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Abstract. Multiple-scale averaging is applied to the nonlinear Schrödinger equation with rapidly varying coef-
ficients, the results are used to analyze pulse propagation in an optical fiber when a periodic dispersion map
is employed. The effects of fiber loss and repeated amplification are taken into account by use of a coordinate
transformation to relate the pulse dynamics in lossy fibers to that in equivalent lossless fibers. Second-order
averaging leads to a general evolution equation that is applicable to both return-to-zero (soliton) and non-return-to-
zero encoding schemes. The resulting equation is then applied to the specific case of solitons, and an asymptotic
theory for the pulse dynamics is developed. Based upon the theory, a simple and effective design of two-step
dispersion maps that are advantageous for wavelength-division-multiplexed soliton transmission is proposed. The
use of these specifically designed dispersion maps allows simultaneous minimization of dispersive radiation in
several different channels.
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1. Introduction

Optical solitons result when the nonlinear dependence of the index of refraction upon intensity
balances linear chromatic dispersion ([1, Chapter 2] or [2, Chapter 3]). Under ideal conditions,
soliton pulses can propagate for long distances in an optical fiber without substantial distor-
tion. Under realistic conditions, solitons have been transmitted single-channel over a distance
greater than 10,000 kilometers at a rate of 10 gigabits per second (Gb/s) or more [3]. When
combined with wavelength-division-multiplexing (WDM), whereN channels are transmitted
simultaneously, soliton transmission withN × 10 Gb/s aggregate bit rates over transoceanic
distances have been achieved [4]. Generally, soliton transmission allows higher bit rates per
channel (as high as 40–100 Gb/s over somewhat shorter distances) in comparison with other
schemes, such as non-return-to-zero (NRZ) transmission [5].

Although these data rates are already quite high, the never-ending demand for increasingly
higher-speed communication systems requires that the performance of fiber-optic transmis-
sion systems be substantially improved. Dispersion management is one method that has been
demonstrated to do so [6–10]. The idea of dispersion management is to concatenate fibers of
both normal and anomalous dispersion [2, Chapter 7] to form a transmission line having both a
high local group-velocity dispersion (GVD) and a low path-averaged GVD. This is beneficial
since high local dispersion significantly reduces the efficiency of four-wave mixing [7, 10]
and decreases both the modulational instability gain and bandwidth [11, 12]. When used with
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soliton systems, lowering the average dispersion also reduces the Gordon–Haus timing jitter
[9, 13, 14].

In addition, dispersion management has been found to enhance the soliton energy [15, 16];
this further reduces the timing jitter below the amount that would be obtained in a system with
constant dispersion equal to the path-averaged value. The power enhancement of dispersion-
managed solitons can be easily understood on physical grounds. Within each dispersion-map
period, a pulse undergoes significant broadening and re-compression due to the local disper-
sion imbalance. As the pulse broadens, of course, the peak power falls and nonlinear effects
weaken. Compared to the case of constant dispersion, therefore, higher launch power (and
hence higher pulse energy) is needed in order for nonlinearity to balance the net dispersion
over each map period. For this reason, dispersion-managed solitons are also referred to as
enhanced-power solitons.

Wavelength-division-multiplexed (WDM),i.e., multi-channel, transmission [5, Chapter 7]
of dispersion-managed solitons, therefore, is now believed to be a promising way to realize
ultra-high capacity optical communication systems. Considerable work has thus been devoted
to studying the dynamics of dispersion-managed solitons for various system designs and to
optimizing dispersion management for such systems.

Optimization of dispersion-managed soliton systems involves many practical constraints
and therefore is a rather complicated issue. Among other factors, however, it is important to
diminish the shedding of energy from the input pulse into a dispersive pedestal, which can be
achieved by launching properly shaped and chirped pulses with optimum power into the fiber
[17]. In practice, typical optical sources generate unchirped pulses and input pulse chirping is
realized by use of an additional piece of fiber preceding the line edge. It is therefore necessary
to identify points in each dispersion-map period where pulses are unchirped, and use one such
location as the launch point. The partial map period preceding the first complete map period
then plays the role of the prechirping fiber.

Here we employ multiple-scale averaging to analyze the dynamics of dispersion-managed
solitons. Variational approximations have also been used to accomplish this [18]. Here, the
goals are to calculate the enhanced pulse energy and to locate the optimal (chirp-free) launch
points in each dispersion-map period. In Section 2, we formulate the problem by modeling
pulse propagation in a dispersion-managed optical fiber with loss and gain using a perturbed
nonlinear Schrödinger (NLS) equation. Via a coordinate transformation, it is shown that for
every lossy system with a finite number of amplifiers in each dispersion-map period to com-
pensate fiber loss, there is an equivalent lossless system. Therefore, it suffices to develop a
general theory for lossless systems. The effects of different amplifier arrangements on the
pulse dynamics can then be studied simply by adapting the results.

In practice, the dispersion-map period is often shorter than the dispersion length (based
upon the path-averaged GVD) of the fiber. Taking advantage of the length scale disparity,
in Section 3 we use second-order averaging and a near-identity transformation to derive an
evolution equation valid for general periodic dispersion maps and applicable to both return-
to-zero (RZ,e.g., soliton) and NRZ encoding schemes. The equation is then applied to the
case of dispersion-managed solitons in Section 4, and analytic expressions for the evolution
of various pulse characteristics are obtained.

In Section 4, based upon the asymptotic results, we discuss the effects of two-step disper-
sion maps on the pulse dynamics. The case of lossless fibers is analyzed in detail. As expected
[15], the optimal (chirp-free) launch points are simply the fiber-segment midpoints when fiber
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Table 1. Acronyms used in this paper

GVD group-velocity dispersion

NLS nonlinear Schrödinger

NRZ non-return-to-zero

RZ return-to-zero

WDM wavelength-division multiplexing

loss is negligible. The prediction of the asymptotic theory for the power enhancement also
compares favorably with an empirical correlation [15, 16].

When fiber loss is significant, however, the optimal launch point locations generally depend
on the fiber-segments’ dispersions in a complicated manner. An important factor affecting the
performance of dispersion-managed WDM systems is the variation of the chromatic disper-
sion with wavelength (i.e., the dispersion slope) [1, Section 1.2.3], which then necessitates
prechirping each channel individually to accomodate the different dispersion values. In Sec-
tion 5 we show that by choosing the relative lengths of the two fiber segments properly,
there are optimal launch points whose locations relative to the amplifier are independent
of the fibers’ dispersions. This is a remarkable finding as it implies that optimization of
dispersion-managed WDM systems can be realized simultaneously in different channels.

2. Perturbed nonlinear Schrödinger equation

Pulse propagation in a dispersion-managed optical fiber with an amplifier deployed in each
dispersion-map period to compensate fiber loss is governed by the perturbed NLS equation [2,
Chapter 7] (see [19, pp. 68–75] or [20, pp. 32–38] for general descriptions of the unperturbed
NLS equation)

i
∂v

∂z
− 1

2σ
(z
ε

) ∂2v

∂t2
+ |v|2v

= −i

[
3

ε
− (√G− 1)

N−1∑
n=0

δ(z− εζA − εn)
]
v. (1)

We have scaled Equation (1) using a characteristic timeτ0 ( to be identified later), the dis-
persion length based on the path-averaged GVDLD = τ 2

0/|〈β̈〉|, and the characteristic power
P0 = (γLD)

−1, whereγ is the fiber’s nonlinear coefficient. The dimensionless GVD coef-
ficient is thenσ = β̈/|〈β̈〉| and is periodic inz with periodε, i.e., σ (z/ε) = σ (z/ε + 1).
Here ε is the ratio of the dispersion-map period to the dispersion length,ε = l/LD. The
dimensionless loss coefficient is3 = αl/2, whereα is the dimensional loss, and the amplifier
gain isG = exp(23). The delta-function terms in (1) are compact representations of the jump
conditions due to theN amplifiers deployed atz = ε(ζA + n), n = 0,1, . . . , N − 1, with the
understanding that the delta functions samplev on the left, namely∫ εζ+A

εζ−A
δ(z− εζA)v dz ≡ v(εζ−A , t).

The linear loss and gain term in (1) can be readily eliminated [21] by the transformation
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v(z, t) = ã(ζ )u(z, t), (2)

whereζ = z/ε andã(ζ ) satisfies

dã

dζ
+
[
3− (√G− 1)

N−1∑
n=0

δ(ζ − ζA − n)
]

ã= 0.

Equation (1) then becomes

i
∂u

∂z
− 1

2σ (ζ )
∂2u

∂t2
+ g(ζ )|u|2u = 0, (3)

whereg(ζ ) = ã(ζ )2 = C exp{−23[ζ−ζA+1−H(ζ−ζA)]}(06 ζ 6 1) andg(ζ ) = g(ζ+1).
HereH(·) is the Heaviside step function andC = G logG/(G−1) if g(ζ ) is normalized such
that

〈g〉 =
∫ 1

0
g(ζ )dζ = 1.

Note that in a lossless fiber3 = 0 and henceg(ζ ) ≡ 1.
Since the pulse energy variation due to fiber loss and repeated amplification has been taken

care of by the transformation (2), the equation foru now conserves ‘energy’,i.e.,
∫∞
−∞ |u|2 dt is

a constant. Note the periodic coefficient of the self-phase modulation (nonlinear) term in (3),
g(ζ ), is a reflection of the true pulse energy variation (i.e., in v). Note also that the special case
where the amplifier spacing equals the dispersion-map period is used above for illustrative
purpose. It is clear that the transformation (2) can also be applied to general cases where there
are a finite number of amplifiers in each map period. The gains of the amplifiers may differ
as long as they cooperatively compensate the fiber loss in each period. Different amplification
schemes simply lead to different functional forms forg(ζ ) appearing in (3).

It is interesting that for any fiber with periodic loss and amplification there is an equivalent
lossless fiber. This can be seen by introducing the coordinate transformation

ξ = ξ(ζ ) =
∫ ζ

0
g(s)ds. (4)

Equation (3) then becomes

i
∂u

∂x
− 1

2σ̂ (ξ )
∂2u

∂t2
+ |u|2u = 0, (5)

whereσ̂ = σ/g, σ̂ (ξ) = σ̂ (ξ + 1), andx = εξ . The transformation (4) is one-to-one sinceg
is always positive. Comparing (5) with (3), we clearly see that (5) now has the same form as
the equation for pulse evolution in lossless fibers with dispersion management. The lossless
Equation (5) is therefore directly relevant to the study of pulse evolution in systems with loss
and gain. Furthermore, no restrictions have been placed on the pulse profile or the magnitude
of ε, so (5) is applicable to both NRZ and RZ encoding schemes.

Equation (5) explains in a simple manner the benefits of using fibers with an exponentially
decreasing dispersion to transmit solitons when fiber loss is significant,e.g., when the ampli-
fier spacing is large (which reduces system cost and complexity). Soliton transmission is the
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result of a balance between nonlinearity and dispersion; when the pulse amplitude decreases
due to loss, the fiber’s dispersion must also decrease if that balance is to be maintained. In view
of (5), ideal soliton transmission requires a constant (negative) effective GVD parameterσ̂ .
Since the self-phase modulation effective strengthg decreases exponentially, the two effects
will balance if the fiber’s GVD parameterσ also decreases exponentially.

Fibers with exponentially decreasing dispersion can be manufactured [22, 23]. Since the
construction of a soliton transmission system employing such special fiber would be prohib-
itively expensive, however, a reasonable alternative is to concatenate a series of constant-
dispersion fibers (with piecewise decreasing dispersion, of course) to approximate a fiber
having exponentially decreasing dispersion. Clearly, the dispersion values of all the fiber seg-
ments in this dispersion management scheme have the same sign (i.e., anomalous dispersion).
We will see shortly, however, that a number of advantages can be realized if both signs are
allowed. The asymptotic theory developed below, of course, is valid for generalg(ζ ) andσ (ζ )
and therefore applies to both schemes.

3. Multiple-scale averaging

In practical dispersion-managed systems, the dispersion-map period is often shorter than the
fiber’s dispersion length. It is therefore useful to analyze the asymptotic limit where 0< ε �
1 by exploiting the small parameter. To do so, we expand the solution in a power series inε,

u = U + εu1+ ε2u2+ · · · , (6)

where the average ofuk (k = 1,2, . . .) with respect toξ satisfies

〈uk〉ξ =
∫ 1

0
uk dξ = 0,

so thatU represents the average ofu with respect toξ over the dispersion map period. Since
〈u〉ξ =

∫ 1
0 ug(ζ )dζ = 〈gu〉, U may also be interpreted as the average ofu with respect toζ

weighted by the self-phase modulation strengthg.
We take Equation (6) to be a multiple-scale expansion [24, Chapter 3], assuming that the

fluctuatinguk depend uponU and the ‘fast’ variableξ = x/ε, while the averageU depends
upon ‘slow’ variablesxk = εkx, k = 0,1,2, . . . . This means that

∂U

∂x
= ∂U

∂x0
+ ε ∂U

∂x1
+ ε2 ∂U

∂x2
+ · · · . (7)

We can then separate fast oscillations produced by the dispersion map from longer-term
effects.

Upon substitution of (6) and (7) in (5), we find at leading order,ε0, that

i
∂u1

∂ξ
+ i

∂U

∂x0
− 1

2σ̂ (ξ )
∂2U

∂t2
+ |U |2U = 0. (8)

In order to avoid terms which grow linearly withξ in u1, i.e., secular terms [24, p. 107], we
must have

i
∂U

∂x0
= 1

2〈σ 〉
∂2U

∂t2
− |U |2U (9)
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and

u1 = − i

2
[µ̂1(ξ)− 〈µ̂1〉ξ ]∂

2U

∂t2
. (10)

Here〈σ 〉 = 〈σ̂ 〉ξ is the average GVD coefficient, and the fluctuations about the mean depend
on µ̂1(ξ) =

∫ ξ
0 [σ̂ (s) − 〈σ 〉]ds = µ1(ζ ) − 〈σ 〉ν1(ζ ), with µ1(ζ ) =

∫ ζ
0 [σ (s) − 〈σ 〉]ds and

ν1(ζ ) =
∫ ζ

0 [g(s)− 1]ds.
At the next order,ε1, we find∂U/∂x1 = 0 and

u2 = −[µ̂2(ξ)− 〈µ̂2〉ξ ](U2U ∗t t + 2U |Ut |2+ U2
t U
∗)

−1
8{[µ̂1(ξ)− 〈µ̂1〉]2ξ − 2M}Uttt t, (11)

whereµ̂2(ξ) =
∫ ξ

0 [µ̂1(s) − 〈µ̂1〉ξ ]ds, andM = 1
2(〈µ̂2

1〉ξ − 〈µ̂1〉2ξ ) is the variance of̂µ1. For
lossless fibers,3 = 0 andM = 1

2(〈µ2
1〉 − 〈µ1〉2) is the map’s dispersion variance,i.e., the

variance of the local net accumulated dispersion surplus or deficit in the map relative to the
path-averaged case. When the pulse amplitude variations due to fiber loss and amplification
are significant, of course, the parameterM depends upon the dispersion map, the pulse energy
variation, and their interactions.

Finally, at second order we find an expression foru3 and also

i
∂U

∂x2
= M[U2U ∗t t t t + 6UUtU

∗
t t t + 2(|U |2)tUtt t + 5U |Utt |2

+ 7U2
t U
∗
t t + 10|Ut |2Utt + 5

2U
2
t tU
∗]. (12)

Substituting (9),∂U/∂x1 = 0, and (12) in (7), we then obtain an averaged evolution equation
for U , the mean ofu, correct toO(ε2),

iUx − 1
2〈σ 〉Utt + |U |2U

= ε2M[U2U ∗t t t t + 6UUtU
∗
t t t + 2(|U |2)tUtt t + 5U |Utt |2

+ 7U2
t U
∗
t t + 10|Ut |2Utt + 5

2U
2
t tU
∗] + · · · . (13)

Equation (13) is the same as what one obtains by performing ‘guiding center averaging’
using Lie transforms [25, 43, 44]. Not all terms on the right-hand side of (13) are important
for determining the long-term behavior ofU , however. Some of the perturbing terms produce
relatively trivial effects upon the pulse evolution. For example, if there were a perturbing
term of the formε2|U |2U , then it is clear that the perturbation could be eliminated merely by
grouping this with the self-phase modulation term on the left-hand side and then renormalizing
the pulse amplitude.

It is not possible to eliminate all types of perturbations, of course. A general method for
determining which are significant and which are not is available [26, 27]. This method involves
examining general classes of renormalizations or corrections to the solution and identifying
which resulting perturbations appear on the right-hand side of (13). The details of the applic-
ation of the method to (13) are rather involved. We found, however, a simple interpretation,
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described in the Appendix, that elucidates the essence of the method. In any event, it can be
verified by direct substitution that the near-identity transformation

q = U + ε2M

{
1
4Uttt t +

1

〈σ 〉 [Ut(|U |
2)t + U(UU ∗t )t ]

}
+ · · · (14)

converts (13) to

i
∂q

∂x
− 1

2〈σ 〉
∂2q

∂t2
+ |q|2q

= ε2 M

〈σ 〉
{
|q|2q ∂

2

∂t2
(|q|2)+ 1

2q
∂2

∂t2
(|q|4)

}
+ · · · . (15)

As is shown in the Appendix, the transformation (14) is unique if one requires it to eliminate
all cubic perturbations from the right-hand-side of (15). Of course, it is straightforward to
revert (14) to provide a similar transformation fromq back toU .

Note that to this point (15) is completely general, and thus applicable to both NRZ and RZ
encoding schemes. To be valid, however, it is clear that we must require the path-averaged
dispersion,〈σ 〉, to be nonzero. This implies that significant differences in the propagation
behavior should be expected when〈σ 〉 = 0. Note also that the perturbing terms in the trans-
formed Equation (15) are now independent of the derivatives of the solution’s phase, implying
that the effects of the pulse phase variation have already been absorbed into the transformation
(14). As a result, since the pulse phase dynamics is usually more complicated than that of the
pulse power, the transformed Equation (15) is advantageous both for further analytical and
numerical treatment.

4. Analysis of enhanced power solitons

For the remainder of the discussion we will apply (15) to the case of dispersion-managed
solitons. We will assume that〈β̈〉 is negative, corresponding to anomalous path-averaged
dispersion, as is necessary for solitons when the strength of the dispersion map is either
weak or moderately strong. Note that for sufficiently strong dispersion maps it is possible
to have dispersion-managed solitons when the path-averaged GVD is zero or even positive
(i.e., normal) [28–37]. It is not possible to analyze such strong maps with the present the-
ory, however, since the averaging method produces results that must be valid in the limit
of weak dispersion variation, and the behavior observed for strong maps does not persist
in this limit. Nevertheless, a substantial advantage of the averaging method is that closed-
form results are obtained that allow simple and direct exploration of various dispersion map
designs; unfortunately, such considerations for strong dispersion maps are much more difficult
to analyze.

For the analysis, we first normalize the path-averaged dispersion so that〈σ 〉 = −1. Using
a regular perturbation expansion, we find that (15) has the solution

q = eix/2{secht + 4
3ε

2M(2 secht − sech3 t − sech5 t)+ · · ·}.
Transformingq back tou using (14) and (6), we findu = Aexp(iφ), where

φ = 1
2x − 1

2ε[µ̂1(ξ)− 〈µ̂1〉ξ ](1− 2 sech2 t)+ · · · (16)
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and

A = secht{1+ 1
3ε

2M(8+ 8 sech2 t − 19 sech4 t)

+ε2(1
2[µ̂1(ξ)− 〈µ̂1〉ξ ]2− [µ̂2(ξ)− 〈µ̂2〉ξ ])

×(4 sech2 t − 5 sech4 t)+ · · ·}. (17)

The asymptotic results (16) and (17) indicate that the pulse’s profile and phase deviate from
the results for a hyperbolic secant-shaped soliton in a uniform fiber, as observed numerically
[15, 16]. Note, however, that the pulse shape variations areO(ε2), where theO(ε) correction
is entirely a phase variation in (16).

One way to reduce this phase variation to a single number is to define the phase chirp by

b =
∫∞
−∞ t={u∗ut } dt∫∞
−∞ t2|u|2 dt

(if the perturbations are small and the phase varies quadratically int , the parameterb is simply
the coefficient; note that it is not related to one of the conserved quantities of the NLS equation,
however, and therefore its value is expected to be more strongly affected by pulse shape). We
then find directly from (16) and (17) that

b = − 4

π2
ε[µ̂1(ξ)− 〈µ̂1〉ξ ]. (18)

Therefore, the pulse is unchirped at pointsξ = ξ0, whereµ̂1(ξ0) = 〈µ̂1〉ξ .
We can also show, using (17), that the minimum pulse width occurs at points where the

pulse is unchirped and is therefore transform-limited [1, Section 3.2.2]. At such a point we
can thus determine the relationship between the characteristic timeτ0 and the minimum full-
width-at-half-maximum (FWHM) pulse widthτFWHM [1, p. 65], which is

τFWHM

τ0
= 2 log(1+√2)+

√
2

6
ε2(41M − 21N )+ · · · , (19)

whereN = µ̂2(ξ0)−〈µ̂2〉ξ . Alternatively,τ0 is also related to the minimum root-mean-square
(RMS) pulse widthτRMS [1, pp. 71–73] by

τRMS

τ0
= π√

12

[
1+ 4

3π2
ε2(11M − 3N )+ · · ·

]
. (20)

Also, as expected, (17) gives the constant pulse ‘energy’∫ ∞
−∞
|u|2 dt = 2

(
1+ 32

15
ε2M + · · ·

)
. (21)

So far, the dispersion map and the amplifier arrangement have not been specified. The
asymptotic results above therefore can be specialized to predict the dynamics of dispersion-
managed solitons for various system designs and then used to address the optimization issue,
as long as the dispersion-map period is shorter than the fiber’s dispersion length.

207964.tex; 1/06/1999; 14:34; p.8



The multiple-scale averaging and dynamics of dispersion-managed optical solitons171

A simple implementation of dispersion maps is to concatenate two fibers, one having
anomalous dispersion and the other normal dispersion. This has been demonstrated exper-
imentally to be an effective means for improving the performance of soliton transmission
systems [9, 38]. Here we use the asymptotic results obtained above, and compare them with
numerical results for the perturbed NLS Equation (1) to discuss the effects of two-step disper-
sion maps on the dispersion-managed soliton pulse shape and power. The dimensional GVD
coefficients of the two fiber segments will be denoted byβ̈1,2 and their lengths byl1,2. The
path-averaged GVD then is〈β̈〉 = ζ1β̈1+ ζ2β̈2, whereζ1 = l1/ l andζ2 = l2/ l = 1− ζ1.

First we consider the idealized case where fiber loss is negligible,i.e.,3 = 0, so thatg ≡ 1
and henceξ = ζ, v = u. It can then be readily deduced thatµ̂1 = 〈µ̂1〉ξ at the midpoints of the
fiber segments. In other words, dispersion-managed solitons in lossless fibers are unchirped at
the segment midpoints, consistent with the numerical results of Smithet al.[15]. An empirical
formula for the enhanced pulse energy, denoted byE below, that fits the numerical results is
[15]

E = −3 · 52〈β̈〉
γ τFWHM

[
1+ 0·7

(
(β̈1− 〈β̈〉)l1− (β̈2− 〈β̈〉)l2

τ 2
FWHM

)2
]
. (22)

We wish to compare the asymptotic result (21) with this empirical formula.
To do so, the parametersM andN must be evaluated. Expression (19) or (20) then indic-

ates that the (locally) minimum pulse widths at two consecutive segment midpoints actually
differ slightly in general, since the value ofN depends onξ0. To avoid ambiguity, we choose
the pointξ = ξ0 to be the midpoint of the segment whose GVD coefficient isβ̈1. Also, since
µ̂1(0) = µ̂2(0) = 0 by definition, it is convenient to start the dispersion map at the midpoint
so that〈µ̂1〉ξ = 〈µ1〉 = 0. By direct calculation, it then follows that

N = − 1
48(ζ1+ 2ζ2)[ζ1(σ1+ 1)− ζ2(σ2+ 1)]

and

M = 1
96[ζ1(σ1+ 1)− ζ2(σ2+ 1)]2,

whereσ1 = β̈1/|〈β̈〉| and σ2 = β̈2/|〈β̈〉| = −(1 + ζ1σ1)/ζ2 are the dimensionless GVD
coefficients of the fiber segments.

Note that interchanging the subscripts ‘1’ and ‘2’ does not affect the expression forM.
This reflects the fact that the parameterM is related to the pulse energy; its value, therefore,
is independent of how the segments are labeled and where the starting point of the dispersion
map is chosen. Also, using the above expressions forM andN , it is straightforward for us
to determine the segment midpoint where the pulse is truly narrowest by comparing the pulse
width that (19) or (20) predicts for two consecutive segment and midpoints.

Combining the expressions forM and N with (19) and (21), we then obtain the pulse
energy, in terms of dimensional quantities [39],

E = − 3·52〈β̈〉
γ τFWHM

[
1+ 0·766S2 − 0·564

l1 + 2l2
τ 2

FWHM

〈β̈〉S + · · ·
]
, (23)

whereS = [l1(β̈1− 〈β̈〉)− l2(β̈2− 〈β̈〉)]/τ 2
FWHM measures the strength of the dispersion map

and is a scaled version of the map’s dispersion variance(S2 = 96ε2M). The first term is
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precisely that discovered via numerical simulations [15], but with a coefficient(0·766) that is
slightly greater than that determined numerically(0·7). The second term is basically similar
to the first, but it is proportional to the product of the dispersion map strengthS and the path-
averaged dispersion〈β̈〉, rather thanS2. Since a goal of using dispersion maps is to reduce
〈β̈〉, this second term is expected to be negligible in most cases.

Figure 1 compares the analytic expression for the enhanced pulse energy (23) with the
empirical result (22). Here〈β̈〉 = −0·1 ps2/km, γ = 2·65 W−1km−1, τFWHM = 20 ps, l1 =
l2 = 100 km, andβ̈2 − β̈1 varies from 0 to 12 ps2/km (the range over which the empirical
best fit was made). The largest difference between the two curves arises from the different
coefficients, 0·766 vs. 0·7, but some inaccuracy should be anticipated in the analytic result
when the perturbations are strong, since it is a ‘best fit’ only for smallβ̈2 − β̈1. Nevertheless,
considering that the curves span a relatively wide range, the agreement is much better than
one would expecta priori.

Figure 1. Comparison between the numerical
(solid curve) and analytical (dashed curve) res-
ults for the soliton power enhancement due to a
two-step dispersion map. The parameters are as
described in the text, and the pulse energy has been
normalized by−3·52〈β̈〉/(γ τFWHM).

Figure 2. Comparison of pulse shapes obtained
with the numerical (solid curve), analytical (dot-
ted curve) and path-averaged NLS (dashed curve)
solutions. Herëβ2− β̈1 = 1·82 ps2/km.

In Figure 2 we compare the pulse shapes obtained from the numerical solution, the analytic
solution (17), and what one obtains using the path-averaged NLS equation. The parameters
are as before, and̈β2 − β̈1 = 1·82 ps2/km. The perturbation expansion does a good job of
predicting the pulse shape for small dispersion map strengths. For values ofβ̈2 − β̈1 above
about 2·9 ps2/km, however, the perturbation solution becomes double-peaked and is no longer
a good pointwise approximation to the solution. This suggests that the pulse energy, being an
integrated quantity, is to some extent tolerant of inaccuracies in the pulse shape.

More recent results [40] have observed discrepancies between additional simulations and
the empirically determined curve, (22), particularly when the dispersion map strength is strong.
In this limit a saturation effect as been observed which limits the growth of the power enhance-
ment factor. We conjecture that these discrepancies may be due in part to difficulties in the
measurement of the FWHM pulse width, since the pulse shape can become quite complicated
in this limit [41]. It is possible that use of another method to calculate the pulse width (such as
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the minimum RMS width) may yield better agreement, but eventually, of course, one should
expect all analytic predictions based upon averaging to break down for very strong maps.

5. Optimal launch points for WDM soliton transmission

We now turn to the more realistic case where fiber loss is significant and is compensated
by deploying an amplifier at a segment junction per dispersion-map period. As mentioned in
Section 1, an objective is to locate the points in each map period where dispersion-managed
solitons are unchirped, so that pulses can be launched at one such point to minimize the
shedding of dispersive radiation. The locations of these optimal launch points now are affected
by fiber loss and repeated power amplification, however, and in general no longer occur at the
midpoints of the fiber segments.

Nevertheless, the general results obtained in Section 4 can be readily adapted to study the
effects of loss and gain on the locations of the optimal launch points. Here we shall denote
the dimensionless GVD coefficient of the fiber segment after (before) the amplifier byσ1 (σ2)

and the fraction it occupies the map period byζ1 (ζ2), and again take〈σ 〉 = −1. According to
(18), the optimal launch points occur whenµ̂ = 〈µ̂〉ξ . With some straightforward algebra, we
find that the distance between the amplifier and a chirp-free point on the fiber segment after
the amplifier,ζa, can be determined from [42, 45].

σ1+ 1= 23Gexp(−23ζ1a)+ (23ζ1a − 1−3)(G− 1)

23ζ1a(G− 1)−G+ [exp(23ζ2)− ζ1]/ζ2
, (24)

wherea = ζa/ζ1(0 < a < 1). Similarly, the distance between the amplifier and a chirp-free
point on the segment before the amplifier,ζb, is given by

σ1+ 1= 23exp(−23ζ2a)+ (23ζ2a − 1+3)(G− 1)

−23ζ1a(G− 1)−G+ [exp(23ζ2)− ζ1]/ζ2
, (25)

wherea = −ζb/ζ2(−1< a < 0).
For given values of3, ζ1, anda, the dimensionless GVD coefficientσ1 can be calculated

from (24) and (25). Several solution curves are plotted in Figure 3, where3 = 2·763 (cor-
responding, for example, toα = 0·04605 km−1 andl − 120 km). It appears that for a given
dispersion map (characterized byζ1 andσ1), there are in general two optimal launch points.
Three or four optimal launch points are also possible for weaker dispersion maps where both
fiber segments have anomalous dispersion.

Whenζ1 = 0·1762 or 0·2650, however, the location of a chirp-free point is independent
of the GVD coefficients of the fiber segments. These ‘magic’ length fractions correspond to
special cases where the numerator and the denominator of the right-hand side of (24) or (25)
are both zero, and, as can be readily deduced from (24) and (25), only depend on the loss
coefficient3. We calculate numerically the magic fractions as functions of3 and plot the
results in Figure 4. Note the magic fractionζ1 tends to decrease (henceζ2 = 1− ζ1 increases)
with increasing3. In the lossless limit(3 = 0), of course, the chirp-free points are simply
the midpoints of the fiber segments.

The observation that special dispersion maps exist having GVD-independent optimal
launch point locations is of crucial importance for WDM soliton transmission. As noted in
Section 1, due to the dispersion slope different channels have different dispersion character-
istics and therefore in general need to be prechirped differently. The existence of the special
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Figure 3. Locations of the chirp-free points within a dispersion map period. The distance between a chirp-free
point and the amplifier is normalized by the length of the segment on which the chirp-free point lies and positive
(negative) values of the normalized distancea correspond to chirp-free points on the segment after (before) the
amplifier. Here the loss parameter is3 = 2·763.
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Figure 4. The magic fractions and the locations of the corresponding GVD-independent chirp-free points as
functions of the loss coefficient3. The fractionζ1 (solid line) and the distanceζa (dashed line) amplifier, while
ζ2 (dotted line) andζb (dot-dashed line) are plotted when the chirp-free point is on the fiber segment before the
amplifier.

dispersion maps, however, implies that optimization of dispersion-managed WDM systems
can be realized simultaneously in different channels.

We now compare the predictions of the asymptotic theory with numerical results based on
the perturbed NLS Equation (1). We shall take the attenuation constant and the dispersion-
map period to beα = 0·04605 km−1 (corresponding to a 0·2 dB/km power loss) andl =
120 km, respectively; the dimensionless loss coefficient is then3 = 2·763.

As an example, first consider a low-strength dispersion map (in the sense thatε2M � 1)
with ζ1 = 0·225 andσ1 = −3·33; accordingly,M = 6·29× 10−4. It can be readily checked
that this map consists of two anomalous-dispersion segments and therefore is effectively a
simple approximation of a fiber having exponentially decreasing dispersion [see the discussion
following (5)]. For this map, (24) and (25) predict that there are four optimal launch points
corresponding toa = 0·7099,0·1442,−0·2587, and−0·8688, respectively. Figure 5 shows
the evolution of the peak pulse amplitude (occurring att = 0) and the chirp parameterb
after an unchirped hyperbolic-secant pulse is launched at the optimal point corresponding to
a = 0·1442, takingε = 0·5. Both numerical and asymptotic results are plotted in Figure 5 for
comparison. Clearly, the asymptotic theory provides a good prediction for this map.

We next confirm numerically the existence of special dispersion maps having GVD-
independent optimal launch points. To demonstrate the effectiveness of the theory, for il-
lustrative purposes we choose maps with significantly different dispersion characteristics (in
practice, different WDM channels have much closer dispersion parameters). In case I, the
dimensional GVD coefficients of the fiber segments are taken to beβ̈ I

1 = −20·1 andβ̈ I
2 =

2·76 ps2/km, while in case IIβ̈ II
1 = −22·7 andβ̈ II

2 = 3·76 ps2/km. Here it is assumed that
the amplifier is deployed at the beginning of the anomalous dispersion segment in both cases.
For3 = 2·763, we findζ1 = 0·1762 is a fraction with a GVD-independent optimal launch
point corresponding toa = 0·5593. The path-averaged GVD coefficients in the two cases
are then〈β̈〉I = −1·268 and〈β̈〉II = −0·902 ps2/km, respectively. For initially 35 ps FWHM
pulses,εI = 0·486 andεII = 0·417. Note that for strong dispersion maps, to determine the
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Figure 5. Evolution of the peak pulse amplitude|v(t = 0)| and the chirp parameterb (circles: numerical results;
solid lines: asymptotic predictions). The parameters are described in the text.

theoretical value ofε when the FWHM pulse width is given one must simultaneously solve
ε = l/LD, LD = τ 2

0/|〈β̈〉|, and Equation (19).
Figure 6 shows the evolution of the phase chirp in both cases after unchirped hyperbolic-

secant pulses are launched at the optimal launch point corresponding toa = 0·5593 with
power enhancements of 11% and 21%, respectively. It is clearly seen that the asymptotic
theory provides good predictions for the locations of the chirp-free points in both cases (even
though pointwise asymptotic estimates for the chirp parameterb differ from the numerical
results by roughly a factor of two because the maps are quite strong). Furthermore, despite
the dispersion characteristics being significantly different, use of the GVD-independent dis-
persion map produces pulses in both cases that are unchirped at practically the same period
points. This confirms the validity of the asymptotic predictions regarding the zero-chirp points
of such special dispersion maps.

In Figure 7 we show the stroboscopic evolution of the peak pulse amplitude and the chirp
parameterb at successive GVD-independent chirp-free points corresponding toa = 0·5593
in Cases I and II when unchirped enhanced-power hyperbolic-secant pulses are launched
at either the optimal point or the beginning of the normal dispersion segment. Clearly, the
peak pulse amplitude and chirp oscillate much less significantly when pulses are launched
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Figure 6. Evolution of the chirp parameterb in
Cases I (circles) and II (diamonds) (with paramet-
ers described in the text) after unchirped power-
enhanced hyperbolic-secant pulses are launched at
a GVD-independent optimal launch point.

Figure 7. Graphs of the peak pulse amplitude
|v(t = 0)| and the chirp parameterb meas-
ured stroboscopically at the analyticaly-predicted
GVD-independent chirp-free points. The launch
point is either a chirp-free point (Case I: dotted
lines; Case II: dashed lines) or the beginning of
the normal dispersion segment (Case I: dot-dashed
lines; Case II: long dashed lines). HereZ/l = z/ε.
The parameters for Cases I and II are described in
the text.

at the optimal point. This is because when pulses are not launched at an optimal point they
ideally should be prechirped; initially unchirped pulses, therefore, must adjust themselves to
become truly periodic dispersion-managed solitons, resulting in the transient peak-amplitude
and chirp oscillations. Moreover, as shown in Figure 8, the amount of dispersive radiation gen-
erated is also significantly reduced in both cases when the pulses are launched at the optimal
point. We emphasize that the improvement is achieved inbothchannels simultaneously using
thesameoptimal launch point. Thus the optimization can be realized using the same means
for different channels in dispersion-managed WDM soliton transmission.

In the demonstrations above we have been using optimal (chirp-free) launch points pre-
dicted by the asymptotic results (24) and (25). Launching unchirped hyperbolic-secant pulses
with optimum power at one such point we significantly reduce the transient pulse oscillations
and the accompanying shedding of dispersive radiation. It is seen in Figure 5 that pointwise
agreement between the asymptotic and numerical results for the pulse chirp is excellent when
the dispersion-map strength is small. For stronger maps, however, such as those considered in
Figure 6, good pointwise agreement is no longer possible. Nevertheless, the asymptotic theory
still provides good predictions for thelocationsof the chirp-free points, even when the map
strength is large.
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To show explicitly that the chirp-free locations of magic maps are truly independent of the
dispersion map strength, we have calculated them for a range of dispersion values numeric-
ally. Clearly, due to the asymptotic nature of the theory, the pulse shape given by (17), or,
alternatively, an initially power-enhanced hyperbolic-secant shape (which we have used as an
input pulse) is not exact. However, as pointed out earlier, reasonable input pulses eventually
settle into dispersion-managed solitons via the shedding of dispersive radiation. The chirp-free
points of dispersion-managed solitons therefore can be easily located after the initial transient
evolution has been completed. (Technically, though, the initial transient typically dies out
slowly, and it is desirable to shorten artificially the transient period; this can be achieved using
an averaging procedure originally proposed by Nijhofet al. [28].)

Figure 8.Pulse profiles after propagation over 82
dispersion map periods (9,840 km). The launch
point is either a chirp-free point (Case I: solid
lines; Case II: dashed lines) or the beginning of
the normal dispersion segment (Case I: dot-dashed
lines; Case II: long dashed lines). The parameters
for Cases I and II are described in the text.

Figure 9.Comparison of numerically determined
chirp-free point locations (circles:ζ1 = 0·1762;
diamonds:ζ1 = 0·5) for dispersion-managed
solitons with the asymptotic predictions (solid
lines:ζ1 = 0·1762; dashed lines;ζ1 = 0·5). Here
the normalized dispersion-map period isε = 0·4
and the loss parameter is3 = 2·763. The para-
metera specifies the chirp-free point locations and
is defined in the text.

A comparison between the numerically determined chirp-free point locations and the
asymptotic predictions is given in Figure 9. Here the normalized dispersion-map period is
taken to beε = 0·4 and two map constructions (a map withζ1 = 0·1762 and, for comparison
purposes, a map withζ1 = 0·5) with various dispersion differencesσ1 − σ2 are considered.
Recall that, according to the asymptotic theory,ζ1 = 0·1762 is a ‘magic’ fraction producing
a GVD-independent chirp-free point (corresponding toa = 0·5593) for dispersion-managed
solitons. The numerical results forζ1 = 0·1762 plotted in Figure 9 again confirm the GVD
independence of the special chirp-free point, and show that this remains valid even for stronger
dispersion maps. Note the theory is not fully accurate near the point where the two branches
of chirp-free locations intersect aroundσ1−σ2 ≈ −2·7; it is expected that such an intersection
point is likely to be sensitive to perturbations, though, and the map period used here,ε = 0·4,
is large enough that higher-order terms in the perturbation expansion may be significant.

For ζ1 = 0·1762, the dispersion differenceσ1 − σ2 = −60 corresponds to a map strength
of ε2M ≈ 0·52 and a power-enhancement factor of 73%. The agreement between the numer-
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ically calculated chirp-free point locations and the asymptotically predicted ones is excellent
for this map strength. Forζ1 = 0·5, the same dispersion difference corresponds to a larger
map strength ofε2M ≈ 1·1 and a power-enhancement factor of 97%. As is clearly seen
in Figure 9, the numerically calculated chirp-free point locations still agree quite well with
the asymptotic predictions (and the agreement is better for the ‘magic’ map). The compar-
ison above confirms the accuracy of the asymptotic predictions for the optimal (chirp-free)
launch point locations for dispersion-managed solitons. Note, of course, that for very large
map strengths the zero-chirp locations asymptotically become independent of the dispersion
difference, because the local dispersion becomes the dominant physical effect within any map
period. Only for the ‘magic’ map fractions, however, is the location constant for all values of
the dispersion different.

6. Concluding remarks

We have used multiple-scale averaging to analyze the dynamics of dispersion-managed
solitons, an expansion formally valid when the dispersion-map period is shorter than the
fiber’s dispersion length. The predictions of the asymptotic theory compare favorably with
numerical results, oftentimes even when the strength of the dispersion map is so large that the
theory would not be expecteda priori to be valid. The simple asymptotic results are useful for
providing valuable insights into the issue of optimizing dispersion-managed soliton systems.

In particular, using the asymptotic theory, we have discovered (and confirmed numerically)
a class of two-step dispersion maps that render the location of the optimal (chirp-free) launch
points independent of the fibers’ dispersions. These GVD-independent dispersion maps are
easy to implement as their design only involves choosing the ratio between the two segment
lengths properly. It is demonstrated that the amount of energy shed into a dispersive pedestal
can be substantially reduced by using such launch points, and that the result obtained provides
a simple method for optimizing WDM soliton transmission simultaneously in several different
channels.

Appendix: Normal form of perturbed NLS equation

Here we give the specific details as applied to Equation (13) of a general method for identi-
fying nonessential perturbing terms in perturbed NLS equations [26, 27]. The method accom-
plishes this by using a near-identity transformation (14) to reduce (13) to a simpler form, or,
‘normal form’.

We can gain an intuitive understanding of the method by seeking a solution of (13) in the
form of a perturbation expansion

U = U0+ ε2U1+ · · · .

Upon substitution of the expansion in (13), it is readily seen thatU0 satisfies the NLS equation

iU0x − 1
2〈σ 〉U0t t + |U0|2U0 = 0, (A.1)

and the correctionU1 is governed by the forced linearized NLS equation
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L{U1} = iU1x − 1
2〈σ 〉U1t t + U2

0U
∗
1 + 2|U0|2U1

= M[U2
0U
∗
0t t t t + 6U0U0tU

∗
0t t t + 2(|U0|2)tU0t t t + 5U0|U0t t |2

+7U2
0tU
∗
0t t + 10|U0t |2U0t t + 5

2U
2
0t tU

∗
0 ] + · · · . (A.2)

Note that all of the forcing terms on the right-hand side of (A.2) are cubic inU0 and involve
four differentiations with respect tot . These are ‘order-7’ terms [26, 27], in the sense that the
number ofU0’s andt- differentiations in these terms add up to seven. Also, since the linearized
NLS operatorL{·} involves multiplication of twoU0’s and two differentiations with respect
to t (in view of Equation (A.1), a differentiation with respect tox is the same order as twot
derivatives), forU1 to have a closed-form solution it must consist of terms that are order-5.

We can readily construct some order-5 terms by permuting the numbers ofU0’s and differ-
entiations with respect tot . There are six linearly independent terms of this form:

F1 = U0t t t t, F2 = U0t (|U0|2)t , F3 = U0(U0U
∗
0t )t ,

F4 = U0(U
∗
0U0t )t , F5 = |U0|2U0t t , F6 = |U0|4U0.

Other order-5 terms exist and are connected with the conserved quantities of the NLS equation
[26]. These are

F7 = (−6|U0|2U0t + 〈σ 〉U0t t t)

∫ t

−∞
|U0|2 dt,

F8 = (−2|U0|2U0+ 〈σ 〉U0t t )

∫ t

−∞
U0U

∗
0t dt,

F9 = U0t

∫ t

−∞
(|U0|4+ 〈σ 〉|U0t |2)dt,

F10 = U0

∫ t

−∞
(3|U0|2U0U

∗
0t + 〈σ 〉U0tU

∗
0t t )dt.

[Integration is the inverse operation of differentiation, of course, and therefore contributes
−1 to the ‘order’ of these terms.] Note that when we complete the integrals above by letting
t → ∞, they become the conserved quantities of the NLS equation. Meanwhile, the factors
multiplying the integral terms inFk(k = 7,8,9,10) are simply the functional derivatives of
the integrands inF17−k with respect toU ∗0 . Order-7 terms involving integrals also exist, of
course, but are not needed here.

Solution of (A.2) amounts to calculatingL{Fk}(k = 1,2, . . . ,10) and then constructing a
linear combination ofL{Fk} that produces the right-hand side of (A.2). Although tedious, it
is straightforward to show that

L{F} = −BS, (A.3)

where

F =
[
F1,

F2

〈σ 〉 ,
F3

〈σ 〉 ,
F4

〈σ 〉 ,
F5

〈σ 〉 ,
F6

〈σ 〉2 ,
F7

〈σ 〉2 ,
F8

〈σ 〉2 ,
F9

〈σ 〉2 ,
F10

〈σ 〉2
]T
,

S =
[
S1, S2, . . . , S9,

S10

4〈σ 〉 ,
S11

4〈σ 〉 ,
S12

4〈σ 〉 ,
S13

4〈σ 〉 ,
S14

4〈σ 〉 ,
S15

4〈σ 〉2
]T
,

207964.tex; 1/06/1999; 14:34; p.18



The multiple-scale averaging and dynamics of dispersion-managed optical solitons181

with

S1 = U0(|U0|2)tt t t , S2 = U0U0tU
∗
0t t t , S3 = U0|U0t t |2,

S4 = U2
0tU
∗
0t t , S5 = U0U

∗
0tU0t t t , S6 = |U0t |2U0t t ,

S7 = |U0|2U0t t t t, S8 = U ∗0U0tU0t t t , S9 = U ∗0U2
0t t ,

S10 = U0t (|U0|4)t , S11 = |U0|4U0t t , S12 = U3
0U
∗ 2
0t ,

S13 = U0(|U0|4)tt , S14 = |U0|2U0(|U0|2)tt , S15 = |U0|6U0,

and

B =



0 8 12 12 8 24 0 8 6 0 0 0 0 0 0

0 1 1 2 0 3 0 0 1 0 0 0 0 0 0

1 −1 −5 2 −4 1 −1 0 0 0 0 0 −2 −4 0

0 1 2 1 1 2 0 1 0 0 0 0 2 −4 0

0 0 1 0 1 1 0 1 0 0 0 −8 4 −8 0

0 0 0 0 0 0 0 0 0 8 −8 8 −2 12 −8

0 0 0 0 1 0 1 0 0 0−24 24 −12 24 0

0 0 1 0 1 0 0 0 0−4 10 −16 4 −20 12

0 0 0 1 0 1 0 0 0−4 4 −8 4 −8 0

0 1 0 1 0 0 0 0 0 6−12 22 −7 26 −10



.

As mentioned above, there are more possible order-7 terms than those inS, but they are not
relevant here. Note also that, in terms ofS, (A.2) can be written as

L{U1} =MnTS,

wheren = [1,2,−1,7,−2,10,−1,2, 5
2,0,0,0,0,0,0, ]T .

For convenience, we express a general linear combination ofFk(k = 1,2, . . . ,10) as

f = −MmTF where m = [m1,m2, . . . , m10]T ,
which producesL{f } = MmTBS. Complete solution of (A.2) then requiresmTBS= nTS,
or BTm = n, which is a 15× 10 system of linear equations. However, as can be checked, the
linear system is over-determined and has no solutions for the coefficient vectorm. Otherwise,
we would have found a solution in terms ofU0, correct toO(ε2), of the perturbed NLS
Equation (1) forU1. SinceU0 is governed by the NLS Equation (A.1), which is integrable
by use of the inverse scattering transform, it could have then been said that the perturbed NLS
Equation (1) would be ‘integrable up toO(ε2)’ [26].

Although complete solution of (A.2) is not possible, the linear system (A.3) can still be
used to simplify (A.2). The idea is to solve (A.2) ‘partially’ so that the difference between the
chosen solution and the exact solution satisfies the same equation, but with simpler forcing
terms. We can do this by introducingU1 = f + V1 to transform (A.2) to

L{V1} =M(nTS−mTBS) ≡Mn′TS, (A.4)
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and then trying to make the new forcing termsMn′TS as simple as possible. Of course, what
constitutes a simplification criteria may not be the same for all circumstances. Once the criteria
are specified, however,n′ is then fixed and the coefficient vectorm can be determined from

BTm = n− n′. (A.5)

A justifiable criterion is motivated by the observation that in the order-7 termsS1, S13, S14

andS15, differentiations only apply to the pulse intensity|U0|2. From a computational point of
view, at least, these terms are relatively benign, since the pulse phase usually oscillates much
more rapidly in time, while the pulse intensity varies much more smoothly. Derivatives of the
pulse power, therefore, are less likely to cause numerical difficulties than those of the phase.

We therefore allow the forcing terms in (A.4) to be

n′TS= p1S1+ p13S13+ p14S14+ p15S15.

wherep1, p13, p14 andp15 can be arbitrary constants. This effectively relaxes four constraints
and hence reduces (A.5) to an 11×10 linear system. The reduced system then has the solution

m = [14,1,1+ α,2α,−2α, 3
4α, α,3α,−3α,−α]T ,

whereα is a free parameter, and, accordingly,

p1 = −α, p13 = (1
2 + 25

8 α)/〈σ 〉, p14 = (1+ 25
4 α)/〈σ 〉, p15 = −10α/〈σ 〉2.

Combining then (A.4) with (A.1), one finds that the new variable

q = U0+ ε2V1 = U + ε2MmTF+ · · · (A.6)

satisfies

iqx − 1
2〈σ 〉qtt + |q|2q = ε2Mm′TS+ · · · . (A.7)

Compared with (13), the transformed Equation (A.7) now has ‘simpler’ perturbing terms.
Furthermore, the particular choiceα = 0 avoids including integrated terms (F7 throughF10)
in the near-identity transformation (A.6); these non-local terms are clearly less convenient
from a computational point of view. Finally, then, withα = 0 Equations (A.6) and (A.7)
reduce to (14) and (15) used in Section 3.
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