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Remarkable mathematical properties of the integrable nonlinear Schrödinger equation (NLSE) can offer
advanced solutions for themitigation of nonlinear signal distortions in optical fiber links. Fundamental optical
soliton, continuous, and discrete eigenvalues of the nonlinear spectrum have already been considered for the
transmission of information in fiber-optic channels.Here,we propose to apply signalmodulation to the kernel
of the Gelfand-Levitan-Marchenko equations that offers the advantage of a relatively simple decoder design.
First, we describe an approach based on exploiting the general N-soliton solution of the NLSE for
simultaneous coding ofN symbols involving 4 × N coding parameters. As a specific elegant subclass of the
general schemes, we introduce a soliton orthogonal frequency divisionmultiplexing (SOFDM)method. This
method is based on the choice of identical imaginary parts of the N-soliton solution eigenvalues,
corresponding to equidistant soliton frequencies, making it similar to the conventional OFDM scheme,
thus, allowing for the use of the efficient fast Fourier transform algorithm to recover the data. Then, we
demonstrate how to use this new approach to control signal parameters in the case of the continuous spectrum.
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Introduction.—The nonlinear Schrödinger equation
(NLSE) is a generic fundamental mathematical model with
numerous applications in science and technology. In par-
ticular, the NLSE describes a path-average propagation of
light in fiber-optic systems that is thebackboneof themodern
global communication networks.TheNLSE is an example of
a fundamental model of nonlinear physics, which can be
integrated by the inverse scattering transform (IST) method
[1,2]. The IST method is one of the greatest achievements
of mathematical physics in the 20th century (see, e.g., [1–7]
and references therein). In recent years (especially in optical
communications), the IST method is also referred to as the
nonlinear Fourier transform (NFT), stressing the similarity to
the conventional Fourier transform and the ability of the IST/
NFT to present solutions of the nonlinear evolution equation
on the basis of noninteractingmodes called scattering data or
(in the NFT notation) nonlinear spectrum.
One specific, albeit highly important, application of the

NLSE is in optical communications, where it is derived as a
path-average (over periodic variations of power due to loss
and gain) model governing the signal propagation along the
transmission line [6,8,9] (here,weuse the normalized version)

i
∂q
∂z þ

1

2

∂2q
∂t2 þ jqj2q ¼ 0: ð1Þ

Here, qðz; tÞ is an optical field envelope, z is a propagation
distance along the optical fiber, and t is the retarded time.
The general solution of the NLSE is presented by the

superposition of solitary (localized in time) waves corre-
sponding to the discrete (solitonic) part of the nonlinear

spectrum and dispersive waves associated with the con-
tinuous part of the nonlinear spectrum. Recent advances in
coherent optical communication allowing information cod-
ing both over the amplitude and phase have made it
possible to reconsider relatively old ideas of using the
soliton solution of the NLSE [6,9] and nonlinear spectrum
eigenvalues for the transmission of information [10] in the
new context. The recent surge of interest in nonlinear
transmission techniques is, in particular, due to the obser-
vation that conventional (linear) data transmission tech-
niques are facing serious challenges induced by the
nonlinear properties of the optical fiber communication
channels (an excellent overview is given in [11,12]). This
calls for the development of new nonlinear techniques of
signal coding, transmission, and processing.
The traditional soliton transmission has been recently

reassessed in [13,14] in the context of coherent commu-
nication and the use of soliton phase for data transmission.
Moreover, a great deal of interest has been sparked recently
by the application of the powerful IST/NFT methods in
optical communications (see, e.g., [15–21] and references
therein; we simply are not able to review here all relevant
papers that have been published recently in this fast-
growing field).
The efficiency of numerical algorithms for data encoding

or decoding is critically important in the digital telecom-
munication networks. For instance, in wireless communi-
cation, the success and popularity of the orthogonal
frequency division multiplexing (OFDM) method is due
to the exceptional computational performance and high
spectral efficiency of the fast Fourier transform (FFT) [22].
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The success of the practical implementation of the non-
linear IST/NFT techniques will be defined by the avail-
ability of the fast and superfast NFT methods [19,23,24]
and the stability of algorithms with respect to noise impact.
The IST/NFT technique is relatively new compared to
conventional methods, and the currently available numeri-
cal algorithms of information encoding or decoding using a
solitonic signal are still far from the efficiency required in
practical hardware implementation.
Here, we propose to use the kernel of the Gelfand-

Levitan-Marchenko equations (GLME) to encode informa-
tion; in particular, we demonstrate that the OFDM scheme
can be applied in an efficient way. To create a signal at the
beginning of the transmission line, as well as to recover
the encoded kernel at the end of the line, here, we use the
efficient Toeplitz inner bordering (TIB) numerical schemeof
inverse and direct scattering transform (which was recently
introduced by Frumin and coauthors [23,24]) and the exact
soliton solution known from the IST theory [1,2].
For the discrete nonlinear spectrum, we propose a soliton

orthogonal frequency divisionmultiplexing (SOFDM) tech-
nique that is based on the choice of identical imaginary parts
of N-soliton solution eigenvalues, corresponding to equi-
distant soliton frequencies, making it similar to the conven-
tional OFDM scheme and allowing the use of the efficient
fast Fourier transform algorithm to recover the data.We also
demonstrate how the concept of the OFDM can be applied
for the continuous spectrum kernel [17]. The important
advantage of using coding over kernel of the GLME is the
possibility of controlling signal parameters by utilizing the
time domain window functions in the modulated kernel.
N-soliton solutions of the NLSE for N-symbol block

transmission.—In the traditional soliton transmission, a single
(soliton) pulse is used as an information carrier sent over a time
slot allocated to one symbol in a given spectral channel [6,9].
Transmission, in this case, is affected by the soliton inter-
actions and/or is restricted in the spectral efficiency because
a separate soliton occupies a small fraction of the symbol
duration time. A great deal of attention has recently been
placed on the potential use of the discrete nonlinear eigen-
values in fiber-optic channels. Most of the current studies of
discrete nonlinear eigenvalue communications are limited to
exploringdifferent solitonicwaveforms (forming a transmitted
alphabet) in a single-symbol time slot. To avoid interaction
between neighboring symbols, a long guard interval is
typically used to suppress intersymbol interactions, thus,
limiting spectral efficiency of such burst-mode transmission.
We propose here to use the well-known [1,2] general

analytical N-soliton solutions of the NLSE (N-SS) (see the
Supplemental Material [25]) for N-symbol block modula-
tion and coding. In a block transmission technique, the
information symbols are arranged in the blocks separated
by some known symbols. Application of the N-SS allows
one to simultaneously code information over N-symbol
time intervals. Four soliton parameters, in principle, offer a
possibility of four-dimensional modulation (coding) per

soliton (symbol). Over the interval of N symbols, N-soliton
solutions can offer 4 × N degrees of freedom.
Recall that single soliton solutions read

qð1Þðz; tÞ ¼ 2β
exp½−2iωt − 2iðω2 − β2Þzþ iθ�

coshð2βtþ 4ωβz − δtÞ : ð2Þ

Here, obviously, 2β corresponds to soliton amplitude, 2ω is
soliton frequency, θ is pulse phase, and δt=ð2βÞ defines
soliton timing position. These four parameters can be used
for the coding of information, i.e., amplitude, frequency,
phase, and pulse position modulations, leading to various
high-level modulation formats. Note that interactions
between solitons are automatically accounted for in the
N-soliton solution. Therefore, in N-SS coding, there is no
issue of soliton interactions that occur when solitons are
treated as separate entities.
The N-SS is defined by its scattering data or nonlinear

spectrum: two sets of N complex constants. The first set
corresponds to the complex eigenvalues of solitons ξk ¼
iβk þ ωk, k ¼ 1;…; N. As discussed above, the imaginary
part βk > 0 defines corresponding (with the index k) soliton
amplitude, and the real part ωk is related to the soliton
frequency (and corresponding group speed). The second set
is given by the complex numbers ck ¼ Ck expðiθkÞ, with
real parameters Ck and θk. For the well-separated solitons,
parameters Ck define timing positions of solitons in the
following way: δtk ¼ ln½Ck=ð2βkÞ�, while parameters θk
define soliton phases. Based on the structure of the
solitonic scattering data, the possible data coding of
N-SS form two natural groups classified as amplitude-
frequency modulation and pulse position-phase modula-
tion. In general, there are 4 × N free parameters that can
be used for modulation.
The generation of a modulated (i.e., encoded) N-SS signal

at the transmitter requires an algorithmic realization of IST/
NFT in the encoder. Here, to find the N-SS, we use the
standard factorization of the GLME, which leads to thewell-
known exact formulas (see the Supplemental Material [25]).
Alternatively, theN-SS can be obtained by algebraic versions
of IST, such as the Zakharov-Shabat dressing method [31],
Darboux transformation [32], the method of Hirota [33], and
by the IST TIB algorithm. Note that all these approaches
are numerically unstable at large N, which limits their
applications (see theSupplementalMaterial [25]). Thekernel
Ωðz; tÞ of the GLME for the N-SS has the following form:

ΩðNÞðt; zÞ ¼
XN
k¼1

ckðzÞe−iξkt: ð3Þ

The sum in Eq. (3) is similar to the Fourier series; however,
the “frequencies” ξk, in general, are complex numbers.
Formally, the N-SS can be written as the IST/inverse NFT
of the kernel (3)

qðNÞðz; tÞ ¼ IST½ΩðNÞðz; tÞ�: ð4Þ
Inwhat follows, for the sakeof simplicity, the index (N)will be
omitted.Weassume that the codingormodulation is applied at
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z ¼ 0 (encoder) and decoding or demodulation (decoder)
at z ¼ L. The IST/NFT method links the nonlinear spectrum
at z ¼ 0 and z ¼ L by the following simple phase shift:

ckðLÞ ¼ ckð0Þ expð−2iξ2kLÞ; k ¼ ð1;…; NÞ: ð5Þ
Expressions (4) and (5) formally solve the problem of the
compensation of signal distortions in the communication
channels described by the NLSE.We believe, that formula (3)
can offer some advantages for encoding or decoding oper-
ations, compared to the traditionally used formula (4).
Our central idea is to use the N-SS kernel (3) for the

modulation of the information data. In this case, the number
of numerical operations at the decoder is reduced. In the
proposed scheme, the decoding operation requires one to
recover only the kernel (3) at z ¼ 0 by solving the direct
scattering problem and by the application of a simple
transformation (5). Moreover, as we will demonstrate, the
analogy of the N-SS kernel (3) with the Fourier series allows
us to introduce the OFDM scheme for the discrete spectrum.
Solitonic OFDM method.—In this section, we introduce a

soliton OFDM (SOFDM) technique in which the GLME
kernel can be efficiently used for encoding or decoding
2 × N position-phase parameters. The key idea can be
understood from the expression for the N-soliton kernel
(3). The kernel would be similar to the conventional OFDM
in case of real ξk. Therefore, we impose special conditions on
the complex soliton parameters ξk. Namely, we consider
N-SS, with eigenvalues ξn ¼ ωn þ iA. In this case, solitons
have equal amplitudes but different equidistantly selected
frequencies. Thus, the GLME kernel (3) at the beginning of
the line is given by the finite Fourier series multiplied by eAt

Ωð0; tÞ ¼ eAt
XN
k¼1

cke−iωkt: ð6Þ

This greatly simplifies the processing of such signals.
Now, without loss of generality, we consider modulation

over phase θn, while the pulse positions δn are left
unmodulated. As a particular example of the SOFDM
encoding, we consider ~N-phase-shift-keying ( ~N-PSK)
modulated N-SS. To apply the SOFDM over the finite
time slot T, we introduce the discrete time grid

tm ¼ ðm − 1ÞT=N; m ¼ 1;…; N: ð7Þ
The orthogonality of Fourier harmonics is given by the
following condition:

tmωn ¼ 2πðm − 1Þðn − 1Þ=N; m; n ¼ 1;…; N: ð8Þ
Similar to the standard OFDM, the FFT makes it possible
to determine the parameters of signal modulation cn by
OðN lnNÞ arithmetic operations

cn ¼ FFT½Ωð0; tmÞ expð−AtmÞ�: ð9Þ
To compute the scattering data from the received signal

qðt; LÞ, one can use any available algorithmof the directNFT.
Here, without loss of generality, we use the direct TIB

algorithm, calculating the entire signal kernel in the time
domain by solving the GLME (see Supplemental Material
[25] and [24]). The kernel contains all scattering data
information: soliton eigenvalue positions (corresponding to
amplitude and frequency modulations), pulse positions, and
phases (4 × N parameters). Here, we focus only on a phase
modulation to illustrate the proposed concept. The eigenvalue
modulation is also possible, but it faces challenges in terms of
efficiency and stability (see Supplemental Material [25]).
For illustration purposes, we choose the minimum

possible number of time samples M ¼ N. But actually,
the value of M depends on the algorithm of the direct
scattering transform at the receiver, and usuallyM > N. At
the transmitter, we use the inverse fast Fourier transform
(IFFT) to obtain the kernel (6) from the given data encoded
by the phases cn and then solve the inverse scattering
problem as described in the Supplemental Material [25] to
generate the input optical N-SS signal qð0; tmÞ.
We test the SOFDM method in numerical simulations of

data transmission by the use of quaternary phase-shift-keying
(QPSK) modulated 6-soliton solution. In Fig. 1 (left), we
present an example of a 6-soliton signal at the beginning and at
the end of the transmission line of length L ¼ 2000 km.
Using the direct TIB method, we recover the encoded kernel
that is presented in Fig. 1 (right). To avoid signal expansion,
we arrange the solitons in order of descending velocity so that
the slowest soliton occupies the first position in the signal,
while the fastest soliton starts propagation from the signal end.
However, we would like to stress that the practical imple-
mentation of the solitonic OFDM scheme requires further
development of fast noise-stablemethods for solving thedirect
scattering problem that we consider in the discussion section.
Kernel coding of the continuous nonlinear spectrum

OFDM.—The kernel of the GLME for the continuous
spectrum is presented in the following form:

ΩðRÞð0; tÞ ¼ Rð0; tÞ ¼ 1

2π

Z
∞

−∞
rωe−iωtdω: ð10Þ

Here, rω is the reflection coefficient of the Zakharov-Shabat
system for the given signal qðRÞð0; tÞ, while Rð0; tÞ is
commonly referred to as a signal response function. Similar

FIG. 1. Left: The modulus of the 6-soliton solution at the
beginning (q0, red dashed line) and at the end (q1, blue solid line)
of theNLSEgoverned transmission line.Right: 6-solitonnormalized
kernel of the GLME equations at the beginning of the transmission
line jΩð0; tÞ expð−AtÞj. Blue solid line—the exact normalized
kernel encoded by the SOFDM method with QPSK; red dashed
line—the same kernel restored by the use of direct TIB method.
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to the discrete spectrum case, the IST links the continuous
spectrum at z ¼ 0 and z ¼ L by the following relation:

rωðLÞ ¼ rωð0Þ expð−2iω2LÞ: ð11Þ
The general idea to apply the OFDM scheme to the

continuous nonlinear spectrum was previously considered
in the framework of the so-called “nonlinear inverse
synthesis” method [17,34]. This approach, while promis-
ing, has an important challenge—how to control the signal
characteristics in the time domain. Indeed, the reflection
coefficient rðωÞ, which was chosen for encoding informa-
tion, is nontrivially coupled with the signal via IST.
Here, we propose to apply the additional window

transformation to the kernel ΩðRÞð0; tÞ in the time domain
as a method of controlling signal parameters. For IST-based
schemes, the strong localization of the signal in time slots is
highly critical to avoid nonlinear interactions between
neighboring symbol intervals. Bearing in mind the linear
limit [qðRÞðz; tÞ → 2ΩðRÞðz; tÞ], we conclude, that well-
localized (in time domain) signals should correspond to
the localized kernel, at least in a weakly nonlinear case. We
have examined different window transformation functions
known from the linear communication theory (see, for
instance, [35]) and found that the excellent signal locali-
zation in time is achieved for window functions with
smooth polynomial fronts.
Figure 2 demonstrates signal generation at the beginning

of the transmission line. We start from 16 Fourier harmon-
ics encoded using the OFDM 8-PSK scheme. Then, we
apply the window transformation fðtÞ, similar to the well-
known Lorentzian function

FðtÞ ¼
~A

½Γðt − t0Þ�2 þ 1
ð12Þ

to localize the signal in the time slot. Here ~A, Γ are the
parameters of the window transformation corresponding to
the characteristic amplitude and width of the modulated
kernel, and t0 corresponds to the center of the time slot. We
also add to the window transformation function (12)
exponentially decaying tails, which do not affect the

general shape of the signal but help to cancel interactions
between neighboring bursts. Finally, we find the signal
profile using the inverse TIB method (Fig. 2, right, red).
Next, we study the dependence of signal shape on the

parameters ~A and Γ of the modulated kernel. We have found
that varying the kernel window function parameters allows us
to control the characteristics of the generated signal without
affecting the information content, as illustrated in Fig. 3.
Figure 4 presents the results of numerical modeling of a burst-
mode signal transmission in the NLSE channel (with noise),
with a total propagation distance L of 1000 km, and
SNR ¼ 19.7 dB. The modeling was performed using the
standard split-step method with adding noise at each numeri-
cal spatial step that corresponds to the distributed noise
model (see, e.g., [11,12]). We have found that the direct
TIB algorithm remains stable for considered SNR values.
Interestingly, better decoding results can be achieved using
only the first (left) part of the pulse. This is not surprising since
the direct TIB algorithm successively recovers the kernel from
the left to the right end of the signal. Thus, the right part of the
recovered kernel is additionally affected by noise distortions,
accumulated during the calculation of the left kernel part.
Discussion and conclusion.—In this Letter, we proposed

and examined new approaches to coding information over

FIG. 2. Left: 16 encoded kernel harmonics (grey, solid line) and
thewindow function (black, dashed line). Parameters of thewindow
transformation function (12) are the following: ~A¼ 15, Γ ¼ 20.
Right: The double kernel (blue, solid line) obtained by multiplying
the encoded harmonics by the window function and corresponding
signal, obtainedby the use of the inverseTIBalgorithm (red, dashed
line). The inset picture shows the absolute value of signal Fourier
spectrum; the frequency index n is defined in (8).

FIG. 3. Dependence of the signal from the parameters of the
kernel window transformation function (12).

FIG. 4. Left: Propagation of the burst-mode signal in the model
NLSE channel, with L ¼ 1000 km and SNR ¼ 19.7 dB. Blue
solid lines correspond to the signal at the beginning of the line;
red dashed lines show the signal at the end of the line. Parameters
of the window transformation function are the same as in Fig. 2.
The bottom picture corresponds to the encoded (blue, solid lines)
and decoded, using the direct TIB algorithm (red, dashed lines)
kernel harmonics for the central burst interval. Right: Constella-
tion diagram for the central burst interval (statistics on a 103

randomly encoded initial signals).

PRL 118, 223901 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
2 JUNE 2017

223901-4



the kernel of the GLME. We have considered both the
discrete (solitonic) and continuous part of scattering data.
We demonstrated that application of the direct TIB method
allows one to recover the most stable part of the kernel,
which is an advantage in the presence of distributed noise.
We have proposed, to the best of our knowledge for the

first time, to use the general N-soliton solution of the NLSE
for simultaneous coding of N symbols involving 4 × N
coding parameters, instead of separate N solitons. As a
particular subclass of the general schemes, we examined a
soliton orthogonal frequency division multiplexing tech-
nique that is based on the choice of identical imaginary parts
of N-soliton solution eigenvalues, corresponding to equi-
distant soliton frequencies, making it similar to the conven-
tional OFDM scheme. This allows us to use the efficient fast
Fourier transform algorithm to recover the data. We would
like to point out that efficient implementation of numerical
recovery of solitonic kernels by solving GLME requires the
development of numerical algorithms, which are stable
against additive noise.
For the continuous spectrum, we have tested the stability

of the direct TIB method against the additive noise and
proposed to use the localized kernel in the time domain to
control properties of the corresponding generated signal.
The latter can be considered as a novel realization of the
“nonlinear inverse synthesis” method [17,34].
We demonstrated that the mathematical properties of the

NLSE can be used for introducing fundamentally novel
(compared to the linear communication theory) methods for
the coding and detection of the signal setting foundation for
the nonlinear communication theory.
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