picosecond per kilometer per nanometer. Roughly speaking a pulse with the bandwidth 1 nm spreads
by corresponding number of ps over 1 km. Dispersion can be positive (this means that low frequencies travel at a higher
speed than high frequencies) or negative (in this case high frequencies propagate at a higher speed than low frequencies). The
dispersion of standard single mode fiber is positive (normal) for wavelengths shorter than 1300 nm and negative (anomalous)
for wavelengths longer than 1300 nm. Standard monomode fiber (SMF) has dispersion of abo%ul@(l) @swavelength

1550 nm. Corresponding dispersive spreading of 10 ps pulse in SMF after 125 km is about 50 ps or, in other words, 5 times
its original width. Such a large spreading can lead to overlapping of neighboring bits and consequently to degradation of the
information signal. Linear signal distortion caused by the GVD in fiber transmission systems can be almost suppressed by
the dispersion compensation (mapping) technique. Optimisation of the system performance in the case of a linear transmission
requires minimisation of the chromatic dispersion of the line. This can be achieved by operating close to the zero dispersion point
or/and additional compensation of the accumulated dispersion. The idea to use a compensating fiber to overcome dispersion
of the transmission one has been proposed in 1980 [12]. In the low power (linear) regime, compensation of dispersion aims to
prevent dispersive broadening of the signal in the transmission fiber by the compression in the compensating fiber. An additional
advantage is that the impact of the four-wave mixing on a signal transmission is suppressed due to the reduction of the efficiency
of the phase matching. The dispersion compensation technique has been used successfully both in long-haul communication
systems and in the existing terrestrial optical links, most of which are based on standard telecommunication fiber with large
dispersion in the second optical window (at 1550 nm). The basic optical-pulse equalising system consists of a transmission
fiber (i.e., standard monomode fiber in the installed links) and equaliser fiber with the opposite dispersion (e.g., dispersion
compensating fiber (DCF) in the case of the transmission fiber with anomalous dispersion) [12].

In the linear (low power) systems dispersive broadening can be eliminated by dispersion compensation. However, the
nonlinear effects can still be the primary reason for signal degradation especially in long-haul transmission systems. The
response of the optical medium is not exclusively linear. The fiber refractive index instantaneously increases by an amount
proportional to the optical power (Kerr effect). Modulation of the optical power leads to the corresponding modulation of
the index. For instance, a high power light pulse increases the refraction index with corresponding change of the phase
of the propagating pulse. This is the so-called self-phase modulation effect. The nonlinearity can delay the ‘fast’ spectral
components relative the ‘slow’ carriers. As a result, the nonlinearity counterbalances the effect of dispersion broadening and
the optical pulse becomes self-trapped. When nonlinearity and dispersion balance each other the pulse preserves its shape
during propagation. Optical soliton was proposed by Hasegawa and Tappert in 1972 [13]. In 1971 Zakharov and Shabat
demonstrated [14] integrability of the nonlinear Schrédinger equation — the basic mathematical model that somehow forms
the theoretical background of the fiber optic communications. The first experimental observation of optical solitons in fiber
have been realized in 1980 by Mollenauer et al. [15].

It is important to point out that one hardly can expect that the ideal soliton theories will be capable of describing in full
practical real-world transmission systems. So why then do we think that DM soliton theory could be of any interest for
system designers? Optimization of the optical transmission system parameters is a crucial task for the design of fiber links.
Usually, time-consuming numerical simulations are required to find optimal operating regimes and optimal system parameters.
Comprehensive investigation of stable regimes and their tolerance in multi-dimensional parameter space is limited by the
computational time required for optimizations. The most natural characteristic of system performance is the bit-error-rate
(BER). Direct numerical modeling of BER as small as requiredgl& not feasible with currently available computer base.
Therefore, it is of great interest to develop efficient and reliable indirect numerical and statistical methods to evaluate system
performance. Limiting system analysis by consideration, for instance, of periodically recovered carrier only, one can gain instead
a possibility of an advanced time-efficient optimization. Taking advantage of simple semi-theoretical methods well developed
for DM solitons one can optimize parameters of the system and input signal before applying full numerical modeling.

3. Traditional optical soliton

In the general case, signal transformation along the fiber line is caused by a combined action of dissipation and amplification,
dispersion and nonlinearity and cannot be described in a simple way. However, under certain conditions, stable soliton-like
dynamics is possible even taking into account fiber loss. Under effect of periodic amplification solitons can undergo substantial
power variations without losing their integrity.

Let us first recall the main features thditional soliton fiber communication lines without (or with a weak) dispersion
management. The design of long-haul lightwave communication systems assumes utilisation of periodically installed in-line
erbium-doped fiber optical amplifiers to compensate a carrier signal attenuation in the transmission fiber. Average (slow)
dispersive broadening of the pulse propagating in the anomalous dispersion region can be exactly compensated by the nonlinear
phase shift. Thus, a traditional fundamental optical soliton relies on a balance between self-phase modulation and anomalous
second-order dispersion that allows it to preserve the carrier signal shape over thousands of kilometers. Note that the positive
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use of the nonlinearity can also be achieved in a general return-to-zero (RZ) transmission with the rectangular carrier pulse
occupying half of the bit period in the anomalous dispersion region. The important feature of such systems is that the amplifier
spacing is considerably shorter than the characteristic dispersion and nonlinear lengths, and therefore, both the dispersion and
the nonlinearity can be treated as perturbations on the scale of one amplification period. To leading order, only the fiber loss and
the periodic amplification are significant factors affecting the pulse evolution between two consecutive amplifiers. These factors
cause the power oscillations, while the form of the pulse remains approximately unchanged. On larger scales nonlinearity and
dispersion come into play and the pulse propagation in such communication systems is described by the well established path-
average (guiding-centre) soliton theory [16—18]. The average dynamics of the optical signal in this case is given to leading order
by the integrable [14] NLS equation for the envelope of the electric field

i—— 4+ +]APPA=0. )
Z t

Here the typical problem to be addressed is a Cauchy probl€éfyr) = Ag(r) and we are interested in the evolution of the

field A(z, r) with z. Soliton solution of this equation has the well-known form
in?z
A(z, t) = nsechint] exp(T) (2)

Integrability of the path-averaged model makes it possible to use well-developed mathematical techniques to analyse
effects of numerous practical perturbations and boundary conditions. Solitons take advantage of their ‘particle-like’ nature.
An important consequence of this feature is that the solitons are robust in the presence of various perturbations (such as
loss, filtering, non-perfect launch conditions an so on) and the perturbed pulses will eventually evolve into stable solitons.
The traditional soliton approach allows error-free transmission over transoceanic distances witlisl@n@tigher rates
per channel [19]. Note that in recent years, impressive results have been achieved in high-bit-rate optical communications
both using the linear transmission concept and the soliton-based optical signal transmission. The critical issue for soliton
transmission is the soliton control. Traditional soliton transmission requires some form of the soliton control [20,21] to
overcome an inherent limitations of this method. Major limitations on the conventional soliton transmission are timing (Gordon
and Haus [22]) jitter, soliton interaction and four-wave mixing. Further progress in soliton communication systems has been
achieved by using dispersion-management [23—67]. New results are reported continuously in this field and further rapid progress
is expected, therefore, we do not aim here to present a comprehensive review of numerous works in this field or to overview
the latest record experimental results. Instead, we will focus in the following sections on the general aspects of DM soliton
theory.

4. Dispersion-managed solitons

Though dispersion management was applied originally in low-power (linear) transmission systems, it has been discovered
recently that this technique is also a very promising way to increase transmission capacity of the soliton-based communication
lines. A transmission line constructed from alternated fibers with anomalous or normal dispersion has a low path-averaged
chromatic dispersion, but a high local one, thereby suppressing the Gordon—Haus timing jitter as well as the four-wave mixing
efficiency simultaneously. In [23] it has been proposed to incorporate a section of dispersion compensating fiber into the
standard periodic soliton transmission line, before each amplifier. This was perhaps the first formulation in the literature of
the idea of dispersion-managed soliton transmission, even though a clear theoretical and practical description of this regime
was not presented until few years later. It has been shown in [23] that this new (for the soliton systems) technique reduces
the power required, compared to an uncompensated (constant dispersion) soliton system, and increases both the maximum
transmission distance and the range of pulse width over which operation is possible. In the first related experimental work [24]
it has been demonstrated that the dispersion management leads to a significant reduction of the Gordon—Haus timing jitter.
It should be pointed out that a similar idea of stretched pulses generation in a loop (periodic) laser system with varying
dispersion has been proposed in [28]. In [29,30] the dispersion-managed pulse has been identified as a new information
carrier — a stable periodic breather with features very different from that of the conventional soliton. A path-average theory
and a simple approximate method to describe breathing DM soliton dynamics resulting from the interplay between varying
dispersion and nonlinearity has been developed in [30]. The importance of pulse chirping to reduce the chromatic dispersion
penalty and to improve transmission capacity of DM systems has been pointed out in [43]. The energy of the dispersion-
managed soliton is enhanced [29] in comparison with a fundamental soliton (soliton solution of the NLSE) of the same
width corresponding to the same path-averaged dispersion. This energy enhancement is the important feature of DM soliton
leading to the increase of the signal-to-noise ratio (SNR) with substantial improvement of the system performance [24]. Large
variations of the dispersion (strong dispersion management) strictly modify the soliton propagation fundamentally, inducing
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breathing-like oscillations of the pulse width during the amplification period. This dynamics differs substantially from the
path-averaged (guiding-centre) soliton propagation in systems with constant or weakly varying dispersion and from that of the
traditional fundamental soliton (the soliton solution of the integrable NLS equation [14]). Nevertheless, numerical simulations
and experiments have demonstrated that it is possible to observe extremely stable propagation of a breathing soliton in fiber
links with strong dispersion management. Pulse dynamics presents rapid oscillations of the power and width on the amplification
distance, and slow evolution on the larger scales due the fiber nonlinearity and residual dispersion [30]. Presumably the chirp
is the most important feature of the dispersion-managed soliton [43,30]. Soliton chirp leads to a fast rotation of the relative
phase shift between neighbouring solitons resulting in the suppression of interaction. An important consequence of the chirp
of the dispersion-managed soliton is that the input signal launched into the transmission line should be either chirped [43,25]
or launched at some specific points of the dispersion map (for the case of transform-limited input pulse) [32,67,59]. The most
surprising feature of the DM soliton is that it can propagate stably along a transmission line with zero or even normal average
dispersion, in contrast to the fundamental soliton that propagates stably only in the anomalous dispersion region [49]. This
feature is extremely interesting, because the transmission of the finite energy pulse close to the zero dispersion point takes
advantage of the suppressed timing jitter. Recall that the energy of the traditional fundamental soliton is proportional to the
average chromatic dispersion. Therefore, to keep the signal-to-noise ratio large enough one has to operate not too close to
the zero-dispersion point. On the other hand, a timing jitter resulting from the Gordon—Haus effect [22] is proportional to the
fiber dispersion and it is preferable to transmit solitons at wavelengths close to the zero dispersion point. Thus, it would be
desirable to produce a finite energy soliton pulse in the region of the low fiber dispersion. A possibility to transmit a DM soliton

at very low average dispersion allows one to reduce timing jitter for a number of channels which is of a crucial importance
for WDM transmission. All the listed features make clear the difference between breathing soliton-like pulse in a system with
dispersion compensation and the soliton of the NLSE. As a particular consequence of this, an average model describing path-
averaged (slow) evolution of the breathing DM pulse should differ from the NLSE (that governs path-averaged dynamics of the
fundamental soliton). In other words, the dispersion management imposes such a strong perturbation that a carrier pulse in this
case is no longer the NLSE soliton. In the case of a weak dispersion management a powerful Lie-transform technique has been
applied to describe properties of the carrier pulse (dressed soliton) [50].

In Fig. 1 the evolution of a DM soliton during one section in normal (bottom) and logarithmic (up) scales is shown. The
bottom figure demonstrates self-similar-like compression and recompression of the soliton. In the logarithmic scale it is seen
that at the lineg = 0 andz = 0.5 there exist some dips corresponding to the points at which the soliton nﬂ\@nﬂz
approaches zero (and consequently, the logarithm of the power tends to minus infinity). Note that the oscillations around
the main peak cannot be completely suppressed because they present an inherent part of the DM soliton. Comprehensive
mathematical theory of nonlinear wave propagation in systems with rapidly varying (including the principal case of large
amplitude variations) dispersion has been presented in [30,67,50,60]. Numerical simulations and experiments have revealed the
following main features of the DM soliton:

— the width and chirp (characteristic of the phase of the pulse) experience large oscillations during the compensation period
leading to ‘breathing-like’ soliton dynamics;

— the shape of the forming asymptotic pulse is not always a sech shape as for the NLSE soliton, but varies with the increase
of the strength of the map from a sech shape to a Gaussian shape and to a flatter waveform. The pulse shape varies along
the compensation section from a monotonically decaying profile to a distribution with oscillatory tails;

— the time-bandwidth product varies with an increase of the map strength (that is a measure of the dispersive broadening
proportional to the difference of the local dispersions times the fiber lengths and inversely proportional to the square of the
pulse width) from (B2 corresponding to the sech-shaped NLSE soliton4d @orresponding to the Gaussian pulse and
increases further with increase of the map strength;

— the energy of the stable breathing pulse is well above that of the NLSE soliton with the same pulse width and of the
corresponding average dispersion;

— DM soliton can propagate at the zero path-average dispersion and even in the normal dispersion region;

— the central part of DM pulse is self-similar, but the far-field oscillating (and exponentially decaying) tails are not.

Recent developments in fiber-optic communications have demonstrated that dispersion management makes the features of
soliton transmission close to those of non-soliton transmission [27,26,51]. It is already recognized that the dispersion-managed
soliton presents a novel attractive type of a nonlinear carrier of information in optical fiber links. In the following sections we
briefly overview the theory of DM solitons.
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Fig. 1. Evolution over one compensation period of DM soliton shown in normal (lower) and logarithmic (upper) scales. In the leading order the
dynamics is self-simlar (lower) and is given by Egs. (20), (21). It is seen that the dips appear at the beginning (end) and in the middle of the
considered symmetrical periodic cell. Dispersitia) = +d + (d) with d =5 and(d) = 0.15, power is normalized byg =1 mW.

5. Basic mathematical model and normalizations

The optical pulse propagation in a cascaded transmission system with varying dispersion is governed by

90E 1. 9%E N al .
E_EﬂZ(Z)W+U(Z)|E| E=i|-y@+rn Y 8(z—2z) |E=IGQ)E.
k=1

Herez is the propagation distance in [kni]js the retarded time in [ps]E|2 = P is the optical power in [W]8> is the first
order group velocity dispersion measured inzukm]. We writeo, 82 andy as functions ot to account for the change of these
parameters from fiber to fiber. It is customary to express the coeffigjeintterms of the associated dispersion parambtéy
Bo= —/\%D/(chl), wherec; is the speed of light and is measured in pgnm-km). We denote the nonlinear coefficient by
o = (2rny)/(roAeff), Wherens is the nonlinear refractive indexg is the carrier wavelengt e is the effective fiber area,
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Z; are the amplifier locations. For simplicity, we consider below a periodic amplification with the péyiod y is constant
between two consecutive amplifiers, then= [exp(yx Z,) — 1] is an amplification coefficient after the fiber span between the
k-th and(k — 1)-th amplifier. The loss coefficient, = 0.05In(10)«r; accounts for the fiber attenuation along a fiber span before
the k-th amplifier, wherey;, is given in dB/km. Note that distributed amplification can be easily incorporated into the model
through an appropriate gain/loss functip(x).

High local dispersion significantly changes pulse dynamics in comparison to systems with a constant group velocity
dispersion even if the path-average dispersions are identical. A slow (average) dynamics on the large scales is determined
by the effects of nonlinearity, residual (path-averaged) dispersion and average effects of the fast dynamics. It is customary to
make the following transformatioi (z, 1) = /Py A(z, 1) exp( f5 G(z') dz’). The evolution of the optical signal envelope
along the cascaded fiber transmission system is then given by the NLS equation with periodic coefficients that can be written in
the following form:

2
i% +d(z)%+sc(z)|A|2A:0. @)
We introduce here the following normalizationis normalized to a lengtiZg (in km) defined below; time is measured in
some time constang (in ps) that can be specified for each specific problem; an envelope of the electriE feltbrmalized
to the power paramete?y: |E|? = P | A [>exp(2 [§ G(z') dz’). Function

_B@)Zg 2820D(2)
213 47'rcltg

d(z)=d(z) + (d) =

describes periodic compensation of dispersion (with the pdriodphysical units). In what follows we will use both physical
and normalized dispersions. Periodic (with the petigdn real world units) function
X o GENUD _ 7o A2y = 2]
roAeff roAeff

for zx <z < zk4+1 = zx + Z, describes the power variation due to fiber loss and amplifier gain that is accounted through
transformation of the pulse power at junctions corresponding to the locations of the optical amplifiers. The amplification
distanceZ, in general can be different from the compensation pefiodVe consider a general case wherand Z, are
rational commensurable, namelyZ, = m L = Zg with integern andm. This includes as particular limits all known and
studied cases and allows us to describe a novel regime with short-écateZ;) management. The distange= Z/Zg is
normalised in Eqg. (1) by a minimal common perigg of the functions/ andc and the averaging throughout the paper is over
this period. In the normalised units 1-periodi@ndc have basic periods/in and ¥/ n respectively. The small parameters
proportional to the pulse power. Eq. (1) possesses the conserved ql&miW|A|2dt which is related to the energy of the
system. The optical pulse dynamics in the dispersion-managed transmission systems is determined by the combined action of
the fiber loss and periodic amplification, self-phase modulation and varying chromatic dispersion. It should be pointed out that
these effects are not additive and pulse evolution critically depends on the order in which dispersion compensation is realized.
Strong interference of the effects of nonlinearity and varying dispersion leads to a rich variety of possible configurations for
dispersion management.

There are two important limiting cases in modeling optical transmission with dispersion management. In the long-haul
transmission system a period of the dispersion map can be much larger than the amplification distante The inclusion
of periodic amplification and dispersion compensation can be handled as separate problems, provided that the amplification
distance is substantially different from the period of dispersion map [32]. Therefore, signal dynamics can be averaged over
amplification period and an averaged propagation will be described in this limit by the lossless NLS equation with varying
dispersion. We call this limit thimssless model . Obviously, this consideration includes fiber loss, but the average model formally
is similar to a pulse propagation in lossless fiber. This justifies consideration of the lossless model that is as a matter of fact a
problem with different scales of power and dispersion compensations. In the second limit, amplification period is of the order of
the compensation period. The most simple and practical variant is to use a bobbin with compensating fiber just at the amplifier
location stationZ, = L. This limit is important in the problem of the upgrade of the existing terrestrial fiber links based on
standard telecommunication fiber having high dispersion at 1550 nm.

ec(z) = ¢(z) + {c) = 2w np PyZg

6. Path-average theory of DM soliton

In this section, we overview results obtained in [30,37,40] where path-average DM soliton propagation equation in the
spectral domain has been derived. Note that averaging can be performed by different methods that are essentially slightly
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different presentations of the same procedure: Hamiltonian averaging [37,41,42], Lie-transform [40], multi-scale expansion [35]
and other methods. A comprehensive description (including calculations of the higher-order terms) of the averaging using Lie-
transform can be found in [40].

Note that normal averaging cannot be applied to Eq. (1) directly because of a large variation of digpejsidherefore,
first, to eliminate the periodic dependence of the linear part we apply following [30,37] the so-called Floquet—Lyapunov
transformation

. dRo(z
Aw = o exp|—iw?Ro(2) ], O?Z( ) =d(z) — (d). @)
HereA, = A(w, z) is a Fourier transform af (¢, z) = [ A, exp—iwt] dw. In the new variables the equation takes the form
.0
l% = (d) w2 — & / G123 (0 + w1 — wp — w3)P] Pp2¢p3 dwy dwp dws, %)

here G,123(2) = c(2) expliAR2Ro(2)} is 1-periodic andA2 = w? + w? — w2 — w3. Note thatG,,123 depends only on the
specific combination of the frequencies given by the resonance suffareBoth the Fourier and the Floguet-Lyapunov
transform (4) are canonical and the transformed Hamiltoflazan be written

G
H = (d) f g0 do — & / TEEb 0+ 01 — 02 — 0 B0 $203 o Gy oy dog. ©)

Now we apply Hamiltonian averaging [37]. Let us make the following change of the variables
o =90 +¢ / V123 (@ + 01 — wp — 03)¢] 9293 doy dwp dog,

hereV,,123(z) =i [5[G123(t) — Tp1231dr +iV,,123(0), (V123 = 0) with
1

Tuaza= (Gurzd = [ o) expliagRo(o)} . ™
0
In the leading order i, a path-averaged equation has the form (Gabitov and Turitsyn [30]):

.09,
[ B—Zw = (d)w? g — € / T1238 (@ + w1 — wp — w3)¢] Y293 dwq dwy dws. 8)

This is the basic model of the DM soliton theory. This model has many interesting properties that have been discussed in [35,
37,41,42]. The corresponding averaged Hamiltorfiais

T,
(H)=(d) / @?|g|?dw — & / %%Mw + w1 — wp — w3)9} P 9293t dwg dwy dwg. )

Note that derived path-averaged model can be used to describe slow (stroboscopic) evolution of arbitrary initial pulse not
necessarily DM soliton. Fig. 2 shows a comparison of the spectral power distributions after transmission of input Gaussian
signal over 8000 km found by path-average mapping (dashed line) and by direct numerical simulations of the full model (solid
line).

The Hamiltonian averaging introduced here presents a regular way to calculate the next order corrections to the averaged
model. From the Hamiltonian structure of the starting equation it is clear that the matrix el&nenthas the following
symmetriesT,,123 = T1,23 = Tw132 = T55,;,- Note that Eq. (8) possesses the remarkable property. The matrix element
Tp123=T(AR2) is a function of AS2 and on the resonant surfage+ w; — w2 — w3 =0, AR = w? + w? — w3 — w3 =0,
both 7,123 and its derivative over\§2 are regular. This observation allows us to make the following quasi-identical-like
transformation [37], which eliminates the variable part of the matrix eleffigis

To—T,
¢ /OTK;l%aIazagé(a)—kwl—a)z—a)g)dwlda)zda)g, (10)

whereTy = T(0). This transformation has no singularities. If the integral part in this transform is small compared,witien
in the leading order we get far(z, r) NLS equation. Obviously, this transformation is quasi-identical only if the integral in

Eq. (10) is small compared with,. This is not true in a general case and that is why, typical solution of Eq. (8) has a form [35]
different from cosh-shaped NLSE soliton. However, if the kernel function in Eq. (10) is small

‘To — Tp123(A82)

|S(A2)| = o

<1, (12)
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Fig. 2. Comparison of the spectral power distributions after transmission over 8000 km found by path-average mapping (dashed line) and by
direct numerical simulations of the full model (solid line). Input Gaussian signal with the peak power 1 mW and width 33 ps propagates in
the system composed from fibers with = 2.6 ps/nm/km and D, = —2.2 ps/nm/km and the length 200 km each. Amplification distance is

50km (L/Z, =4).

then the averaged model can be reduced to the NLSE. In other terms, this is a condition on the futgtiand d(z) that
makes possible quasi-identical transformation.

Let us now demonstrate how developed above general theory can be applied to specific physical problems. First consider
the case ofL > Z, that is typical, for instance, for transoceanic lines. To be specific, let us analyze, as an example, two-
step dispersion map with the amplification distat;ekm and dispersion compensation peribd= 2M x Z; km = Zg km
(m =1, n=2M). Dispersiond(z) =d + {d)if0<Z <M x Z; =L/2andd(z) = —d + (d) it M x Zg, <Z <2M x Z,
= L. The mean-free functioR defined above can be foundR$z) =dz —d/4if0 <z <1/2andR(z) = —d[z—1/2]+d /4
if 1/2 < z < 1. After some calculations, it can be found that the kernel of the fun@jaaz = T (A£2) in such a system is

G —1sin[XM] 1 cog X] 2X G+1
GInG M (1+[2X/InG1?) { sinXx] INnGG-1f
AR2Z,d ASQ2d

2L 4M

Here the gairG = exp[2y Z,] (y is afiber loss). Itis interesting to look at some patrticular limits in this general formula. First,
if d = 0 (uniform dispersion along the system) we reproduce the result of Mollenauer et al. [1B5¢A8F) = (G —1)/(GIn G)
and becausg is a constant, path-averaged model is just the integrable NLS equation. The second limitis the so-called ‘lossless’
model [29] (# = 0). In this casel' (A$2) =SiN[AS2 d /4]/[AS2 d/4]. We justify now the use of the ‘lossless’ system [29] for
modeling of the practical (with fiber loss) fiber transmission system. It is interesting that the theory developed here confirms
that the periodic amplification and dispersion compensation can be handled as separate problems, provided that amplification
distance is substantially different from the period of dispersion mapMrer1 functionT (A$2) is getting close and close to
that one for the ‘lossless’ mod&l(A$2) =sin[AS$2d/4]/[AS2 d /4] multiplied by the path-averaged factas — 1)/(G In G).

The result obtained proves that the power budget and the dispersion mapping, effectively, can be handled separately in long-
haul transoceanic optical communication systems where amplification distance is typically much shorter than the dispersion
compensation period.

Next we consider a relatively recently proposed regime with a short-state Z,, and a general cade< Z,) dispersion
management. Optical fibers with« Z, have recently been manufactured [38]. Recall that ultra-short, power-enhanced DM
solitons in the traditional systems with > Z, typically have too high power to be realized in practice. It is of interest to
find stable propagation regimes with short and low power solitons. As has been shown in [39] rathexShps) OM
solitons in systems with the short-scale dispersion management could have low enough energy to provide for stable ultra
high-bit-rate &40 Ghb/s per channel) transmission. Here we demonstrate that a path average propagation in systems with a
short-scale management« Z, (even with thelarge variations of the dispersion) can be described by the integrable NLS
equation. Again to be specific, let us consider a two-step dispersion map with the amplification distanég) (» = 1) and

T(X)= (12)

X =
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dispersion compensation peridd= Z,/m km (or 1/m in the normalized units). Normalized dispersidtx) = d + (d) if
k/m<z<(k+05/mandd(z) =—d+({d) if (k+0.5)/m <z < (k+1)/m,herek=0,1,2,...,m — 1. Mean-free function

R defined

above can be found as
k d .k k+0.5
R(z):d(z——)—— if —<z< + and R(z):—d[
m 4m m

After some calculation, it can be shown that the matrix elendggpz in such a system is

Tp123=T(Y) =

G-1 1 {
GInG 1+ (4mY /InG)2

. 4m
exp(—iY) + —

Y[ .
sinY

InG

HereY = d A2 /(4m). Next we estimate the matrix element of the quasi-identical transformation

|S(a2)| <

1

/

0

c(2)[expiARR(2)) — 1]
A2

dz

1
< / le()R ()| dz < max(R) (e}
0

T 4m

(c)d

k 1 n d it k+0.5 k+1
- — - — — <z< .
¢ m  2m 4m m ¢ m
GYem 41 Gl/@m _q
Glj@m —q TicosY 7G1/(2m>+1]}' 13)

One can see that with increase of (for the fixed other parameters) the path-averaged model (8) governing DM soliton
propagation converges to the integrable NLS equation. Fig. 3 shows the power of the DM solitons (solid line) and the
fundamental soliton with the same amplitude (dashed line) for different valuas lbfcan be seen that for large the form

of the DM solitons is very close to the shape of the fundamental soliton. It is interesting to note that in the limit of a very
short-scale management (lang¢ we again get fofl" the lossless model approximation multiplied by the factor

Gi .
GInG "~

_ sinfAQd/(4m)] G -1
= ARd/(4m) GInG’

However, increase ofn (decrease of.) under the fixed characteristic bandwidth of the signal makes insignificant oscillatory
structure of the kernel. This means thaf'ifY) is practically concentrated in some regiary, then for largen corresponding
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region ind A2 will be larger than for smalk. For the pulses with the same spectral width this will meanThistmuch flatter

for largem and, as a matter of fact, for large (small L) function T can be better approximated by a valli€0). As a result,

NLSE model works rather well in this limit and solution (of the path-averaged model!) should be close to cosh-like soliton of
the NLSE. Of course, the functid§(Y)| increases with the growth df and is not small in the opposite lim#t, <« L (lossless

model). Therefore, the shape of DM soliton in the lossless model [29] (and large variations of the effective dispersion) is not
cosh as itis in the considered model. In contrast to the lossless model, evolution of soliton parameters over one period is highly
asymmetric here due to loss. Rapid variations of the pulse width, peak power and chirp are accompanied by the exponential
decay of the power due to loss. Nevertheless, numerical simulations have revealed that there exists a true periodic solution that
reproduces itself at the end of the compensation cell (in this case — at the end of the amplification period). Note that though it is
known that for the lossless model in the so-called weak map limit [29,30,49,45] the DM soliton has a shape close to cosh, this
is not so obvious for system with loss and different periods of amplification and dispersion variations.

7. Root-mean-square momenta method

An advantage of the transmission of the soliton carrier signal (in general, RZ formatted data) is that it can be described
by a few main parameters, such as pulse width, peak power, chirp parameter and spectral width (the latter can be expressed
through pulse width and chirp parameter). The particle-like behavior of the solitary wave signal allows one to make use of
well developed mathematical methods to understand features of a such carrier and to predict effects that occur due to practical
boundary conditions and due to deviations of real fiber properties from an ideal model. In the integrable and near-integrable
models evolution of these few main soliton parameters can be calculated using perturbation methods. In the general case some
information can be gained by considering evolution of the integral quantities — different root-mean-square momentum [48]. In
this subsection we present a generalised momentum method to describe the main RMS DM soliton characteristics. Here we
briefly overview results obtained in the papers [48,55,56]. This simple and transparent method is very useful in the modeling
of an arbitrary dispersion-managed fiber links that typically involves many free parameters to be optimised. To describe rapid
self-similar dynamics of the main peak of DM pulse let us first consider following [48] the evolution of the integral quantities
related to the pulse characteristics: root-mean-square (RMS) pulse Tijdthulse power chir@/int/ Tint

ft2|A|2dt]1/2
T =|——7— 14
int(2) |: i e (14)
Mint(z) _ i_ft(AA}k — A*Ap)dt (15)
Tintz) 4 [12|A]2dr
Itis easy to check that the evolution Bfit(z) and Mjni(z) is given by
dr;
M — 442 M) o
d ec
& TintMin) = d(2) s — 9 paws. (7)
Here we introduce
Al Arl?
J1AI M dr 02 J1A(|“dr 18)

P = =
RMS(2) [1ARd RMS T1A1Zdi

Integrating Eq. (17) over one period we get a simple explanation of why DM solitons can propagate at the zero and normal
average dispersion. Indeed, for whBpR; and M, are exactly periodic, we have

(d(2) 28s@) = %(C(z) Pams(@))- (19)

Whend andc are constant this gives us the RMS power of the solitos.i$f constant but (z) varies periodically this equation

gives the guiding-centre (path averaged) enhancement factor. Finally, whed bathc are periodic functions of (or c is

constant as in lossless model) one can see that the requiréen® for the existence of conventional solitons is replaced by

a condition(d (z) Q%MS) > 0, which can be satisfied even when the average dispersion is zero or positive as it is seen in Fig. 4.
Different lines in Fig. 4 corresponds to different valuesrpfi(0): 0.75 (short-dashed line), 0.65 (dashed line) and 0.55 (solid

line). The same formula explains the power enhancement of DM soliton as well. To obtain a closed system of equatipns on

and M, one has to derive equations ks and Prys and to express all intermediate integrals that appear in such equations

in terms of the introduced above RMS momenta. This is possible only under some additional assumptions about the structure of
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Fig. 4. Effective dispersiobes = (d(2)$22(z)) found from Egs. (20), (21)@(z) is the spectral bandwidth of the pulse) versus path-averaged
dispersion. Solid line7 (0) = 1, bold dashed ling (0) = 0.8, dotted line7T (0) = 0.7. The same map as in Fig. 1, but with different average
dispersions.

the solution. Note, that the chirp (a first time derivative of the phase taken at the point where pulse amplitude is maximal) of the
typical DM pulses shows a linear behavior in the region where most of the energy is concentrated. Of course, this is only a first
approximation of the more complex phase picture and chirp is not at all linear in the whole time domain. However, note that
the phase dependence appears in the necessary integral formulas only in the constructiaffditagA));, being multiplied

by |A|* or other powers (IikeA|2(arg(A))t) of a fast decaying functiopd |2. Therefore, the contribution in the integral pulse
characteristics due to deviations from the parabolic (in time) law in the phase is negligible in many practical situations (with
highly Iocalised\A\z). Therefore, one can take a parabolic approximation of the phase near the pulse peak power location
@rg(A)(z, 1) = ¢ (2) 12 + ¢o(z). The evolution equations a?gys and Prys then can be written in a simple form

d
a0z (QFZeMs) = —2¢c(2)¢(z) PRMS, (20)
d
o PrMs = —4d(2)¢ (2) PRMS- @1)

We have now four equations for the five quantiti§s, Mint, $2rRMs, Pint» @nde. The missing last relation that is necessary
to obtain a closed system of equations is given by:

Mint(z) _ 1 [A]% @rg(A)), dr
Tt 2 [r2|ARPde
Thus, the closed system of RMS momentum equations is presented by Egs. (16), (17), (20), (21) and (22).
Derived RMS equations can be transformed to the basic model of two ODEs first obtained in the context of the cascaded
fiber transmission lines by Gabitov and Turitsyn in [31] using a variational approach. To do this, note that equabigRg;on
and 2rms can be (after simple manipulations) integrated as

=¢(2). (22)

PrMS(2) Tint(z) = PrRMs(0) Tint(0) = 4consty. (23)
[QRus(@) — 4ME ()] Tir(2) = consta. (24)
Substitution of
consty
2Bus(@) = 4MZ () + — (25)
Tint@)
and Eq. (23) into Eq. (17) yields equationsTif; and Mjnt (see [31,48,56]):
dT;
d'Z”‘ = 4d(2) Miny(2), (26)
d d(z)consty  ec(z)consty
— Mipt = — . 27
dz int T3 4T2 ( )

int int
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An advantage of the approach presented here is that it usedmm@ssumption about the structure (phase) of the DM pulse to
derive these basic equations.

8. DM soliton expansion in the basis of the Gauss—Hermite functions

In this section following [52—-54,67] we present a rigorous mathematical method to describe the breathing dynamics of both
the self-similar core and of the oscillating tails of a DM soliton. In other terms, this method will allow one to estimate accurately
the deviations of a true DM soliton from the self-similar structure assumed in the RMS momentum description presented above.
The dynamics of the DM soliton can be presented as a self-similar evolution of the main peak accompanied by oscillations of
far-field tails that have non-self-similar structure [49]. Though the energy of the tails is much smaller compared with the energy
of the central peak they are responsible for the non-self-similar periodic change of the pulse form during the evolution along
the compensation cell [49]. An arbitrary input pulse propagating down the dispersion-managed line typically evolves into an
asymptotic structure that presents self-similar rapidly oscillating main peak and a dispersive pedestal [33]. By a proper choice
of the parameters of the input pulse this radiation can be significantly suppressed. However, oscillatory far-field tails around the
main peak cannot be entirely suppressed, because they present an unalienable part of the DM soliton. Using an orthogonal set
of chirped Gauss—Hermite functions one can derive path-averaged equation governing slow evolution and the shape of the DM
soliton. In this way, one can obtain a set of ordinary differential equations for the coefficients of expansion of DM soliton in
terms of chirped Gauss—Hermite functions. A generalised solution of the propagation equation with arbitrary input pulse can be
presented in terms of chirped Gauss—Hermite orthogonal functions. This approach can be also useful in numerical modeling of
the dynamics of arbitrary initial signal in the dispersion-managed communication systems.

There is an interesting analogy between a DM soliton and the nonlinear macroscopic quantum oscillator. The basic idea is
that the periodic variations of the phase (that occur due to periodic oscillations of the dispersion) create an effective parabolic
trapping potential. Without nonlinearity any propagating wave is a direct combination of the eigenfunctions of such a quantum
oscillator potential — the Gauss—Hermite functions. When nonlinearity comes into play, the energy is redistributed between
different modes. Therefore, a DM soliton can be viewed as a ground state of an effective macroscopic nonlinear quantum
oscillator.

To remove from Eg. (3) the rapid self-similar dynamics that occurs due to large variations of the local dispersion let us apply
the following self-similar transformation [67]

Né(M(Z)/T(Z))IZ n=00 . -
A s = B o I ”‘nR(Z)7 )
@) iG] go n(z)fn[T(Z)]e .

herex =t/T(z). The rapid oscillations of pulse width and chirp are accounted by periodic fundiGnsand M (z) and slow
evolution is given byf, (x). We choose here the periodic functiofisand M to keep in the leading order the self-similar
structure of the DM pulse. We define equations on the functioasid M to be the same as for the integral quantitigg and
Mint in the section above:

dr dM  d(x) ec(z)N?

— =4d()M, —_— -

dz @ dz T3 T2
HereT (L) = T(0), M(L) = M(0) and N is a constant to be determined from the requirement Thand M are periodic
solutions of Eq. (29). The functiong, (x) are the orthogonal normalised Gauss—Hermite functions:

(29)

1 x2
Sn(x) = WEEXF(—?)HMX% (30)
()ex =32 fu=dnfu. dn=-1-2n. (31)

Here H,, (x) is then-th-order Hermite polynomial and coefficienty are given by the ordinary scalar productd® with f;,
and dR/dz =d(z)/T2(z) — (d/T?).

Inserting this expansion into basic equation (3) after scalar multiplicationfyitive obtain a system of ordinary differential
equations for the coefficients,.

.dB d T i —m—
& +<ﬁ>xn3n+ﬂ(z> Y AmmRQg, By + B() Y TR B B BEV,,  n =0 (32)
m=0 m,lk

Here we introduce the notation
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+00
Sum = <2 ) = / S 0)x2 fy (),
—00

+o00 (33)

Vi, k = (fm|fo f1 k) = / Jn () fin () f1 (%) fie (x) dx.

—00

Since integrals of the forny x" e=** can be calculated analytically, it is possible to determine &y, and V, .1 k-
Symmetrical integralS), , = Sin,n are:Sy.n =n+0.5, S, (,4+2) =0.5\/(n+ 2)(n + I). The othersS, ,, are zero ifin > n.

Eq. (32) can be averaged directly (in contrast to the master equation (3)) because the large variations of the dispersion
are moved to the phase factor proportionaki@). Averaging can be performed either using Lie-transform technique [60] or
Hamiltonian averaging [55]. However, the most important zero-order term can be obtained directly. Let Bg syiit slow
(Uy) and fast f,,) varying partsB, = U, + nn + - -+ (dn,,/dz > n,) and we assume also that rapidly varying part is small
compared with slow varying ong, <« U,. Averaging over one period in the leading order then give<fpr

i dUn
dz

+ <%>}LnUn + Z <,3(Z) ezlmim)R(z))Sn,m Un + Z <,3(Z) ezl<n+kilim)R<Z)>Um UIU];k Vim 1k = 0. (34)
m=0 m,lk

The steady-state solution of this path-averaged equation having théfpemF,, exp(ikz) with F,, non-dependent onpresents

DM soliton for given dispersion map. The derived equation permits one to describe in a rigorous way properties of DM

solitons and more generally the propagation of any input signal for arbitrary dispersion map. Considering a solution in the

form U, = F,, exp(ikz) we obtain the expansion of the DM soliton in terms of chirped Gauss—Hermite functions. The shape of

any DM soliton can be found from a solution of the equationfpn

d . .
—kFy +<E>AnFn + ) (B mR@S, L+ Y (Be) @O TRV FFEV, ik =0. (35)
m=0 m,l,k

Note that though this nonlinear eigenvalue problem looks not simple at all, this is aagtlmfaic equations that are much
easier to solve than to find DM soliton from original PDE (3). Rapid convergence, that is natural for bell-shaped pulse means
that localised pulse will be well represented by a limited number of terms in the expansion. This makes such basis very useful
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Fig. 5. Spectral power of DM soliton is shown in the logarithmic scale: true DM (solid line), solution of the path-averaged equation (8)
(dashed line), two-mode (dashed-dotted line) and five-mode (dotted line) approximations using expansion of the soliton the the basis of the
Gauss—Hermite functions. Inset shows dynamics of the first nonzero coefficients in this expansion over one period.
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in different practical applications. This approach is a rigorous way to describe a family of DM soliton for an arbitrary dispersion
map. A complete set of orthogonal chirped Gauss—Hermite functions is very useful in numerical simulations evolution of
arbitrary shaped initial signal in DM fiber systems. In Fig. 5 it is presented a comparison of the path-average models presented
in the paper with direct numerical simulations for two-step dispersion map (as in Fig. 1). Spectral power (logarithmic scale) of
true DM soliton (solid line), taken at the boundary between two fibers is compared with two-med (dashed-dotted line)

and five-mode (dotted line) approximations in the expansion using the chirped Gauss—Hermite functions and solution of the
path-averaged equation (8) (dashed line). Inset shows dynamics over one period of the first nontrivial (honzero) coefficients in
the Gauss—Hermite expansion of DM soliton. It is seen that both path-average models give quite good approximation of the true
DM soliton. Even two-mode (8 4) approximation describes the central part very well. Expansion in the basis of the Gauss—
Hermite functions present analytical approximation of the DM soliton, describing both the Gaussian core and the oscillating
tails.

9. Conclusions

We have overviewed in this article main physical and mathematical properties of dispersion-managed optical solitons. It
is apparent that the development of DM soliton-based fiber communications enters the stage of commercial exploitation and
possibility of real-world soliton networks. Wavelength-division-multiplexing transmission of DM solitons is an attractive way
to realize long-distance ultra-high capacity fiber communication systems and to upgrade existing fiber networks to terabit per
second regimes. We have presented here the theory of DM solitons at two levels of mathematical accuracy. Consideration of
root-mean-square momenta, or equivalently, main order expansion of DM soliton in the Gauss—Hermite basis leads to simple
set of ordinary differential equations governing evolution of the soliton width and chirp. This computer time saving approach
can be especially useful for optical system optimization. More careful path-average theory is capable to describe in detail both
a fine structure of DM soliton form and its evolution along the fiber line.
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