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Continuous progress in optical communication technology and corresponding
increasing data rates in core fiber communication systems are stimulated by
the evergrowing capacity demand due to constantly emerging new bandwidth-
hungry services like cloud computing, ultra-high-definition video streams, etc.
This demand is pushing the required capacity of optical communication lines
close to the theoretical limit of a standard single-mode fiber, which is im-
posed by Kerr nonlinearity [1–4]. In recent years, there have been extensive
efforts in mitigating the detrimental impact of fiber nonlinearity on signal
transmission, through various compensation techniques. However, there are
still many challenges in applying these methods, because a majority of tech-
nologies utilized in the inherently nonlinear fiber communication systems had
been originally developed for linear communication channels. Thereby, the ap-
plication of ”linear techniques” in a fiber communication systems is inevitably
limited by the nonlinear properties of the fiber medium. The quest for the op-
timal design of a nonlinear transmission channels, development of nonlinear
communication technqiues and the usage of nonlinearity in a“constructive”
way have occupied researchers for quite a long time. For instance, the idea
of balancing the nonlinear self-phase modulation effect by dispersion (or vice
versa) using soliton pulses was proposed by Hasegawa and Tappert in the
early 1970s [5], when intensity modulation and direct detection were the
main technology trend [6–9]. The relevant advances in this technique include
ultra-long wavelengh-division-multiplexing soliton transmission, dispersion-
managed solitons and many other interesting methods (see [6–11] and ref-
erences therein). However, in the past decade traditional soliton approaches
lost their appeal due to fast progress in various other (simpler implementa-
tion) transmission techniques. Moreover, increasing symbol rates stipulate the
use of shorter pulses, which, for solitons with power inversely proportional to
pulse width, means increasingly substantial nonlinear interactions and pattern
dependent jitter effects. Recently, modification of soliton techniques to the co-
herent detection system was proposed [12–14], with the first studies indicating
a decent potential for this approach. In general, currently there is an evident
need for radically different approaches to coding, transmission, and processing
of information in fiber communication channels that would take into account
the nonlinear properties of optical fiber, allowing one to overcome the limits
of linear techniques.
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460 Odyssey of Light in Nonlinear Optical Fibers: Theory and Applications

More than 20 years ago Hasegawa and Nyu [15] (see also Chapter 4.4.
of the monograph by Hasegawa and Kodama [7]), considering the nonlinear
Schrödinger equation (NLSE) as a model for signal propagation in a single-
mode fiber, put forward the idea of exploiting the nonlinear spectrum of a
signal for the purposes of information transmission. Since then, this concept
has been known as “eigenvalue communications” because the authors proposed
encoding information using special discrete eigenvalues (non-dispersive part
of the nonlinear spectrum), which correspond to solitonic degrees of freedom
and have no analogues in linear problems. This proposal is an example of a
fundamentally nonlinear communication technique based on the unique prop-
erty of the channel – the integrability of the corresponding nonlinear channel
model given by the NLSE [16]. Currently, this prefiguring idea of using the
nonlinear spectrum in data encoding, processing and transmission processes,
is generally understood in a somewhat wider sense, and can be formulated
as follows. In linear communication channels, spectral components (modes)
defined by the Fourier transform (FT) of the signal propagate without inter-
actions with each other. In certain nonlinear channels (integrable channels),
such as the one governed by the NLSE, there exist nonlinear modes (nonlin-
ear signal spectrum) that also propagate without interacting with each other
and without corresponding nonlinear cross-talk, effectively, in a linear man-
ner. Thus the parameters of these nonlinear modes can be used for encoding
and efficient transmission of the information over a nonlinear fiber, the sig-
nal propagation inside which can be well modeled (at least in the leading
approximation) by an integrable equation, for instance, by the NLSE.

The transition from the true space-time domain into the nonlinear spectral
domain and back is achieved by performing the so-called nonlinear Fourier

transform (NFT) — a technique introduced in the 1970s [16–19]. NFT op-
erations constitute nothing more than the core parts of the general inverse
scattering transform (IST) method [20, 21] for the solution of initial-value
problems associated with integrable evolutionary equations and, in partic-
ular, developed for the the solution of the NLSE by Zakharov and Shabat
in [16], and, further, for the so-called Manakov system, relevant to optical
signal transmission using polarization degrees of freedom, by Manakov [22]. It
should be noted that until recently the potential of the original idea expressed
in [15], namely, the usage of the specifically nonlinear quantities from the IST
method for the signal processing and transmission, had been largely over-
looked by the communications and engineering community, although pulse-
to-soliton conversion and soliton evolution problems were being widely studied
by physicists in a number of different areas. Only recently this concept has
attracted a new wave of attention with application to signals transmission and
processing, highlighting the re-emergence of the eigenvalue communications
[23–34]. Over the past few years several groups have revisited and extended

the original ideas of Hasegava and Nyu in the context of coherent optical
communications. The concept itself is being approached from two somewhat
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Eigenvalue communications in nonlinear fiber channels 461

“orthogonal and complementary” pathways, neither of which excludes the par-
allel implementation of the alternative approach. These two main directions
in “eigenvalue communication” methodology can be categorized according to
what part of the nonlinear spectrum is used for modulation and transmission.
The first approach involves the use of discrete eigenvalues and related soli-
tonic quantities for signal transmission [15, 27–29,34] and processing [26, 30],
where the reported spectral efficiency of the method reached a decent value
of more than 3 bit/sec/Hz [31]. The second method has been pursued by the
Aston group and collaborators: it deals with the modulation of the continuous
part of the nonlinear spectrum for signal encoding and efficient transmission
in optical fibers [24,25,32,33]. In this chapter we review the present state of
this completely new direction in “eigenvalue communications” following recent
publications [24, 25, 32, 33].

18.1 INTRODUCTION AND MAIN MODEL DESCRIPTION

Optical fiber systems form the backbone of global telecommunication net-
works and currently carry the majority of the world’s information traffic,
with the “fifth generation” of optical transmission systems operating with ad-
vanced modulation formats, e.g., orthogonal frequency division multiplexing
(OFDM), digital signal processing techniques, etc. Skyrocketing demand for
communication speed is exerting great pressure on the networks’ infrastruc-
ture at every scale, which explains the real motivation behind the overwhelm-
ing part of optical communications research. Since the introduction of fiber-
optic communications in the late 1970s, many technological advances, such
as erbium-doped fiber amplifiers (EDFA), wavelength division multiplexing
(WDM), dispersion management, forward error correction, and Raman am-
plification, have been developed to enable the exponential growth of data
traffic [1, 2, 6]. The introduction of advanced modulation formats and digital
signal processing for coherent communications led to practical implementa-
tion of systems with 100 Gb/sec channel rates. The key to this breakthrough
is the possibility of mitigating the most important linear transmission im-
pairments, such as fiber link dispersion and polarization mode dispersion.
In coherent fiber optic communication systems, the received optical signal is
digitized through high-speed analog-to-digital converters and then processed
using digital signal processing (DSP) algorithms. The input signal is then re-
covered with the accuracy allowed by the channel noise and the transmission
effects that are not equalized by the DSP. After the mitigation of linear ef-
fects, noise and nonlinear impairments become the key factors in limiting the
performance of coherent fiber optic communication systems.

In recent years, a number of techniques have been introduced and stud-
ied for surmounting the capacity limit (occurring due to Kerr nonlinear-
ity) through various nonlinearity compensation techniques, including digi-
tal back-propagation (DBP) [35], optical phase conjugation [36], and phase-
conjugated twin waves [37], to mention a few recent advances. However,
there are still many limitations in applying the aforementioned nonlinear
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462 Odyssey of Light in Nonlinear Optical Fibers: Theory and Applications

compensation methods. A significant step forward would take place if a
method could “incorporate” fiber nonlinearity constructively when designing
core optical communication coding, transmission, detection, and processing
approaches. It actually means that the true capacity limits of nonlinear fiber
channels have yet to be found.

In general, the power of a signal transmitted through an optical fiber link
is degraded by loss and has to be periodically recovered through optical am-
plification. In many important practical situations, the averaging of such pe-
riodic loss and gain results in an effectively lossless propagation model – the
NLSE [6–8, 10, 11], which describes the continuous interplay between disper-
sion and nonlinearity. Moreover, using technology developed at Aston Univer-
sity, it was demonstrated experimentally that fiber loss can be compensated
continuously along a fiber span, leading to effectively quasi-lossless transmis-
sion [38–42]. Overall, the NLSE can be considered a principal master model
for demonstrating key techniques and approaches in optical fiber communi-
cations. Written for a complex slow-varying optical field envelope q(z, t), it
reads as (so far we disregard all deviations from the pure integrable case)

i qz − β2

2
qtt + γ q |q|2 = 0, (18.1)

where z stands for the propagation distance and t is the time in the frame
co-moving with the group velocity of the envelope. Depending on the sign of
the group velocity dispersion coefficient β2, two physically different situations
are generally considered with regard to model (18.1): (i) the case of anomalous
dispersion, where the dispersion coefficient β2 < 0, resulting in the so-called
focusing NLSE, and (ii) the normal dispersion case with β2 > 0, corresponding
to the defocusing type of the NLSE (the higher-order dispersion terms are not
considered). The instantaneous Kerr nonlinearity coefficient γ is expressed
through the nonlinear part of refractive index n2 and an effective mode area
Aeff : γ = n2ω0/cAeff , with c being the vacuum speed of light and ω0 =
2πν0 being the carrier frequency of the envelope q(t, z). Further, we will use
the explicit form of the NFT operations attributed to the the normalized
versions of the NLSE. We normalize time in Eq. (18.1) to the characteristic
time related to an input signal Ts, which can be, e.g., the extent of the RZ
signal or the characteristic duration of a single information-bearing symbol
(the normalization value Ts is rather a matter of convenience), and then use
the effective z-scale associated with Ts: Zs = T 2

s /|β2|. Then, we measure
the power of the input in units of P0 = (γ Zs)−1 and normalize the signal
amplitude correspondingly. The summary of normalizations is

t

Ts
→ t,

z

Zs
→ z,

q√
P0

= q
√
γ Zs → q . (18.2)

For the anomalous dispersion case, the typical value of β2 is −22 ps2/km, and
for normal dispersion we use the value β2 = 5 ps2/km; the typical value of
the Kerr coefficient is γ = 1.27 (W·km)−1.
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FIGURE 18.1: Flowchart of the linear scheme (chromatic dispersion compen-
sation), valid for both signs of dispersion.

Later we will compare the results of the different NFT-based schemes
against the linear dispersion compensation technique, given schematically in
Fig. 18.1. For the NLSE, at a very low signal power the digital compensation
of dispersion produces perfect recovery of the initial signal (when noise is not
taken into account). However, when signal power gets higher, the compen-
sation of dispersion recovers the initial signal, leaving noticeable corruption
of the post-processed received waveform (depending on the input power level
and propagation distance) even without taking into account the channel noise;
see the insets of Fig. 18.1.

In addition to a fiber’s dispersion and nonlinearity, the key master model
that describes the signal propagation in a fiber link takes into account the
effect of noise. The noise term results from amplifier spontaneous emission
(ASE) either from the EDFAs (in the path average model) or from the dis-
tributed Raman amplification (see for details references and discussion in [1]):

iqz − β2

2
qtt + γq|q|2 = Γ(t, z). (18.3)

The random complex quantity Γ(t, z) describes noisy corruptions due to the
ASE: It is generally written as a symmetric additive complex Gaussian white
noise (AWGN) with zero average, fully characterized by its autocorrelation
intensity:

〈Γ(t, z)Γ̄(t′, z′)〉 = 2Dδ(t− t′) δ(z − z′),

where the overbar stands for the complex conjugation. Reference [1] provides a
detailed account of how noise intensity D relates to the parameters of the line.

It is well known that the NLSE (without perturbation) belongs to the
class of integrable nonlinear systems [7,8,10,16–21]. In particular, this means
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464 Odyssey of Light in Nonlinear Optical Fibers: Theory and Applications

that the focusing NLSE possesses a special type of solution: highly robust
localized nonlinear waves, called solitons. However, it should be stressed that
the methodology of eigenvalue communication is conceptually different from
pure soliton-based transmission [12–14], even though the solitonic components
can actually be present in the transmitted pulse: The information carriers
there are not the soliton waveshapes themselves, but the IST data attributed,
in particular (but not necessarily), to the solitonic degrees of freedom. This
fact indicates the momentous difference between soliton-based transmission
and eigenvalue communication.

18.2 NONLINEAR FOURIER TRANSFORM ASSOCIATED WITH NLSE

One of the particular manifestations of the integrability property is that,
given the initial conditions (in the context considered, the waveform of the
input signal), we can propagate the signal to a distance z = L in three steps,
which have direct analogies with the same stages in the consideration of lin-
ear problems, although the immediate implementation of these steps differs
significantly from the linear case.

1. The first step is the mapping of the input profile to the spectral do-
main. For a linear channel, this operation corresponds to the ordinary
forward Fourier transform (FT), and we will call this stage the for-

ward NFT (FNFT), by analog with the linear situation. For nonlinear
propagation, this stage involves solving the specific direct scattering
problem associated with an integrable equation and produces a set of
scattering data, where the particular quantities (continuous spectrum
and a set of discrete complex eigenvalues, if the latter exists) are then
associated with orthogonal nonlinear “normal modes.”

2. The next step is the propagation of the initial spectral distribution
(again, a continuous spectrum and complex eigenvalues) to distance
L: Here, in both linear and nonlinear cases, the spectrum evolves
according to the linear dispersion law. So, a further impetus for an
analogy between NFT and its linear counterpart is that the former
does to NLSE what the latter does to the linear equations: just as
the linear FT changes dispersion to a phase rotation in frequency
space so the NFT leads to a trivial phase rotation of the spectral
data. This means that the fiber nonlinear transmission effects are
effectively included in the NFT.

3. The last stage is the recovery of the solution profile in the space-time
domain: It is the backward FT in the linear case. For the nonlin-
ear integrable problem, the backward NFT (BNFT) amounts to the
solution of the so-called Gelfand–Levitan–Marchenko equations, and
this step accomplishes the finding of a solution (signal profile) at dis-
tance L. These three stages, which provide the solution of a nonlinear
equation at distance L, constitute the essence of the IST method.
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Eigenvalue communications in nonlinear fiber channels 465

References [7,16–21] provide numerous details, examples and profound expla-
nation of the IST method, and below we briefly present only some relevant
parts of this.

18.2.1 FORWARD NONLINEAR FOURIER TRANSFORM (ZAKHAROV–
SHABAT DIRECT SCATTERING PROBLEM) FOR THE FOCUSING NLSE

In this subsection we consider the FNFT attributed to the anomalous disper-
sion (focusing) case, where the normalized NLSE (18.1) is explicitly rewritten
as

iqz +
1
2
qtt + q|q|2 = 0. (18.4)

The FNFT operation for Eq. (18.4) requires solutions of the so-called
Zakharov–Shabat spectral problem (ZSSP), which corresponds to the scatter-
ing problem for a non-Hermitian (for the anomalous dispersion) Dirac-type
system of equations for two auxiliary functions φ1,2(t), with the NLSE input
waveform q(0, t) ≡ q(t) serving as an effective potential entering the equations

dφ1

dt
= q(t)φ2 − iζφ1 ,

dφ2

dt
= −q̄(t)φ1 + iζφ2 . (18.5)

Here, ζ is a (generally complex) spectral parameter, ζ = ξ + iη, and the
potential q(t) is supposed to decay as t → ±∞ (see the specific constraints
imposed on q(t) decay in [16–21]).

At the left end t → −∞ we fix the “initial” condition for the incident wave
scattered by the potential q(t) to have the so-called Jost solution ~Φ(t, ζ) =
[φ1(t, ζ), φ2(t, ζ)]T :

~Φ(t, ζ)
∣∣∣
t→−∞

=
(

1
0

)
exp(−iζt).

With this initial condition, at the right end, t → +∞, we define two Jost
scattering coefficients, a(ζ) and b(ζ), constituting the essence of the FNFT:

a(ζ) = lim
t→∞

φ1(t, ζ), exp(iζt), b(ζ) = lim
t→∞

φ2(t, ζ) exp(−iζt), (18.6)

with φ1,2 being the corresponding elements of vector ~Φ(t, ζ). The (right) re-
flection coefficient associated with Eq. (18.5) is then defined as

ρ(ξ) =
b(ξ)
a(ξ)

= lim
t→∞

φ2(ξ, t)
φ1(ξ, t)

exp(−2iξt). (18.7)

The FNFT operation corresponds to the mapping of the initial field, q(0, t) =
q(t), onto the set of scattering data:

Σ =
[
ρ(ξ), ξ ∈ R,

{
ζn, Cn ≡ b(ζn)

a′(ζn)

}]
, (18.8)
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466 Odyssey of Light in Nonlinear Optical Fibers: Theory and Applications

where index n runs over all discrete eigenvalues of ZSSP, Eq. (18.5) (if these
are present). The quantity ρ(ξ) from Eqs. (18.7) and (18.8) defined for real
ξ (“frequency”) plays the role of continuous nonlinear spectral distribution,
while the quantities associated with discrete eigenvalues describe solitonic
degrees of freedom and do not have analogs in linear problems. The evolution
of the reflection coefficient is given by

ρ(L, ξ) = ρ(ξ) exp(2iξ2L), (18.9)

where ρ(L, ξ) is the value of the coefficient after propagation to the distance
L. From Eq. (18.9), one can see that the nonlinear spectrum obeys the linear
dispersion law of the NLSE (18.4) if one associates the linear frequency ω with
the quantity ξ as ξ = −ω/2. Indeed, from the IST theory, it is known [17]
that asymptotically in the linear limit the following formula is valid:

ρ(ξ)
∣∣∣
|q(t)|→0

= −Q̄(−2ξ), (18.10)

where Q(...) identifies the linear FT of the signal q(t). In view of Eq. (18.10),
it is useful to define the nonlinear spectral function (NSF) N(ω) associated
with ρ(ξ) via

N(ω) = − ρ̄(ξ)
∣∣∣
ξ=− ω

2

. (18.11)

So, in the linear limit the NSF (18.11) coincides with the linear spectrum of
the signal q(t).

Quite often for the sake of computation convenience the left set of scattering
data is defined for Eq. (18.5); as for the linear FT, one can use different signs
in the transform exponent. In particular, the left reflection coefficient on the
real axis is given by

r(ξ) =
b̄(ξ)
a(ξ)

. (18.12)

Obviously, the poles of the left reflection coefficient (18.12) coincide with those
of the right one, Eq. (18.7), as in both cases these are defined by a(ζ) = 0
in the upper complex half-plane of spectral parameter ζ. The quantities Cn
(norming constants) from (18.8) change to C̃n = [b(ζn) a′(ζn)]−1. Generally,
the definitions of the complete set of scattering data through the right and
left sets are equivalent, leading to unique recovery of the profile in the time
domain, and we refer an interested reader to the work by Ablowitz et al. [17],
where the IST method is simultaneously formulated in terms of both left and
right sets. One of the distinctions is that the evolution law for r(L, ξ) changes
the sign in the exponent

r(L, ξ) = r(ξ) exp(−2iξ2L), (18.13)

and the definition for the NSF in terms of r(ξ) reads

N(ω) = − r(ξ)
∣∣∣
ξ=− ω

2

. (18.14)
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Eigenvalue communications in nonlinear fiber channels 467

18.2.2 MODIFICATION OF THE FNFT FOR THE NORMAL DISPERSION CASE

Now consider the case of the normal dispersion NLSE, with the explicit nor-
malized form

iqz − 1
2
qtt + q|q|2 = 0. (18.15)

The associated ZSSP transforms as follows (cf. Eq.(18.5)):

dφ1

dt
= q(t)φ2 − iξφ1 ,

dφ2

dt
= q̄(t)φ1 + iξφ2 . (18.16)

We have already written this ZSSP specifically for real spectral parameter
ξ. The significant difference of the focusing case (18.5) from the defocusing
ZSSP (18.16) is that the latter is Hermitian. It signifies that for the normal
dispersion one cannot have soliton solutions (complex discrete eigenvalues)
emerging from any sufficiently localized input. The right and left reflection
coefficients are defined in the same manner as in Subsection 18.2.1. Due to
the different sign of the dispersion in Eq. (18.15), we also have the change of
sign in the evolution law exponent for the reflection coefficient attributed to
Eqs. (18.15) and (18.16):

r(L, ξ) = r(ξ) exp(2iξ2L). (18.17)

18.2.3 BACKWARD NONLINEAR FOURIER TRANSFORM
(GELFAND–LEVITAN–MARCHENKO EQUATION)

The backward NFT maps the scattering data Σ onto the field q(t): This
is achieved via the Gelfand-Levitan-Marchenko equations (GLME) for the
unknown functions K1,2(t, t′). The general form of the GLME written in terms
of the left scattering data reads:

K̄1(t, t′) +

t∫

−∞

dy F (t′ + y)K2(t, y) = 0 ,

±K̄2(t, t′) + F (t+ t′) +

t∫

−∞

dy F (t′ + y)K1(t, y) = 0,

t > t′ , (18.18)

where “+” corresponds to the focusing and “−” to the defocusing NLSE. For
the defocusing case (“−” sign) the quantity F (t) can contain both contribu-
tions from the solitonic and continuous parts:

F (t) = −i
∑

k

C̃ke
−iζkt +

1
2π

∞∫

−∞

dξ r(ξ) e−iξt. (18.19)

Having solved the GLME (18.18) for K1,2(t, t′), the solution sought in the
space-time domain is recovered as q(t) = ±2K̄2(t, t). However, for the GLME
associated with the soliton-free case, considered later in this chapter, this
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468 Odyssey of Light in Nonlinear Optical Fibers: Theory and Applications

expression reduces to the simple FT of r(ξ),

F (t) =
1

2π

∞∫

−∞

dξ r(ξ) e−iξt,

which is valid for both signs of the dispersion. When one is interested in the
solution q(L, t), the quantity r(ξ) in (18.19) is replaced with r(L, ξ), given
either by Eq. (18.13) or (18.17), depending on the sign of the dispersion.
So, the resulting solution of the GLME (18.18) becomes the function of L:
K1,2(L; t, t′).

18.2.4 SOME REMARKS ON NUMERICAL METHODS FOR COMPUTING NFT
AND ASSOCIATED COMPLEXITY

Inasmuch as the form of the FNFT and BNFT operations is seemingly differ-
ent, numerical methods for the solution of the ZSSP, Eqs. (18.5) and (18.16)
and for the GLME (18.18) are also distinct. For the latter we note that for
our purposes we do not consider the soliton’s contribution.

The well-know methods for the solution of ZSSP involve Crank–Nicolson
finite-difference discretization, Ablowitz–Ladik discretization (where the re-
sulting differential-difference NLSE form is also integrable), the Boufetta–
Osborne method [43, 44], where one uses a piecewise-constant approximation
of the “potential” q(t), Runge–Kutta integration of the ZSSP [44], the spec-
tral collocation method [26], etc. The methods for the ZSSP are well reviewed
in [28,46]. For solitonic quantities, one has to augment the solving routine with
a root finding method, such as the Newton–Raphson method, to locate zeros
of a(ξ). This step, in general, can bring about an increase in computational
complexity.

For the solution of GLME (18.18), there exists a multitude of methods
stemming mostly from the Bragg grating s synthesis research, which are ap-
plicable in the soliton-free case for both dispersion signs. We mention different
peeling algorithms [45] and the Toeplitz matrix based method [33, 47]; see
also the references in these works.

At this point it is pertinent to discuss the numerical complexity of the
NFT as compared to, say, the popular digital back-propagation (DBP) tech-
nique for the removal of nonlinear distortions [35]. In the latter one reads the
transmitted waveform at the receiver, inserts it as an input for the noiseless
NLSE, Eq. (18.1), and then solves it in a backward direction. The numeri-
cal solution of the NSLE is usually performed by using the split-step Fourier
method [6,35], which requires ∼ NzMt logMt floating-point operations (flops),
Mt being the number of discretization (sampling) points in the time domain,
and Nz the number of steps in z, which grows with the transmission length
and can depend on the pulse power. The transmission techniques that we
consider further involve either one or two nonlinear transforms, each of those
requiring ∼ M2

t flops with the use of the well-developed methods mentioned
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Eigenvalue communications in nonlinear fiber channels 469

above. Even with such an estimate, the complexity of the NIS can be com-
parable to that of the DBP when M2

t ∼ NzMt logMt [25]. However, recent
advance in numerical NFT methods indicate that the complexity of the NFT
operations can be potentially reduced even further. For the ZSSP, a recent
study by Wahls and Poor [46] suggests that the recovery of the continuous

part of the nonlinear spectrum can be made in only ∼ Mt log2 Mt flops. For
the GLME, in another work by the same authors [48] some arguments in
favor of the possibility for the fast BNFT operation with the same order of
flops are given. The Toeplitz matrix based GLME solution method [33, 47]
can be potentially integrated with the superfast Toeplitz matrix inversion al-
gorithms (see the direct references in [25, 33]), also resulting in overall NFT
complexity reductions. Taking these estimations, we believe that NFT-based
transmission methods can potentially outperform the DBP and other nonlin-
earity compensation techniques in terms of numerical complexity for digital
signal processing.

18.3 TRANSMISSION USING CONTINUOUS NONLINEAR
SPECTRUM — NORMAL DISPERSION CASE

In [24] the case of transmission through the channel described by the normal
dispersion NLSE (18.15) was addressed. The normalization parameters were
taken as follows: Ts = 25 ps, Zs = 125 km. As mentioned in Subsection 18.2.2,
for this dispersion sign no solitons can emerge from the input having a localized
extent, and this fact greatly simplifies the usage of NFT operations because
one does not have to deal with discrete eigenvalues. We call this approach
“the straight IST-based method” insofar as in this case the course of actions is
completely similar to the linear case; compare Figs. 18.1 and 18.2. In [24] noisy
corruptions were not considered and only the proof-of-concept demonstration
of how the continuous nonlinear spectrum can be used for transmission was
presented. The input pattern used for numerical calculations was built from
the sequence of N = 100 of pulses and had the following form:

q(z = 0, t) =
N∑

k=1

ck s(t− k T ), (18.20)

with T being the symbol duration (T=Ts). As an example, the quadrature
phase shift keying modulation (QPSK) of the information coefficients was
employed: The absolute value of cαk is the same for each coefficient, |ck| =
c = const., and the phase of each ck takes four discrete values from the set:

Arg{ck} = 2πp/4, with p = 0 ÷ 3 . (18.21)

The whole set of ck (18.21) can be rotated to an arbitrary angle in the complex
plane. So, the constellation diagram of the input signal (the loci of ck in the
complex plane for all carrier numbers k) consists of four points. The value
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FIGURE 18.2: Flowchart of the transmission scheme for the straight IST-
based nonlinearity compensation, utilized in [24] for the focusing NLSE.

|ck| = c = 0.5 was taken, which produced observable nonlinear effects over
distances ∼ 1000 km. The input carrier pulse shape f0(t) can have an arbitrary
profile, and in [24] a Gaussian pulse shape was chosen,

s(t) = exp
[
−t2/(2τ2

0 )
]

× exp [iφ] ,

where parameter τ0 is related to the pulse full width at half maximum width
through TFWHM = 1.655 τ0, and the phases were generated randomly from
the QPSK set (18.21).

The transmission scheme considered in [24] is given in Fig. 18.2. The scheme
involves two NFT operations, both at the receiver side. First, using the pro-
file at the receiver, one inserts it into the FNFT associated with the focusing
NLSE, Eq. (18.16), then unrolls the accumulated dispersion inside the nonlin-
ear spectral domain, and finally recovers the profile using the BNFT operation
given by the appropriate GLME (18.18). The results for the application of this
scheme vs linear dispersion compensation, Fig. 18.1, to the received waveform
emerging from the same input (18.20), were compared at different propagation
distances on the eye diagrams, Fig. 18.3 (superposition of waveforms from dif-
ferent slots), and constellation diagrams (indicating the position of coefficients
ck on the complex plane), Fig. 18.4. When the absolute value of coefficients
is small (low powers), the reconstructed signals for the linear and nonlinear
methods are almost identical; reconstruction via the scheme from Fig. 18.1
is very quick and efficient. However, with an increase of nonlinearity, the FT
approach becomes less efficient, whereas the NFT results change very little,
mostly due to the increase in NFT computational errors. Figure 18.3 shows
the eye diagrams of reconstructed signals for different distances, obtained by
using both linear and nonlinear approaches. We can see that the IST (NFT)
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FIGURE 18.3: Eye diagram for the signals reconstructed via FT: (a) at z = 25;
(b) at z = 50; (c) at z = 75; (d) at z = 100; and via IST: (e) at z = 25; (f) at
z = 50; (g) at z = 75; (h) at z = 100. Taken from [24].

approach, Fig. 18.3(e–h), provides better results than the compensation via
the FT, Fig. 18.3(a–d). With an increase of the propagation distance, the
“eye” in Fig. 18.3(a–d) starts “closing,” while for the IST approach, the “eye”
remains well open. Figure 18.4 shows the corresponding constellation diagrams
for reconstructed signals, indicating the same tendency.

So, although nonlinear transmission impairments due to fiber Kerr non-
linearity can be compensated by the DBM method (see Subsection 18.2.4),
it requires substantial computational efforts to model reverse signal chan-
nel propagation. The key technical difference between compensation of linear
channel dispersion and nonlinear effects is that the linear Fourier transform
compensates for accumulated channel dispersion analytically, without using
any computer time for reverse propagation. The NFT-based scheme illus-
trated in this section allows one to do the same with nonlinear impairments.
Of course, there is a price to pay for such an advantage, meaning that one has
to deal with the NFT, instead of performing direct and inverse linear FT, as
would be the case in linear channel equalization.

In conclusion, this section simply illustrates the recovery of a nonlinearly
distorted signal using NFT-based signal processing. In this technique a prop-
agation part is trivial and technical problems are moved to the receiver side.
It has to be noted that the deviations of the waveform obtained with the use
of the NFT from the initial ones, observable in Figs. 18.3 (e)–(h) and 18.4
(e)–(h), arise due to computational errors and periodic boundary conditions,
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FIGURE 18.4: Constellation diagram for the signals reconstructed via FT:
(a) at z = 25; (b) at z = 50; (c) at z = 75; (d) at z = 100; and via IST: (e) at
z = 25; (f) at z = 50; (g) at z = 75; (h) at z = 100. Taken from [24].

used for the integration of the NLSE. When these factors are eliminated (or
mitigated), the recovery of the profiles at the receiver side would become
perfect.

18.4 METHOD OF NONLINEAR AND LINEAR SPECTRA
EQUALIZATION FOR LOW ENERGY SIGNALS:
ANOMALOUS DISPERSION

In this section we deal with the anomalous dispersion case and describe a
straightforward method of linear and nonlinear spectra equalization [25], ap-
plicable in the case of weak power signals |q(t)| ∼ ε having a finite extent
[−T/2, T/2] (burst mode transmission). The method provides a good illus-
tration of how the transition from linear to nonlinear quantities occurs. The
low power condition implies that no solitons can form from our input, so that
the ZSSP (18.5) does not contain discrete eigenspectrum: Σ = [ρ(ξ), ξ ∈ Re],
the complete set of scattering data (18.8) consists only of the quantity ρ(ξ).
The first question with regard to nonlinear spectrum manipulation is how one
can encode nonlinear spectral data at the transmitter side and then retrieve
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Eigenvalue communications in nonlinear fiber channels 473

them at the receiver. Note that the results given in Subsection 18.4.1 below
are general and do not imply any specific modulation format. In fact, the only
limitation of the method is the relative smallness of the input signal amplitude
multiplied to the pulse duration.

18.4.1 NONLINEAR SPECTRUM EXPANSIONS FOR LOW SIGNAL
AMPLITUDE

Using the smallness of ε we can obtain expressions for the nonlinear spectrum
using perturbative iterations. We start from Eq. (18.5), looking for the solution
expansion in terms of the parameter ε T . First, in ZSSP (18.5) one makes the
transformation from φ1,2 to slow varying functions ϕ1,2 as ϕ1,2 = e∓iξtφ1,2.
In terms of ϕ1,2, the expression for ρ(ξ) (18.7) now changes to

ρ(ξ) = lim
t→∞

ϕ2(ξ, t)
ϕ1(ξ, t)

. (18.22)

Solving the ZSSP recast in terms of ϕ1,2 by recursive iterations gives us

ϕ2(t, ξ) = −
t∫

−T/2

dt1 e
−2iξt1 q̄(t1) +

t∫

−T/2

dt1

t1∫

−T/2

dt2

t2∫

0

dt3 e
2iξ(t2−t1−t3)q̄(t1)q(t2)q̄(t3),

up to ε3 (each power of q gives the contribution ∼ ε), and

ϕ1(t, ξ) = 1 −
t∫

−T/2

dt1

t1∫

−T/2

dt2 e
2iξ(t1−t2)q(t1)q̄(t2),

up to ε2. The expression for ρ(ξ) takes the form ρ(ξ) ≈ ρ0(ξ) + ρ1(ξ), where
ρ0 ∼ ε and ρ1 ∼ ε3 are given as follows (the next term is ∼ ε5):

ρ0(ξ) = −
T/2∫

−T/2

dt1 e
−2iξt1 q̄(t1), (18.23)

ρ1(ξ) = −
T/2∫

−T/2

dt1

T/2∫

t1

dt2

t2∫

−T/2

dt3 e
2iξ(t2−t1−t3)q̄(t1)q(t2)q̄(t3). (18.24)

Now we “propagate” our ρ(ξ) to the distance L using Eq. (18.9),

ρ(L, ξ) = ρ0(L, ξ) + ρ1(L, ξ) =
[
ρ0(ξ) + ρ1(ξ)

]
e2iξ2L, (18.25)

to obtain the expression for nonlinear spectral distribution at z = L, where
ρ0(L, ξ) ∼ ε and ρ1(L, ξ) ∼ ε3.
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18.4.2 LINEAR AND NONLINEAR SPECTRA EQUALIZATION USING SIGNAL
PRE­DISTORTION

Suppose that at the input z = 0, we apply pre-distortion s(t) ∼ ε3 to the
initial signal waveform q(t):

qs(t) = q(t) + s(t). (18.26)

The idea of the method is to remove the quantity ρ1(ξ) given by Eq. (18.24)
and thus the term ρ1(L, ξ) from the spectral density at the end point z = L
in Eq. (18.25), by using the additional pre-processing given by s(t). When a
small quantity s(t) ∼ ε3 is added to the input signal, one gains a correction
ρs(ξ) ∼ ε3 to the expression for ρ1(ξ) (see Eq. (18.24)):

ρ(ξ) = ρ0(ξ) + ρ1(ξ) + ρs(ξ) +O(ε5),

ρs(ξ) = −
T/2∫

−T/2

dt1 e
−2iξt1 s̄(t1). (18.27)

For the two terms of the same order, ρ1(ξ) and ρs(ξ), to cancel each other,
we choose s(t) in such a way that the following relation is satisfied:

ρs(ξ) = −ρ1(ξ). (18.28)

Using the definition of the NSF (18.11), we can now obtain the ordinary
Fourier spectrum S(ω) for our correction s(t) as

S(ω) = ρ̄1(ξ)
∣∣∣
ξ=− ω

2

, (18.29)

and performing the backward FT of Eq. (18.29), we restore the profile of s(t)
in the time domain. Thus, for the pre-distorted signal qs(t) = q(t)+s(t), with
the FT of s(t) given by Eq. (18.29), the addition to the nonlinear spectrum
∼ ε3 disappears altogether and the nonlinear spectrum associated with qs(t)
coincides with the linear spectrum of initial q(t) up to the terms ∼ ε5.

The flowchart of the pre-compensation scheme and the signal recovery at
distance z = L is given in Fig. 18.5. We note that, aside from recursive
Fourier-type integration used to obtain ρ1(ξ), the scheme involves just one
FNFT. So, by means of the pre-compensation described above, one is able to
translate the encoded information into the nonlinear spectral domain without
using any special formats, and control the accuracy of the data mapping.
The transmission itself is effectively performed through the nonlinear spectral
domain.
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Eigenvalue communications in nonlinear fiber channels 475

18.4.3 ILLUSTRATION OF THE METHOD

18.4.3.1 Optical frequency division
multiplexing (OFDM) modulation

For the illustration of how the current and other methods work, as an ex-
ample we consider input in the form of the burst-mode (several symbols of)
OFDM. Generally, coherent optical OFDM has recently become a popular
transmission technique owing to its robustness against chromatic and polar-
ization mode dispersion, efficiency and practicality of implementation; see the
monograph [49] and references therein. OFDM is a multi-carrier transmission
format where a data stream is carried with many lower-rate tones:

q(t) =
∞∑

α=−∞

Nsc−1∑

k=0

cα k sk(t− αT ) eiΩk t. (18.30)

Here, cαk is the α-th informational coefficient in the k-th subcarrier, sk is the
waveform of the k-th subcarrier, Nsc is the total number of subcarriers, Ωk
is the frequency of the k-th subcarrier, and T is the OFDM symbol (slot)
duration. The shape of each subcarrier, sk(t), is usually a rectangle Π(t) of
width T and unit height, and such a choice ensures the orthogonality condition

δkl =
1
T

T∫

0

sk(t)s̄l(t) ei (Ωk−Ωl) t dt,

which is met as long as the subcarrier frequencies satisfy Ωk−Ωl = (2π/T )m,
with an integer m. This means that for linear transmission these orthogonal
subcarrier sets, with their frequencies spaced at multiples of the inverse of
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FIGURE 18.5: Flowchart of the pre-compensation scheme for the equalization
of the linear and nonlinear spectra up to ε5 and the subsequent recovery of
the informational content at the receiver. Taken from [25].
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the symbol rate, Ωk = (2π/T )(k − 1), can be recovered without intercarrier
(IC) and intersymbol (IS) interference, in spite of strong spectral signal over-
lapping. The coefficients cαk are then recovered by a convolution with the
appropriate conjugate base function q̄αk = Π(t)(t − αT ) e−iΩk t. The linear
spectrum of the OFDM-modulated signal (18.30) is a comb of sinc-like shapes:

Q(ω) = 2
∞∑

α=−∞

Nsc∑

k=1

cαk exp
[

− i ω αT + (i/2)(Ωk − ω)T
] sin

[
(Ωk−ω)T

2

]

Ωk − ω
.

(18.31)

18.4.3.2 Spectra equalization for OFDM input signals

18.4.3.2.1 Single OFDM tone

First, it is instructive to consider pre-distortion for the simple input in the
form of a single OFDM tone q(0, t) = c eiΩt if t ∈ [−T

2 ,
T
2 ], and 0 otherwise,

assuming its amplitude |c| ∼ ε ≪ 1 and using the results of Subsection 18.4.2.
The ZSSP for this input profile can be solved analytically [25], so the results
of the expansion can be checked directly. The first-order term in the expansion
of ρ(ξ) (where the corresponding NSF coincides with the linear spectrum) is
given by

ρ0(ξ) = −c̄k
sin T (ξ + Ω/2)

ξ + Ω/2
. (18.32)

For the nonlinear addition ∼ ε3, we have

ρ1(ξ) = 2 c̄k |ck|2 exp
[
i(ξ + Ω/2)T

] sinT (2ξ + Ω) − T (2ξ + Ω)

(ξ + Ω/2)3 . (18.33)

Now, one calculates the pre-distortion spectrum S(ω), inserting (18.33) into
Eqs. (18.28) and (18.29). The resulting function s(t) is given in Fig. 18.6(b)
for the case T = 1, ε = 0.5, Ω = 2π [see the profile of q(t) in Fig. 18.6(a)].
Interestingly, the resulting profile of s(t) is asymmetric with respect to the
time axis origin, in contrast the obvious symmetry of the input pulse.

In Fig. 18.6(c), we present a comparison of the absolute errors for the
linear scheme in Fig. 18.1 and the error for the scheme from Fig. 18.5. One
observes that the resulting error for the equalization method is generally four
to five times smaller compared to the case with linear dispersion compensation
even for such a low power input. Note that the largest errors for the pre-
distorted pulse occurred at the points t = ±T/2, i.e., where there was a sharp
change in the input profile. These errors are caused by numerical discretization
aliasing.

18.4.3.2.2 Several OFDM symbols

For illustration purposes, in [25] the random QPSK encoding (18.21) of OFDM
coefficients was adopted and the following normalizing parameters were used:
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FIGURE 18.6: (a) Real and imaginary parts of the input profile correspond-
ing to a single OFDM tone with T = 1. (b) Real and imaginary parts of
the corresponding nonlinear pre-distortion profile s(t) ∼ ε3. (c) The absolute
errors, obtained by the application of spectra equalization pre-compensation
(circles) (see Fig. 18.5) and linear dispersion removal (squares) (see Fig. 18.1)
at distance z = 1 (L = 4000 km). Taken from [25].
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Ts = 300 ps, giving the characteristic z normalization scale as Zs ≈ 4000 km.
The input pulse was taken as a finite number (a burst) of OFDM symbols
(18.30), with 10 tones in each symbol. The ε3 correction to ρ(ξ) can also be
obtained analytically [25] and contains contributions from both the IS and
IC interference terms. The absolute errors associated with the propagation of
the pre-compensated OFDM vs the errors produced by the linear dispersion
compensation (Fig. 18.1) of the same OFDM sequence are summarized in Fig.
18.7. We can see that the pre-compensation error is still much lower than that
of the linear method (notice the aliasing contribution at the ends of each slot)
in spite of the extended total duration of the burst pulse (for the simulation in
Fig. 18.7 three OFDM slots were used). In [25], the robustness of the method
from Fig. 18.5 against ASE-induced noise was also checked, and simulations
using the NLSE with a noise term (18.3) and realistic noise intensity were
performed. It was shown that the presence of ASE does not violate the general
performance of the transmission based on nonlinear spectrum evolution. The
results for the NFT-based method were better than those for the application
of the simple linear scheme from Fig. 18.1.

18.5 NONLINEAR INVERSE SYNTHESIS (NIS)
METHOD—ANOMALOUS DISPERSION

18.5.1 GENERAL IDEA OF THE METHOD

In the previous two sections the preliminary “proof-of-concept” demonstration
that the non-solitonic part of the nonlinear spectrum can be used for mitigat-
ing nonlinear distortions was presented. However, these methods have limited
applicability, being confined to the normal dispersion case or to the low-power
initial signals. The method described in this section is rather more challenging
and practically important, dealing with the focusing NLSE and high-power
inputs [32, 33]. Note that, for an arbitrary high-energy input for the focusing
NLSE, we usually have the formation of solitons [20, 21], and the eigenvalue
spectrum of ZSSP, Eq. (18.5), contains complex eigenvalues corresponding
to solitonic degrees of freedom (aside from highly disordered inputs [50, 51],
which are less interesting in transmission problems). When the high-power
input is randomly coded, the complex eigenvalue portrait of ZSSP can be
extremely involved. It means that the implementation of the direct scheme
given in Fig. 18.2 brings about considerable difficulties related to finding the
location of eigenvalues and the recovery of a profile using the general form of
the focusing GLME (18.18) with solitonic components (18.19). To get rid of
this issue, we suggest synthesizing the profile in the time domain starting from
given encoded shapes in the nonlinear spectral domain. In other words, one
performs a one-to-one mapping of the linear spectrum Q(ω) for the known
information-bearing signal q(t) to the nonlinear spectrum (NSF) N(ω), where
the latter already corresponds to a new signal qGLM (t): Q(ω) → N(ω). Then
the new profile in the time domain qGLM (t) is synthesized using the BNFT,
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Eigenvalue communications in nonlinear fiber channels 479

i.e., by solving the GLME (18.18) and using the corresponding N(ω) (or r(ξ),
given by Eq. (18.14)). Notably, for high powers the synthesized signal qGLM (t)
can be essentially different from the initial waveform q(t). Such an encoding
can explore the advantages of well-developed linear formats, like OFDM, as
the propagation of the nonlinear spectrum is linear. The idea itself is simi-
lar to that widely used for the inverse syntheses of Bragg grating s [45, 47]:
One creates the input profile bearing the desired properties, starting from
the nonlinear spectral data, and then employs the BNFT, thus synthesizing
the profile in the time domain. Because of this similarity we call this method
“nonlinear inverse synthesis” (NIS) [32,33]. During the evolution, the spectral
data undergo just a trivial phase rotation without nonlinear mode coupling
or channel crosstalk, and hence after winding out this “nonlinear dispersion”
at the receiver, the initial information can be recovered without nonlinear
signal degradation. The scheme of the NIS method is illustrated in Fig. 18.8.
The NIS method involves two stages: (i) the BNFT at the transmitter, pro-
viding the profile qGLM (0, t) in the time domain corresponding to a desired
initial NSF N(ω); and (ii) the recovery of the reflection coefficient and cor-
responding NSF at the receiver by the FNFT, i.e., by solving Eq. (18.5),
and the consequent dispersion compensation inside the nonlinear spectral
domain.

N(0, ω) = Q(ω)
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FIGURE 18.8: Flowchart depicting the sequence of operations for the NIS
method, the example initial waveform q(0, t) = e2πit/T if t ∈ [0, T ], 0 other-
wise. The panes display the true profiles for T = 1 ns, transmission length
L = 2000 km (noiseless case). Taken from [32].

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

A
st

on
 U

ni
ve

rs
ity

] 
at

 0
1:

44
 1

4 
D

ec
em

be
r 

20
16

 



480 Odyssey of Light in Nonlinear Optical Fibers: Theory and Applications

18.5.2 ILLUSTRATION OF THE METHOD

18.5.2.1 Synthesis of profiles from some characteristic shapes in the non­
linear spectral domain

The first question of interest with respect to NIS method implementation is:
What do the elementary base functions look like in the time domain when
its spectral shape is used in the nonlinear spectral domain? We present the
corresponding results in Fig. 18.9. Figure 18.9(a) and (b) show the results for
the sinc base (i.e., it is a rectangle with amplitude c in the ω domain) taken as
an NSF. This type of base function is utilized in the Nyquist-format technique,
which provides the highest spectral efficiency. As seen from Fig. 18.9(b), the
corresponding profiles in the time domain, qGLM (t), are not symmetric, and
the asymmetry grows with the increase of amplitude c. In the OFDM scheme
the elementary base in the time domain is simply a rectangle, i.e., a sinc-
function in the ω-domain. The inverse NFT of the single OFDM spectral
tone, N(ω) = c sinc(ω), is given in Fig. 18.9(c) and (d) for different values of
amplitude c.

We see that for a sufficiently large c the waveform of qGLM (t) is significantly
different from a rectangular profile occurring in the linear case: While losing
its symmetry, the profile develops an oscillatory advancing tail. The general
form of the spectrum of an arbitrary OFDM-encoded data sequence is given
by Eq. (18.31). In Figs. 18.9(e) and (f) we present the spectrum of a single
OFDM slot containing 10 subcarriers with ck = 1 and a corresponding inverse
NFT, qGLM (t). (The general form of the spectrum of an arbitrary OFDM-
encoded data sequence is given by Eq. (18.31).) In this case the structure
of the advancing tail is more involved and reflects the structure of the pulse
itself.

18.5.2.2 NIS for high­efficiency OFDM transmission—Comparison with dig­
ital backpropagation

In [33] 56 Gbaud OFDM NIS-based transmission systems (in burst mode)
with different modulation formats were studied: In addition to the QPSK, the
higher level quadrature amplitude modulations 16QAM (16 possible complex
values for ck), and 64QAM (64 possible values) of the OFDM coefficients were
used. The net data rates of these systems, after removing overhead, were 100
Gb/s, 200 Gb/s, and 300 Gb/s, respectively. The guard time duration is chosen
as 20 percent longer than the fiber chromatic dispersion induced memory for
a 2000 km link. For the OFDM NIS-based system, the total number of tones
was 128, where 112 subcarriers were filled with data, while the remaining
subcarriers were set to zero. The useful OFDM symbol duration was 2 ns and
the cyclic prefix was not used. Each packet data (burst) contained only one
OFDM symbol (slot).

The linear spectra of OFDM signals before and after the BNFT are shown
in the Fig. 18.10. It can be seen that after the BNFT, the linear spectrum
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FIGURE 18.9: Profiles of NSF |N(ω)| with different amplitudes and the cor-
responding profiles |qGLM (t)| in the time domain, obtained by solving GLME
Eq. (18.18). (a), (b) For the rectangle-shaped N(ω) =

∏
(ω/2π); (c), (d) for

the sinc-shaped N(ω) (the base of standard OFDM); (e), (f) N(ω) and corre-
sponding qGLM (t) for a single slot of 10 OFDM tones, with ck = c = 1. The
insets show the corresponding linear FTs of the spectrum. Taken from [32].

of the OFDM signal does not broaden significantly, indicating that the NIS
method combined with the OFDM can be effectively applied for a WDM
transmission or even multiplexed into superchannels.

In [33] the Q-factor (calculated through the error vector magnitude; see
[52]) for the evaluation of the OFDM coefficient deviations was chosen as the
performance indicator for the transmission quality assessment. In Fig. 18.11
the information recovery for the NIS method is again compared with the
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linear dispersion compensation, Fig. 18.1; for the NIS, the Q-factor for the
back-to-back (B2B) recovery with no propagation and after the propagation
for 2000 km is presented. Noise was not included for the simulations given
in Fig. 18.11, so that fiber nonlinearity was the only impairment. This re-
sult confirms that the NIS-based approach can perfectly compensate for the
deterministic impairment due to fiber nonlinearity, using just a single-tap lin-
ear dispersion removal for the nonlinear spectrum at the receiver. However,
one can notice that the back-to-back performance of NIS-based systems de-
teriorates when the input signal power increases. This phenomenon can be
explained by the fact that the numerical error of both FNFT and BNFTs
grows with the increase of input signal power [33].

Now we compare the performance of the OFDM systems with the use
of the NIS and DBP methods [35] (see Subsection 18.2.4) for fiber nonlin-
earity compensation. For the implementation of DBP, the received signal is
first filtered with an eighth order low-pass filter having a bandwidth of 40
GHz. Subsequently, the optical field is reconstructed and the signal is back-
propagated with a different number of steps per single span, indicating the
numerical complexity of the corresponding DBP realization. In Fig. 18.12
we compare the Q-factors of OFDM systems with NIS and DBP. One can
see that the OFDM NIS-based system offers over 3.5 dB advantage over the
traditional OFDM system, confirming the effectiveness of the proposed ap-
proach for fiber nonlinearity compensation. This performance improvement is
comparable with that of DBP with 10 steps per span. The launch power in the
NIS-based system is limited to −4 dBm (the optimum launch power), which
is mainly due to numerical errors in the NFT operations at the transmitter
and receiver.

When combining it with a higher modulation format, such as 16QAM,
the OFDM NIS-based approach offers nearly 4 dB advantage over the tradi-
tional OFDM scheme; see Fig. 18.13. The transmission bit rate in this case is
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FIGURE 18.10: Linear spectra of 128-tone randomly coded QPSK-OFDM
signals before and after BNFT; the launch power is 0 dBm. Taken from [33].
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out NIS and DBP, (c) DBP with 20 steps/span, (d) with the NIS method.
Taken from [33].

200 Gb/s. It can be seen that for the 16QAM modulation format, the OFDM
NIS-based system outperforms the DBP with 10 steps per span. The optimum
constellation diagrams for the conventional OFDM system, OFDM NIS-based,
and OFDM with 20 steps per span DBP are shown in Fig. 18.13(b)–(d). From
this figure one can observe that the NIS method produced fairly clear con-
stellation diagrams. The simulation results for the 300-Gb/s 64QAM OFDM
NIS-based system are compared in Fig. 18.14 with the conventional OFDM
and OFDM with DBP. It can be seen that for such a high-order modulation
format, the OFDM NIS-based system displays almost the same performance
as the DBP with 20 steps per span. The performance improvement in compar-
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OFDM systems. Taken from [33].

ison with the conventional OFDM system is about 4.5 dB, which is larger than
the values achieved for the QPSK and 16QAM modulation formats. This re-
sult indicates that a greater performance advantage of the OFDM NIS-based
system over the traditional approaches can be reached for higher-order modu-
lation formats and shows the considerable benefit of the NIS method for fiber
nonlinearity compensation for highly spectrally efficient transmission systems.
In Fig. 18.14 the curve indicating the ASE transmission limit is also presented:
For calculating it, nonlinearity was completely removed. It can be seen that
the curve for the NIS-based transmission generally goes above those for the
DBP in the noise-dominated region, but it does not intersect the limiting
line. This behavior reveals that the NIS-based transmission is less sensitive
to noise-induced corruption than the DBP, and the refinements of the NFT
processing techniques can improve the NIS performance even further.

To sum up, the NIS method can be successfully combined with the
transmission techniques (e.g., OFDM, Nyquist-shaped) having high spectral
efficiency and advanced modulation formats, such as QPSK, 16QAM, and
64QAM. This novel transmission scheme suggests encoding the information
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onto the continuous part of the nonlinear spectrum and requires only single-
tap equalization at the receiver to compensate for all the deterministic fiber
nonlinearity impairments accumulated along the fiber link. Generally, the NIS
concept can be further extended to other optical systems described by differ-
ent integrable continuous equations. The simulations confirmed the effective-
ness of the NIS scheme and showed that an improvement of 4.5 dB can be
achieved, which is comparable to the multi-steps per span DBP compensa-
tion method. With the utilization of increasingly higher-order modulations
(16- and 64QAM), the results for the performance of the NIS-based OFDM
system became comparable with the performance of increasingly higher-order
DBP compensation (i.e., with progressively more steps per span). This fact
reveals that the NIS method efficiency can become strongly competitive and
outperform that of the DBP methods for high spectral efficiency formats.
In [33] the performance of the Nyquist-shaped modulation format combined
with the NIS method was also studied, and it was demonstrated that the
OFDM is potentially a more suitable modulation for such systems.

18.6 CONCLUSION

In this chapter we have reviewed recent progress in the promising re-emerging
communication technique based on transmission using the continuous part of
the nonlinear spectrum associated with an integrable evolutionary equation,
in particular, with the NLSE (18.1). This bevy of methods is a ramification
the original idea of Hasegawa and Nyu [15], the “eigenvalue communication,”
where the data are encoded onto the parameters of specifically nonlinear “nor-
mal modes” and thus are not affected by nonlinear impairments during trans-
mission. So, the major advantage of using the nonlinear spectral domain for
data transmission in a coherent communication channel is a suppression of
nonlinear cross-talk insofar as the fiber nonlinearity is effectively included into
the digital signal processing based on NFT operations. The resulting chan-
nel becomes effectively linear, and the signal propagation boils down to the
trivial phase rotation of individual (nonlinear) spectral components. This al-
lows us to employ well-developed modulation formats, recasting them into the
nonlinear spectral domain. Also, the robustness of NFT-based transmission
in a practical environment that includes ASE noise was demonstrated. For
the most advanced and practically attractive recently introduced NIS method
(Section 18.5), it was shown that an improvement (in terms of the Q-factor)
of 4.5 dB can be achieved, which is comparable to that for the multi-steps per
span DBP compensation method. In addition, NFT-based processing can be
competitive and even outperform that of the “traditional” digital signal pro-
cessing methods, like DBP, with the use of recent advances in NFT processing
methods [46, 48].

In a recent work of Buelow [34] the important first experimental evidence
that nonlinear spectral data can be used for optical transmission was pre-
sented. In this experimental work, signal detection based on NFT process-
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ing in a coherent receiver was assessed: 16 GBaud binary phase-shift keying
(BPSK) signals were transmitted over a few spans of standard single-mode
fiber at power levels which induce a strong nonlinear distortion. The detec-
tion scheme employed the discrete (multi-soliton) eigenvalues of the ZSSP.
The experimental work [34] clearly indicates that NFT-based detection can
be applied in practical fiber optic systems.

The concept of eigenvalue communication is re-emerging as a powerful non-
linear digital signal processing technique that paves the way to overcoming
current limitations of traditional communications methods in nonlinear fiber
channels. Its methodology is not ultimately linked to the NLSE model con-
sidered in this chapter but can be further extended to other communication
systems described by other integrable evolutionary equations, with the most
important example being the Manakov system of equations [22], governing the
transmission of a polarization multiplexed optical signal. This means that the
technique considered here can be further developed and generalized to the case
of polarization division multiplexing systems. The other important direction
in the progress of these methods is to develop and optimize modulation for-
mats specifically for coding of the signal inside the nonlinear spectral domain,
aiming at an increase of the spectral efficiency and performance improvement
with regard to the signal corruptions occurring due to the deviation of the
real channel from a purely integrable model. In particular, the experiments of
Buelow [34] indicate that the channel performance evaluation with regard to
the EDFA-based system with strong attenuation has to be addressed. A no
less important area is the further development of superfast numerical meth-
ods for NFT-based processing, i.e., the development of fast NFT processing
algorithms. Finally, we strongly believe that the two current practical imple-
mentations of the “eigenvalue communication,” namely, transmission based
on the discrete (solitonic) part of the spectrum and transmission techniques
using the continuous spectrum part, will eventually merge together, thus em-
anating into a single, solid, highly efficacious and extremely flexible nonlinear
digital signal processing technique. Numerous aspects of the fundamental IST
method are available for integration into communication engineering tech-
nologies, and we hope that the ideas of the NFT become no less common
and routine for optical engineers than the standard linear Fourier operations
are now. This requires efforts from different research communities and serves
as a remarkable example of the groundbreaking impact that interdisciplinary
research can produce.
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