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NUMERICAL APPROACHES FOR INVERSE
AND DIRECT SCATTERING TRANSFORM

In this paragraph we briefly overview and remind ba-
sic information concerning numerical Inverse Scattering
Transform (IST) which is used in the main text of our
paper [1]. First, we write down the Gelfand-Levitan-
Marchenko equations (GLME) in the standard form for
the left scattering problem at fixed distance (e.g. z = 0):

A∗
1(t, s) +

∫ t

−s

A2(t, τ)Ω(s+ τ)dτ = 0,

−A∗
2(t, s) +

∫ t

−s

A1(t, τ)Ω(s+ τ)dτ +Ω(t+ s) = 0,

Ω(t) ≡ Ω(z = 0, t),

−t ⩽ s < t, 0 ⩽ t ⩽ Ts. (1)

Here A1(t, s) and A2(t, s) are the auxiliary complex func-
tions that links together the kernel Ω and solution q of
the NLSE via the GLME (1) and the following relation:

q(z = 0, t) = −2A∗
2(t, t) . (2)

The propagation problem is solved by the use of a simple
formulae for scattering data evolution (see Eq. (5) and
Eq. (11) in [1]).

In the general case numerical solution of an integral
equation requires ∼ M3 operations (recall that M is the
number of signal discretisation points). To reconstruct
the whole signal q(tm) we need to perform this procedure
at all points of the discrete grid (formula (7) in [1]) and,
thus, the total cost ∼ M4 operations, that is not feasible
for practical numerical implementation.

In this work we use the efficient Toeplitz inner-
bordering (TIB) numerical scheme for both the inverse
and direct scattering transform. Indeed, as it was
shown Frumin and co-authors (reference [23] in [1]) the
GLME (1) can be rewritten in the Toeplitz form by ap-
plying a simple transformation:

u(t, x) = A1(t, t− x) ,

v(t, y) = −A∗
2(t, y − t) . (3)

Now the GLME contains Toeplitz-type kernel Ω(y − x):

u(t, x)−
∫ 2t

−x

Ω∗(y − x)v(t, y)dy = 0,

v(t, y) +

∫ y

0

Ω(y − x)u(t, x)dx+Ω(y) = 0 , (4)

and, as a result, the numerical TIB IST takes only M2

operations (see details in reference [23] in [1]). Moreover,
recently Frumin and co-authors have demonstrated (ref-
erence [24] in [1]) that the TIB algorithm can be reversely
applied to the GLME (4), i.e. it allows to find the kernel
Ω(tm) from the known signal q(tm). Again, the required
number of numerical operations is M2. The numerical
schemes and details can be found in references [23,24]
in [1].
Here [1] we apply both inverse and direct TIB algo-

rithm to the continuous spectrum signals. For the dis-
crete spectrum case we apply only direct TIB method
to recover the kernel, meanwhile to create signal at the
beginning of the transmission line we use exact N-SS,
described in the next paragraph.

N-soliton solutions of the NLSE

For the discrete spectrum kernel (see formula (3) in [1])
factorization of the GLME (1) leads to the system of lin-
ear algebraic equations (see, for instance the monograph
of Lamb – reference [7] in [1]). Then, the N-SS can be
found in the following exact form:

q(N)(z = 0, t) = −2 ⟨Ψ(t)| (Ê+ M̂(t)∗M̂(t))−1 |Φ(t)⟩ .
(5)

Here Ê is N ×N identity matrix,

⟨Ψ(t)| =
⟨
c1e

−iξ1t, ..., cNe−iξ1t
∣∣ , (6)

⟨Φ(t)| =
⟨
e−iξ1t, ..., e−iξ1t

∣∣ ,
M̂k,j(t) = cj

ei(ξ
∗
k−ξj)t

ξ∗k − ξj
,

and parameters ck are defined in [1].
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To the best of our knowledge all the existing discrete
spectrum numerical IST algorithms are unstable at large
N , that can be understood by looking at the exact N-SS
formulae (5),(6). Indeed, the eigenvalues ξk are complex

and, thus, the matrix Ê + M̂(t)∗M̂(t) in (5) may be-
come ill-conditioned at large |t|. In such cases we use the
arbitrary precision arithmetics to obtain accurate N-SS
signal. Recently, A.A.Gelash and D.S. Agafontsev found
that numerical realisation of the Zakharov-Shabat dress-
ing method can be stably used up to N ∼ 32 soliton
solutions (see the reference [26] in [1]). Application of
the dressing method to our kernel-based approach is a
nontrivial task, however we believe that this can be an
interesting direction for future research.

PARAMETRIC KERNEL DECODING

In this paragraph we discuss the N-SS kernel general
parametric encoding/decoding schemes involving 4 × N
coding parameters. Let us write the N-SS kernel (for-
mula (3) in [1]) as a time series on the discrete grid (see
formula (7) in [1]):

Ωm ≡ Ω(tm) = (7)

=

N∑
k=1

cke
−iξktm =

N∑
k=1

cke
−iξkT (m−1) =

N∑
k=1

ckz
m−1
k .

Parameters zk = exp(−iξkT ) in (7) are defined by the
soliton eigenvalues ξk and by the value of time slot T .
Here, we again choose the minimum possible number of
time samples M = N . Then, for the decoding problem
we obtain system of equations with the Vandermonde
matrix:

z01 , z02 , ..., z0N
z11 , z12 , ..., z1N
... ... ... ...

zN−1
1 , zN−1

2 , ..., zN−1
N ,




c1
c2
...
cN

 =


Ω1

Ω2

...
ΩN

 .

(8)
Now we consider both position-phase modulation and
amplitude-frequency modulation of the N-SS kernel and
discuss numerical problems that occur in general case.

Position-phase modulation

Suppose we know the eigenvalues ξk and hence the pa-
rameters zk = exp(−iξk). The decoding problem is to
find the parameters ck by the measured kernel samples
Ωi, that can be done by solving system (8). However, the
straightforward numerical algorithm based, for example,
on Gauss elimination in a general case is extremely chal-
lenging since the Vandermonde matrix (8) exponentially
fast becomes ill-conditioned with the increase of N (see

the reference [27] in [1]). On the other hand, the Vander-
monde matrix belongs to the class of structured matrices
for which the effective numerical algorithms have been
developed (see the reference [28] in [1]). By applying the
effective matrix inversion algorithm the kernel decoding
can be performed using N2 operations, however, the nu-
merical stability restricts N by around ∼ 60 harmonics
(see, for example the reference [29] in [1]).
The inversion of the Vandermonde matrix becomes nu-

merically stable at any N when zk are the complex k-
th roots of unity. For the N-SS kernel this is possible
only when ξk have identical imaginary parts (that can
be moved to the right part of the matrix system (8)),
i.e. in the case presented by formula (6) in [1]. The ad-
ditional harmonics orthogonality condition (formula (8)
in [1]) allows us to use the FFT/IFFT algorithms instead
of matrix inversion operations, that motivated us to focus
on this elegant encoding scheme [1].

Amplitude-frequency modulation

Another possibility is to use the eigenvalues ξk as the
carriers of information. They have to be found from the
measured kernel samples Ωm, while the shift-phase pa-
rameters ck are all known and are not used for coding
of information. The parametric approach based on the
Prony’s method (see, for example see the reference [30],
chapter 11 in [1]) uses the following master polynomial

ϕ(z) =

N∏
n=1

(z − zk)
n =

N∑
n=0

anz
n, a0 = 1 , (9)

with the complex roots zk. The coefficients an of the
polynomial (9) can be determined by solving the Toeplitz
system of equations:

ΩN , ΩN−1, ..., Ω1

ΩN+1, ΩN , ..., Ω2

... ... ... ...
Ω2N−1, Ω2N−2, ..., ΩN ,




a1
a2
...
aN

 =


ΩN+1

ΩN+2

...
Ω2N

 .

(10)
Numerical solution of the problem (10) can be obtained
by the use of Levinson-Durbin-Trench algorithm through
the O(N2) arithmetic operations (see the reference [28]
in [1]). However, the subsequent roots finding of the mas-
ter polynomial ϕ(z) is the hard numerical problem for
the large number of samples N . For example, the well
known factorization algorithm of Jenkins and Traub be-
comes numerically unstable at N ∼ 100 (see the reference
[35] in [1]).
We note, that in the case of continuous spectrum ker-

nel (formula (10) in [1]) the corresponding Vandermonde
matrix can be always stably inverted since it becomes
Fourier matrix.
We conclude that the general (parametric) N-SS kernel

decoding requires matrix inversion and/or finding roots
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of the polynomial in the decoder. Although, the ad-
vanced numerical algorithms with a relatively small num-
ber of operations ∼ N2 can be exploited, their stability
against large number of harmonics and additive noise re-
quires a separate comprehensive analysis that is beyond
the scope of this Letter.
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