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A general theory is presented for the adiabatic field evolu-
tion in a nonlinear Kerr medium with distributed amplifi-
cation and varying dispersion. Analytical expression is
derived linking parameters of the adiabaticity, gain distri-
bution, and dispersion profile. As a particular example,
an optical pulse compressor based on the adiabatic dynam-
ics is examined. © 2019 Optical Society of America
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Nonlinear optical systems offer a number of practical applica-
tions based on nonlinear science concepts, ranging from soli-
tons and supercontinuum to nonlinear Fourier transform and
parametric amplification. Interplay between dispersion and
nonlinearity, combined with distributed amplification, creates
a number of opportunities for experimental implementation of
fascinating nonlinear dynamics. Fiber-optic is especially attrac-
tive due to an excellent waveguiding and relative simplification
of the corresponding underlying models [1,2]. This Letter deals
with the general mathematical theory of the adiabatic optical
pulse evolution in the nonlinear Kerr medium with gain and
dispersion, but without loss of generality. The fiber-optic
notations are used and a specific pulse compression example
is examined in what follows.

There are several key methods of laser pulse compression
using fiber optics. First is the so-called fiber grating compres-
sion approach that exploits normal dispersion fiber dynamics
[3,4]. Propagation in the normal dispersion spectrally broadens
pulses and produces via the self-phase modulation effect a
quasi-linear (which is exactly linear for parabolic pulses) tem-
poral chirp. At the next stage, the pulses are compressed up to
the temporal widths determined by its spectral bandwidth us-
ing elements with anomalous dispersion.

The second approach is the so-called multi-soliton compres-
sion technique [5], which is based on higher-order nonlinear
soliton dynamics in anomalous dispersion. Evolution of the
higher-order solitons along the fiber is characterized by periodic
compression of the input state leading to a narrow temporal
spike. This nonlinear compression method allows for strong
compression, but requires a careful adjustment of the input
power to control the point of maximal compression. Another
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well-known challenge in this technique is the appearance of a
broad pedestal that contains a large fraction of the total energy.
The advantage of active fiber-based compressors is the possibility
to use low-power pulse sources and a combination of compression
and amplification [6-8]. Amplifying nonlinear effect compressors
can enhance both fiber grating compression and multi-soliton
methods. For instance, in the amplifying fiber with normal
dispersion, the input pulse evolves into a cleaner linearly chirped
parabolic pulse, which can be efficiently compressed [7].

The possibility to use varying dispersion [9] in fiber provides
additional opportunities for pulse compression. One of the
attractive and robust compression schemes is adiabatic soliton
compression in the dispersion-decreasing fiber, which ensures
time-bandwidth-limited output [10-16]. Tapering can be ap-
plied to gas-filled hollow-core anti-resonant fibers to achieve
generation of extreme ultraviolet dispersive waves [17]. Strict
mathematical conditions for adiabatic soliton dynamics have been
presented for an axially nonuniform (tapered) fiber in [10]. Most
fiber-based dispersion-tailored compressors use tapered fiber spans
with varying diameter that changes simultaneously dispersion, ef-
fective nonlinear coefficient, and effective refraction index. The
adiabatic compression technique is based on the perturbation
theory of the nonlinear Schrodinger equation (NLSE), which en-
sures smooth soliton evolution that preserves some integral pulse
characteristics. Mathematically, the adiabatic condition is that the
product of the effective gain (or loss) coefficient and the soliton
period is less than unity. This condition will be discussed in detail
below. True adiabatic compression does not produce any extra
chirp, maintaining transform-limited pulses.

In this Letter, mathematical theory of the adiabatic pulse
compression in a nonlinear Kerr medium with both varying
dispersion and distributed amplification are examined. Though
our analysis has some similarity to the tapered fiber [10,11], we
consider a different and more generic design that can be applied
beyond the tapered waveguide systems. Note that this general
consideration does not include effects such as, e.g., higher-order
dispersion, Raman scattering, and other effects that limit appli-
cations of the approach. Typically, these limiting effects vary
from one application to another and are less general than the
considered generic system. Therefore, we leave analysis of the
limiting impact of the higher-order terms beyond the scope of
this Letter. It is interesting to point out that in some situations,
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the detrimental effect of Raman scattering and higher-order
dispersion can interfere, compensating each other and keeping
the pulse compression adiabatic [18].

Optical field £(z, #) propagation down the amplifying op-
tical medium with Kerr nonlinearity and varying group velocity
dispersion is governed by the generalized NLSE with loss and
gain (for details, see, e.g., [1,2,19]):

OE  f,(z) O’

"oz 2 o
Here, f,(z) = -|f,(0)|s*(2) is the group velocity dispersion,
and dimensionless function s?(z) (normalized with the condition
5(0) = 1) defines variations of dispersion profile along the wave-
guide; we consider here only anomalous dispersion (in fiber-optic
terms) with #, < 0.y is the nonlinear Kerr coefficient, « is linear
loss, and g(z) describes a distributed gain. Consider waveforms
(e.g., pulses) with the characteristic temporal duration 77. It is
assumed here that the gain distribution along the waveguide is
given, and our goal is to determine the longitudinal dispersion
profile that provides an effective adiabatic propagation of optical
pulse with a given power level.

Let us transform Eq. (1) using the following substitution
and a straightforward change of variables:

+ y|E|PE = -iaE + ig(z)E. (1)

0
E(z,t) = |ﬂ;7(%)| xs(z2) xq(Z,T), (2)
where
foz Sz(Zl)dz, T(Z) ;
=" = T=—. (8
I, = 15,0 o ©

Consider a general design of the dispersion profile varying with
z that can provide for the adiabatic evolution with the targeted
adiabaticity parameter € < 1 for any given gain distribution
2(z). It is easy to check that by selecting a normalized
dispersion s(z) that satisfies the equation

d

d_; =- ins > + [g(z) - als, 4)
we can ensure that the dynamics of the field ¢(Z, T) is gov-
erned by the following master equation that presents classical
NLSE with linear perturbation:

0q 10

ST 2, —;
Z()Z + 26T2 + |q| q eq. (5)

Assuming € to be small, this equation describes adiabatic evo-
lution of the field ¢(Z, T') with Z. This is a master model for
waveguide systems based on the adiabatic signal dynamics. One
of the advantages of the adiabatic approach is the possibility to
use a powerful mathematical tool for system design. The NLSE
[i.e., Eq. (5) with € = 0] is integrable by the so-called inverse
scattering transform (IST) method [20] (also known as the
nonlinear Fourier transform; see, e.g., a recent review of its ap-
plications in optical communications [21]).

In the case of small |¢| < 1, optical field evolution can be
analyzed using the perturbation theory based on the IST
[19,22]. Recall a well-known fact that for a single soliton having
initial shape ¢(7',Z = 0) = Aq/ cosh[1y 7], the adiabatic evo-
lution is given by (see, e.g., [2,19])

MZ) x explio(Z)]
coshA()T]

q(T,2) = (6)
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where evolution of a soliton amplitude is given by A(z) =
Ao exp[2€Z] and phase by 6(Z2) = 23 x (1 - exp[4eZ]) / (8e).
In dimension units, an input pulse power is determined as
Py = BB/ T3).

Evolution of a pulse full width at half-maximum 7 gy and
corresponding  broadening or compression is given by
Tewum(Z) = 1.763 exp[-2€Z]/2y. It is seen that positive €
(effective gain) leads to temporal pulse compression, while neg-
ative ¢ (effective loss) corresponds to temporal broadening and
spectral compression. This is the basics of the adiabatic compres-
sion of soliton pulse in the media described by Eq. (5). One can
see that parameter € defines the rate of adiabatic pulse compres-
sion. It can be controlled by appropriate design of the dispersion
profile for a given distributed gain g(z). It is important to point
out that adiabatic evolution is not linked to single-soliton dy-
namics and might be exploited for various input waveforms.

A general solution of Eq. (4) for the normalized dispersion
profile s*(z) with the initial condition s*(0) = 1 is found as

exp[F(2)]
, 7
1 —i—ﬁfoz exp[F(z")dz'] (7

(z) =
where

Fe) =2 / "¢ - a)dz. (®)

Equations (7) and (8) present the main result of the Letter.
They give a profile of the longitudinal dispersion variation s(z)
that for a given gain distribution allows to achieve a strictly adia-
batic regime governed by Eq. (5). This expression generalizes the
result for the dispersion profile tailored to the gain to achieve loss-
less NLSE propagation [23]. In the case of the lossless NLSE
(F(z) = 0), Eq. (7) reproduces a well-known result: s*(z) = 1/
(1 + 2€ z/Lg;). Note that though € is small, the second term in
the denominator is not necessarily also small. Using Egs. (7) and
(8), we can explicitly express the variable Z as

2 52(z")dz' € [z
zohos@d 1 {1 + de' A exp[F(Z')dZ']]- (@)

Ldis €

Note that distributed gain can be implemented in various ways.
Below, several particular examples of the application of a general
theory are examined.

Now consider several specific examples of the compressor de-
sign. Relatively short spans of an active waveguide can provide
with good accuracy a constant (uniform along the waveguide
length) gain g,,. In the case of a constant loss or gain (e.g., in
active waveguide) ¢g(z) - a = g, the expression for dispersion
profile s(z) is simplified:

cxpl2gy ] 0
1+ e(exp[2g02] - 1)/ (goLais)” (10

For € = 0, from here we recover the well-known result by
Tajima [9]: s> = exp[2g¢,2]. In the dimension units, the optical

field reads

poy o 01 evedxa(Z 5)
, rTE (1 + elexp(2gy2) - 11/ (goLair)) ' /*’

(11)

where €¢Z = In[1 + e(exp[2¢yz] - 1) /(gyLa;)]- For a soliton,
pulse power evolution down the waveguide is given by

2(z) =
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P(2)
E(z, )| = —>——, 12
el =t (12)
with varying pulse width parameter 7(z)
Ty
7(z) = 13
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and power
A512(0)] ( elexp(2g z)—1]>3
Pz) =" xexp(2g,2) [ 1+——=222 =) . (14)
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It is seen from these relations that the considered adiabatic re-
gime is more efficient with lower Ly (e.g., higher anomalous
dispersion). Note the exponential growth factor in Eq. (10) that
dominates the first part of the s*(z) change with z. The term
with e that defines adiabatic evolution contributes at the point
where gain makes the term elexp(2¢,2) - 1]/(goLg;) compa-
rable with unity. It is seen that the adiabatic compression requires
either high variation of dispersion (in the case of not small ;)
or small Ly corresponding to short pulse and/or high level of
dispersion. Once more, we would like to stress that we do not
aim here to present any particular implementation, but rather a
mathematical theory for a family of devices that can use different
platforms. Figure 1 depicts a normalized dispersion profile s*(z)
for €=0.2, g, =023 m™"! (2 dB/m), and Ly, = 100 m.
The level of compression with propagation is also shown for
the pulse width at half maximum 7'pygiv(2)/ 7 rwam(0) =
1/(1 + €elexp(2g42) - 11/(goLgss))?- It is seen that smaller gain
allows to keep dispersion variation within smaller range. Figure 2
presents similar plots, but for g¢; = 0.115 m™! (1 dB/m) and
Ly, = 30 m with all other parameters the same.

In the case of the often used backward Raman amplification,
for unsaturated gain, a function g(z) is given by g(z) =
0.5¢xPy exp[-2a,(L - )], where gp is the Raman gain coef-
ficient, P, is the backward pump power injected at z = L, and
a, is the loss at the pump wavelength. In this case,

RPPb exp(—ZapL)

g
Fy(z) = oy

x [exp(2a,2) - 1] - 2az.  (15)
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Fig. 1. Normalized dispersion s*(z) for € = 0.2, g, = 0.23 m™!
(2 dB/m), Ly, = 100 m, and compression factor of the pulse width at
half maximum 7 'pywin(2)/ T rwmm(0) = 1/(1 + €elexp(2gy2) - 1]/
(goLgs))? with distance.
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Fig. 2. Normalized dispersion s*(z) for € = 0.2, g, = 0.115 m™!
(1 dB/m), Ly, = 30 m, and compression factor of the pulse width at

half maximum TFWHM (z)/TFWHM (O) = 1/(1 + €[CXP(2g0Z) _ 1]/
(goLais))?* with distance.

We would like to stress that in the considered scheme, Raman
gain itself is not required to be adiabatic (small), but it is a com-
bination of the distributed gain and varying dispersion that
leads to the adiabatic dynamics.

Figure 3 shows a normalized dispersion profile s* (z) computed
for the following parameters for the SMF-28: @ = 0.023 km™' ac
1550 nm, gp = 0.4 (W x km)™", @, = 0.0285 km™', several
values of P, = 1, 3,5 W, € = 0.2 and Ly, = 5 km.

In the similar manner we can derive expressions for the cases
of forward and combined forward and backward distributed
Raman amplification schemes. Unsaturated forward pumped
Raman amplification yields

grl f
Fr(z) = Taj x [1 - exp(-2a,2)] - 2az. (16)

A combined forward and backward pumping scheme gives

7 T T
— P, =05W
6l P =TW
Ppp=2W
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Fig. 3. Normalized dispersion profile $2(2); here, a = 0.023 km™!
at 1550 nm, g, = 0.4 (W x km)~1, a, = 0.0285 km™!; backward
pump powers are Py, = 0.5, 1,2 W, ¢ = 0.2 and Ly, = 5 km.
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2 1- e—2apz Lo P eZaP(Z—L) _ €—2apL
be(z)ZgR Pf( ) ig Pb( )—2az.
?
(17

We would like to stress that distributed Raman amplification
alone can be exploited for adiabatic compression. However, in
this case, the condition of adiabaticity imposes severe limita-
tions of the level of amplification. Adjusting the dispersion
variation profile to the chosen amplification scheme allows
one to relax these restrictions.

Let us recall, for completeness and comparison, a theory of
adiabatic pulse soliton compression in the dispersion-decreasing
tapered fiber. The equation governing propagation of the
envelope Ul(z, t) of light wave in nonuniform fiber reads (see
details of notations and definitions in [10,11])

0U /ez(z)dzU
dz 2 02

+7@|UPU = i(§(2) - a)U—**U

(18)

Here, k,(z2) is a varying group velocity dispersion, f(z) corre-
sponds to variation of the effective refractive index, and y(z) de-
scribes gradual change of the effective mode area along the fiber
[10,11,15]. The term with f'(z) ensures the conservation of the
total photon number in nonuniform optical fiber in the absence
of signal attenuation. For the sake of clarity, we do not include
here the mean frequency variation effect, which can be added in
a straightforward way following detailed description in [11].
Applying similar transform,

|#2(0)]

Uz, t) = xs(z) xw(n, T), (19)
(2.0) = || L < 0) x 01, T)
where
z 2(,! 4 2
g5 (2')dz 75 t
==, s = T T'=—, (20)
Ly, 7 e (0)] T,
one can derive adiabatically perturbed NLSE:
ow 10w )
— = 21
ld +20T2+|w|w iew. (21)
In this case, the expression for the dispersion profile s(z) reads
ds € 1df 1dy
- = _ Y _ 22
i SR O vt vl I o

The analytical solution given by Egs. (7) and (8) can also be used
in this case. Distributed amplification can be exploited to provide
additional degrees of freedom for design of such nonuniform
fiber-based adiabatic compression systems.

In conclusion, a mathematical theory is presented that links
optical systems with Kerr nonlinearity, distributed amplifica-
tion, and varying dispersion to an integrable model with strictly
adiabatic field evolution. Though the focus of this Letter is on
optical pulse compression, the theory is not limited to soliton
dynamics, compression, or monotonic change in dispersion.
It can also be used for applications with periodic changes of
dispersion and gain. Analytical expression is derived for the
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dispersion profile that links parameters of adiabaticity (related
to the compression rate), gain distribution, and input pulse
parameters. It should be stressed that the considered theory
is limited by various higher-order effects that should be taken
into account when pulse becomes narrow. Consideration of the
higher-order effects is straightforward [11,18]; however, it is
beyond the scope of this Letter.
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