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NUMERICAL APPROACHES FOR INVERSE
AND DIRECT SCATTERING TRANSFORM

In this paragraph we briefly overview and remind ba-
sic information concerning numerical Inverse Scattering
Transform (IST) which is used in the main text of our
paper [1]. First, we write down the Gelfand-Levitan-
Marchenko equations (GLME) in the standard form for
the left scattering problem at fixed distance (e.g. z = 0):
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Aj(t,s) + As(t, 7)Q(s + 7)dT =0,
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—A5(t,s) + AL, T)QUs +7)dT + Q(t + 5) = 0,
Qt) = Q(z =0,1),
—t < s<t, 0<t<Ts. (1)

Here A4 (t,s) and As(t, s) are the auxiliary complex func-
tions that links together the kernel Q) and solution ¢ of
the NLSE via the GLME (1) and the following relation:

q(z =0,t) = =2A45(¢,t). (2)

The propagation problem is solved by the use of a simple
formulae for scattering data evolution (see Eq. (5) and
Eq. (11) in [1]).

In the general case numerical solution of an integral
equation requires ~ M? operations (recall that M is the
number of signal discretisation points). To reconstruct
the whole signal ¢(t,,) we need to perform this procedure
at all points of the discrete grid (formula (7) in [1]) and,
thus, the total cost ~ M*? operations, that is not feasible
for practical numerical implementation.

In this work we use the efficient Toeplitz inner-
bordering (TIB) numerical scheme for both the inverse
and direct scattering transform. Indeed, as it was
shown Frumin and co-authors (reference [23] in [1]) the
GLME (1) can be rewritten in the Toeplitz form by ap-
plying a simple transformation:

u(t,z) = Ay (t, t — ),
u(t,y) = —As(ty —1). 3)

Now the GLME contains Toeplitz-type kernel Q(y — x):

2t
Q" (y — x)v(t,y)dy = 0,
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v(t,y) + /Oy Qy — 2)u(t,z)dz + Qy) =0, (4)

u(t,z) —

and, as a result, the numerical TIB IST takes only M?
operations (see details in reference [23] in [1]). Moreover,
recently Frumin and co-authors have demonstrated (ref-
erence [24] in [1]) that the TIB algorithm can be reversely
applied to the GLME (4), i.e. it allows to find the kernel
Q(ty,) from the known signal ¢(t,,). Again, the required
number of numerical operations is M?2. The numerical
schemes and details can be found in references [23,24]
in [1].

Here [1] we apply both inverse and direct TIB algo-
rithm to the continuous spectrum signals. For the dis-
crete spectrum case we apply only direct TIB method
to recover the kernel, meanwhile to create signal at the
beginning of the transmission line we use exact N-SS,
described in the next paragraph.

N-soliton solutions of the NLSE

For the discrete spectrum kernel (see formula (3) in [1])
factorization of the GLME (1) leads to the system of lin-
ear algebraic equations (see, for instance the monograph
of Lamb — reference [7] in [1]). Then, the N-SS can be
found in the following exact form:
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g™ (2 =0,t) = —2 ()| (E + M(t)*M(t)) " |<I><t>>(.)
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Here E is N x N identity matrix,

(@ (1) = (cre™™, . epe ™8] (6)
(@) = (7, e
ﬁ ( ) el(fzng)t
k() = ¢——
J J gk _ fj

and parameters ¢ are defined in [1].



To the best of our knowledge all the existing discrete
spectrum numerical IST algorithms are unstable at large
N, that can be understood by looking at the exact N-SS
formulae (5),(6). Indeed, the eigenvalues & are complex
and, thus, the matrix E + ﬁ(t)*ﬁ(t) in (5) may be-
come ill-conditioned at large |¢|. In such cases we use the
arbitrary precision arithmetics to obtain accurate N-SS
signal. Recently, A.A.Gelash and D.S. Agafontsev found
that numerical realisation of the Zakharov-Shabat dress-
ing method can be stably used up to N ~ 32 soliton
solutions (see the reference [26] in [1]). Application of
the dressing method to our kernel-based approach is a
nontrivial task, however we believe that this can be an
interesting direction for future research.

PARAMETRIC KERNEL DECODING

In this paragraph we discuss the N-SS kernel general
parametric encoding/decoding schemes involving 4 x N
coding parameters. Let us write the N-SS kernel (for-
mula (3) in [1]) as a time series on the discrete grid (see
formula (7) in [1]):

Qm = Q(tm) = (7)
N N N
= che_igktm = che_if’“T(m_l) = chz,?_l .
k=1 k=1 k=1

Parameters 2z = exp(—i&T) in (7) are defined by the
soliton eigenvalues &, and by the value of time slot T
Here, we again choose the minimum possible number of
time samples M = N. Then, for the decoding problem
we obtain system of equations with the Vandermonde
matrix:
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(8)
Now we consider both position-phase modulation and
amplitude-frequency modulation of the N-SS kernel and
discuss numerical problems that occur in general case.

Position-phase modulation

Suppose we know the eigenvalues &, and hence the pa-
rameters z = exp(—ifx). The decoding problem is to
find the parameters ¢ by the measured kernel samples
;, that can be done by solving system (8). However, the
straightforward numerical algorithm based, for example,
on Gauss elimination in a general case is extremely chal-
lenging since the Vandermonde matrix (8) exponentially
fast becomes ill-conditioned with the increase of N (see

the reference [27] in [1]). On the other hand, the Vander-
monde matrix belongs to the class of structured matrices
for which the effective numerical algorithms have been
developed (see the reference [28] in [1]). By applying the
effective matrix inversion algorithm the kernel decoding
can be performed using N? operations, however, the nu-
merical stability restricts IV by around ~ 60 harmonics
(see, for example the reference [29] in [1]).

The inversion of the Vandermonde matrix becomes nu-
merically stable at any N when 2z, are the complex k-
th roots of unity. For the N-SS kernel this is possible
only when & have identical imaginary parts (that can
be moved to the right part of the matrix system (8)),
i.e. in the case presented by formula (6) in [1]. The ad-
ditional harmonics orthogonality condition (formula (8)
in [1]) allows us to use the FFT/IFFT algorithms instead
of matrix inversion operations, that motivated us to focus
on this elegant encoding scheme [1].

Amplitude-frequency modulation

Another possibility is to use the eigenvalues & as the
carriers of information. They have to be found from the
measured kernel samples €2,,, while the shift-phase pa-
rameters ¢ are all known and are not used for coding
of information. The parametric approach based on the
Prony’s method (see, for example see the reference [30],
chapter 11 in [1]) uses the following master polynomial

N N
o(z) = H(z — )" = Zanz", ap=1, (9)

n=0
with the complex roots z;. The coefficients a, of the

polynomial (9) can be determined by solving the Toeplitz
system of equations:

On,  On-1, v ay QN1
Oni1, Qn, o Qo az | _ [ Qw42
Qon—1, Qan—2, ..., O, an Qon

Numerical solution of the problem (10) can be obtained
by the use of Levinson-Durbin-Trench algorithm through
the O(N?) arithmetic operations (see the reference [28]
in [1]). However, the subsequent roots finding of the mas-
ter polynomial ¢(z) is the hard numerical problem for
the large number of samples N. For example, the well
known factorization algorithm of Jenkins and Traub be-
comes numerically unstable at N ~ 100 (see the reference
[35] in [1]).

We note, that in the case of continuous spectrum ker-
nel (formula (10) in [1]) the corresponding Vandermonde
matrix can be always stably inverted since it becomes
Fourier matrix.

We conclude that the general (parametric) N-SS kernel
decoding requires matrix inversion and/or finding roots



of the polynomial in the decoder. Although, the ad- T Electronic address: gelash@srd.nsu.ru
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against large number of harmonics and additive noise re- tering transfo

quires a separate comprehensive analysis that is beyond
the scope of this Letter.
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