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Higher-Order Soliton Generation in Hybrid
Mode-Locked Thulium-Doped
Fiber Ring Laser

Maria A. Chernysheva, Alexander A. Krylov, Chengbo Mou, Raz N. Arif, Alex G. Rozhin,
Mark H. Riimmelli, Sergey K. Turitsyn, and Evgeny M. Dianov

Abstract—A thulium-doped all-fiber laser passively mode-
locked by the co-action of nonlinear polarization evolution and
single-walled carbon nanotubes operating at 1860-1980 nm wave-
length band is demonstrated. Pumped with the single-mode laser
diode at 1.55 pum laser generates near 500-fs soliton pulses at repe-
tition rate ranging from 6.3 to 72.5 MHz in single-pulse operation
regime. Having 3-m long cavity average output power reached
300 mW, giving the peak power of 4.88 kW and the pulse energy of
2.93 nJ with slope efficiency higher than 30%. At a 21.6-m long ring
cavity average output power of 117 mW is obtained, correspond-
ing to the pulse energy up to 10.87 nJ and a pulse peak power of
21.7 kW, leading to the higher-order soliton generation.

Index Terms—Carbon nanotubes, fiber lasers, laser mode lock-
ing, optical pulse shaping.

1. INTRODUCTION

FTER the first demonstration in 1990 [1], fiber based
A ultrafast pulse lasers have been intensively studied in
various configurations and for different fiber base. Numerous
mode-locking techniques have been developed and the ultrafast
pulse generation has been achieved in a wide range of wave-
length bands. Recently fiber lasers generating near 2 pm have
attracted a great deal of attention due to a range of possible ap-
plications. The broad gain spectral band, extending from 1850
to 2100 nm provides more than 200 nm of available band-
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width, which is typical for thulium-doped fibers. Furthermore,
thulium-doped fiber lasers exhibit excellent power scalability
and high efficiency. Thulium gain spectrum covers several atmo-
spheric transmission windows, offering numerous applications
in remote sensing, laser radar [2] and free-space or hollow-core
fiber telecommunications [3]. Obviously for these open-space
applications eye-safe radiation is desirable. This can be achieved
with the thulium-doped fiber lasers due to the fact that the laser
radiation at the wavelength band near 2 um is entirely absorbed
before it can reach and damage the eye retina. This wavelength
region also includes the water absorption peaks, making such
lasers a unique instrument for non-invasive surgery [4] or oph-
thalmology. On the other hand, there are lots of absorption lines
of green-house gasses (CO2 and N»O) around 2 zm wavelength,
that allows to use thulium-doped lasers for gas detection and
analysis [5]. High power 2 pm laser sources are well suited for
nonlinear frequency conversion to obtain mid-IR and THz gen-
eration. Red-shifting of the generation band provides an increase
of the fiber mode field size without sacrificing beam quality [6].
This helps to relax limitations for high-power applications im-
posed by optical nonlinearities.

A higher threshold of nonlinear effects in thulium-doped
fiber lasers is an advantage for high-power operation and
telecommunication applications, however, this also complicates
self-starting mode-locking through fast nonlinear polarization
evolution (NPE) mechanism based on the nonlinear optical
Kerr-effect in fibers. For example, to obtain appropriate non-
linear phase shift for mode-locking initiation, every work pre-
sented earlier has demonstrated thulium-doped fiber lasers with
the cavity length of more than 30 m [7], [8]. However, longer
laser cavity may be responsible for pulse instabilities (see
e.g. [9]-[11] and discussions therein). Most of current works on
thulium-doped ultrafast fiber lasers have concentrated on mode-
locking regime initiated by semiconductor saturable absorber
mirrors [12], single-walled carbon nanotubes (SWCNTS) [13]
and graphene [14] based saturable absorbers. Application of two
saturable absorbers, slow and fast, in laser cavity simultaneously
helps to generate ultrashort pulses with high average power, tem-
poral purity, and high frequency stability [15]. Comparatively
slow saturable absorber is used for mode-locking initiation as
it has lower saturation threshold. Whereas the light modula-
tor with fast response time ensures efficient pulse formation
and stabilization at substantially higher powers [15], [16]. It is
well known that saturable absorbers based on nonlinear optical
Kerr-effect have the shortest response time around ~5 fs based
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Fig. 1. Schematic setup of the hybrid mode-locked thulium-doped fiber laser.

on the electric field interaction with the electrons of an active
medium. Combination of NPE or nonlinear fiber loop mirrors
with another saturable absorbers has been demonstrated earlier
in [17], [18] giving the shortest pulse duration of 230 fs [18].
Previously presented mode-locked thulium doped ultrafast fiber
laser output power was limited by the damage threshold of opti-
cal components. Using ferrule-type SWCNT saturable absorber,
the demonstrated average output power was below ~20 mW due
to the polymer composites destruction [13]. So far, the highest
pulse energy has been presented in a figure-eight laser based on
the double-clad thulium-doped fiber generating 685-fs pulses
with the energy of as much as 8.75 nJ by Rudy et al. [19].

Here we demonstrate high-power and high-energy thulium-
doped all-fiber ring laser hybrid mode-locked by the co-action
of SWCNT and NPE. The laser operates in single-pulse regime
at all-anomalous cavity dispersion generating near 500 fs pulses
in the wavelength band of 1.86—1.98 pm. At the minimum cavity
length of 3 m, average output power reached 300-mW giving the
pulse energy of 4 nJ with the slope efficiency higher than 30%.
The laser with 21.6-m long cavity demonstrates ~117 mW aver-
age output power at the 9.26 MHz-repetition rate corresponding
to the pulse energy of 10.87 nJ and peak power of 21.7 kW. To
the best of our knowledge, we have obtained the highest pulse
energy and peak power directly from the mode-locked thulium-
doped fiber laser with single-mode pumping without any further
amplification.

II. EXPERIMENTAL SETUP

Fig. 1 presents the schematic of the experimental setup of
the thulium-doped fiber ring laser. Pump radiation from a CW
single-mode laser diode at 1.55 psm amplified with a commercial
EDFA up to 1.2 W maximum output power is launched through
a 1.56/1.9 pm wavelength division multiplexer to a 1-m long
thulium-doped active fiber. A commercial in-fiber polarization
dependent isolator and a pair of polarization controllers (PC) are
positioned after the active fiber to form the NPE based fast light
amplitude modulator. A polymer film with dispersed SWCNTs
is used as a relatively slow saturable absorber (typical SWC-
NTs response time is 300-500 fs [20]) to ensure mode locking
self-starting. It is fixed between two angle-polished ferrules of
optical FC/APC-connectors. An output coupler is positioned
before SWCNT saturable absorber to decrease incident radia-
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Fig. 2. Absorption saturation measurements of the PVA-based polymer film
with dispersed SWCNTSs using passively mode-locked fiber source operating at
1880 nm. Inset: Transmission saturation.

tion power and therefore to prevent the damage or degradation
of the SWCNT polymer film. Coupling ratio was optimized
during the experiment to obtain the highest lasing efficiency.
The step-index (An = 0.012) active thulium-doped aluminum-
silica glass fiber has a 10 pm core containing 0.8 wt% of thulium
and 3.6 wt% of aluminum and a cutoff wavelength of A, 2.2 um.
The active fiber absorption at the pump wavelength of 1.55 ym
was measured as 60 dB/m providing almost entire pump absorp-
tion in one meter of the active fiber. The second order dispersion
was estimated to be 3, = 76 ps®/km at the wavelength of laser
operation ~1.9 pum.

The SWCNT were prepared with laser ablation method [21].
Compared with the other production methods, the laser abla-
tion provides higher homogeneity in SWCNT parameters such
as chirality and diameter. The raw SWCNTs (2 mg) were
dispersed in (25 ml) DI water by (20 mg Sodium dodecyl-
benzenesulfonate) surfactant-assisted sonication and the large
SWCNT bundles were removed by filtration through a 1 pm
glass microfiber filter [22]. The resulting dispersion was used to
produce the polyvinyl alcohol (PVA) composite incorporating
SWCNTs with a diameter ranged between 1.25 and 1.5 pm [20].
Fig. 2 shows power-dependent transmission measurement of
the SWCNT saturable absorber. Self-made thulium-doped pas-
sively mode-locked fiber laser generating 550 fs soliton pulses at
74 MHz repetition rate was used as a laser source for modulation
depth measurements. As it is seen from the Fig. 2 the absorption
decreases with the launched peak power increase according to
the equation [22]

o
a(Pyeax) = ﬁ

peaksat

+ s ey

The PVA-based composite with dispersed SWCNTSs shows
non-saturable absorption ay,5 = 60%, absorption modulation
depth oy = 40% and saturation peak power Ppcaksar = 1.44 W,
which corresponds to the saturation intensity of 1.22 MW/cm?.
Such values are typical for polymer-based films with dispersed
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SWCNTs [20]. The corresponding growth of the sample trans-
mission is about 30% as it is shown in the inset of Fig. 2.

It should be noticed that with further series of measurements,
PVA polymer film degrades during high-power laser opera-
tion. Non-saturable losses and saturation peak power increase
up to 80.5% and 5.46 W (corresponding to the intensity of
4.63 MW/cm?), whereas absorption modulation depth drops to
19.5% (see Fig. 2, measurement run 3), corresponding to the film
transmission modulation depth of 8%. Though such a degrada-
tion of PVA-based composite occurs, modulation depth is still
quite high, so that the polymer film with dispersed SWCNTSs
can effectively initiate self-starting mode locking.

It is worth mentioning that SWCNT film modulation depth
measurements at ~1.9 um wavelength have not been performed
and demonstrated in details earlier.

III. EXPERIMENTAL RESULTS

The length of the laser cavity was varied from 2.7 to 22.5 m
by inserting a section of passive SMF 2000 fiber.

A. Short Cavity Laser

The output coupling ratio was firstly chosen to be 50/50 so that
radiation power inside the cavity was equal to the output one.
The cavity length has been shortened to 2.7 m corresponding to
the pulse repetition rate of 72.5 MHz [23].

To explore the key roles playing by the two types of saturable
absorber in the hybrid mode-locking mechanism realization, we
have compared the described laser with another thulium-doped
fiber ring laser mode-locked just with the same SWCNT-based
saturable absorber. Both laser setups were built by means of
identical components. The only difference is that polarization
sensitive isolator has been replaced by polarization independent
one. In addition only one PC has been retained in the cavity.

Fig. 3 presents experimental autocorrelation traces and spec-
tra of pulses generated in both hybrid and SWCNT-only mode-
locked lasers at the pump power of 320 mW. Both lasers can
achieve mode-locking easily, with generated pulse-width of
590 fs and comparable spectral bandwidths of 6.58 and 6.78 nm
respectively. The lasers average output power is 27 mW. It is
evident that output characteristics of both lasers were quite sim-
ilar; the spectrum of SWCNT-only mode-locked laser is slightly
red-shifted due to different PC setups. This fact indicates that the
SWCNTs play dominant role in the mode-locking initiation and
pulse formation at low pump powers below 400 mW, whereas
the NPE threshold has not been achieved yet.

Through the pump power increase, nonlinearity in the laser
cavity affects generation more crucially and the NPE mech-
anism contribution to the pulse formation becomes more pro-
nounced. During the pump power increase, NPE smoothly main-
tains mode-locking operation. On the other hand, it tends to
break into non-regular multi-pulse generation and, finally, into
Q-switching operation. That results in the PVA-based polymer
film degradation. Though it has been preserved undamaged in
the hybrid mode-locked laser.

Maximum average output power of 170 mW in the SWCNT-
only mode-locked laser was achieved at the maximum pump
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Fig. 3. Output autocorrelation traces (a) and spectra (b) at Ppymp = 320 mW.

power of 1.2 W (see Fig. 4). However, laser generated at such a
high-power mode just for several seconds. After that PVA-film
has degraded and the laser has turned to CW operation. In the
case of a hybrid mode-locking, the laser can steadily operate
in two different regimes according to the possible polarization
state adjustments giving ~300 mW output average power at the
same slope efficiency of ~32.6% (see Fig. 5). Output pulses
have a duration of 600 fs (state 1) and 1.28 ps (state 2) with
a spectral bandwidths of 8.7 and 3.1 nm, correspondingly (see
Fig. 4). Time-bandwidth products for both states have been
approximately calculated as 0.411 and 0.316 respectively.

In both cases output spectra possess typical for soliton pulses
Kelly side-bands originating from periodic spectral interfer-
ence between the soliton wave and a co-propagating dispersive
wave [24]. Due to high-intensive Kelly side-bands in the output
spectrum in the state 1, pulse contains 68% of all generated en-
ergy giving 2.93 nJ and the peak power of 4.88 kW, respectively.
In the state 2, however, side-bands contain negligible part of the
energy. The peak power in the pulse reached 3.19 kW corre-
sponding to the pulse energy of 4.08 nJ.

The pulse characteristics of the SWCNT-only mode-locked
laser were close to above-mentioned state 1. Laser generates
600-fs pulses with the spectrum bandwidth of 10.86 nm and
time-bandwidth product of 0.54. It should be noted that sharp
spike at 1905 nm was observed in the spectrum (see Fig. 4(b),
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green plot) justifying that the mode-locking operation is not
complete and high-power CW component is transmitted through
the laser cavity. Pulse peak contains 65% of all generated energy
according to spectrum integration, that corresponds to the value
1.34 nJ and the peak power of 2.24 kW.

The slope efficiency of SWCNT-only mode-locked laser is
measured to be 23.7% (see Fig. 6). It is worth noting that the
pump radiation was entirely absorbed by active fiber. This is
proved by monitoring the average power at the wavelength of
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Fig. 6. Pulse stability during 10 h of continuous work at Ppymp = 1.2 W.

1.55 pm, which did not exceed several milli-watts at the laser
output when the pump power was higher than 1 W.

‘We have also examined the long-term stability of the proposed
laser. Laser generating 1.28 ps pulses at a 300 mW output power
has exhibited stable output under the laboratory conditions for
10 h. We have recorded the optical spectra of the laser at a
10-min interval, as shown in Fig. 6. No obvious change has
been observed for the soliton parameters, such as the central
wavelength, 3-dB spectral bandwidth, Kelly sideband positions
and the spectral peak powers. Also, no obvious damage or degra-
dation of SWCNT polymer films was observed using the same
sample for self- starting mode-locking in the next day after sev-
eral times switch-on and off. Laser could effectively resist the
mechanical effects and perturbation.

Considering the output coupling ratio of 50%, the radiation
energy transmitting along the laser cavity to the SWCNT mod-
ule is equal to the output one, and mounts to 4.08 nJ in the case
shown in Fig. 6. Thus the PVA based SWCNT-polymer compos-
ite film could endure an optical fluence of at least 3.46 mJ/cm?
without any significant damage that verifies its strong thermal
stability.

With the pump power increase, no gain saturation was ob-
served for pump powers near 1.2 W. Thus it is expected that
through the further laser cavity optimization on the saturable
absorption parameters and with careful polarization adjustment,
mode-locked pulses of significantly higher pulse average pow-
ers and shorter duration could be generated, giving rise to higher
pulse energy.

B. Long Cavity Laser

To achieve higher output energy and reduce the energy flu-
ence transmitting through the PVA-based polymer film with
incorporated SWCNTs, 50/50 output coupler was replaced by a
30/70 coupler providing 70% output for generated energy.

By careful initial PCs adjustment self-starting mode-locking
has been achieved at the pulse repetition rate between 6.37 and
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9.6 MHz that corresponds to the laser cavity length ranging
between 31.4 and 20.8 m. Once the mode-locking has been
realized, polarization tuning is no longer needed during the
pump power increase. The laser runs steadily for hours with-
out any perturbation under laboratory conditions. In the whole
available pump power range, the laser operates in the single-
pulse regime; no pulse breaking, Q-switching or multiple pulse
operation was observed.

By changing the length of SMF-2000 inside the laser cav-
ity lasing efficiency varies in the range from 11.2 to 17.46%
whereas output pulse duration at the maximum pump power of
1.2 W alters in the range between 640 and 875 fs respectively
as it is shown in Fig. 7. The maximum efficiency of 17.46%
has been obtained with the cavity length of 21.6 m. In this case
laser generates 840-fs pulses with the maximum average output
power of 126.4 mW. The lasing slope efficiency in this case is
depicted in Fig. 5 (green plot). It is worth noting that power sat-
uration has not been observed even at the highest pump powers,
meaning that it could be further increased.

The measured autocorrelation trace and spectrum of gen-
erated pulses in this case are presented in Fig. 8 (blue solid
line). Laser output spectrum possesses well-resolved Kelly side-
bands, proving soliton pulse generation. It can be obviously seen
in Fig. 8(a) that autocorrelation trace contains non-compressed
pedestal part. Nonlinear pulse chirp causes deviations from the
ideal soliton pulse (see sech? approximation in Fig. 8). By ex-
amining the output characteristics it was found out that pulse
peak contains just 80% of generated energy. Assuming the pulse
repetition rate of 9.26 MHz, the pulse energy is estimated to be
10.92 nJ corresponding to the peak power of 13 kW.

To compress the pulse, the SMF-28 fiber section of variable
length in the range from 2.5 to 5 m has been inserted at the laser
output [25]. It is worth noting that the laser output parameters
were strictly fixed during these experiments. The evolution of
the shortest output pulse duration by varying cavity length is
presented in Fig. 7 (dashed plot).

As it is seen, the shortest pulse duration of 500 fs has been
achieved in the case of 21.6-m cavity length using 4.9-m long
external fiber line giving the compression factor of 1.5X. It is
worth to say that this cavity length corresponds to the high-
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est lasing efficiency as it is shown in Fig. 7. However due
to losses caused by external section of SMF-28 fiber, average
output power decreased down to 117 mW. The autocorrelation
trace and spectrum of compressed pulse are presented in Fig. 8
(red traces). Though the pulse peak can be accurately approx-
imated with sech? function, pulse contains low intensive pulse
pedestal [see Fig. 8(a)]. By autocorrelation traces and pulse
spectra integration along with corresponding soliton function
integration it has been calculated that pulse peak contains 86%
of entire generated energy reaching 10.87 nJ at 9.26 MHz repe-
tition rate which corresponds to the pulse peak power of as high
as 21.7 kW.

Assuming that 70% of entire generated energy has been cou-
pled from the laser cavity, the pulse energy of 3.28 nJ is launched
to the PVA-based polymer film with incorporated SWCNT. Ac-
cording to the previous experiments on the long-term stability,
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the polymer film possesses enough thermal reliability to ensure
stable mode-locking at such high energies.

IV. DISCUSSIONS

Obviously, the pulse energy of both short and long cavity
lasers is higher than that expected from the traditional conser-
vative soliton fiber lasers. We will discuss here this interesting
point only briefly and the comprehensive theoretical and numer-
ical analysis will be presented elsewhere.

A fundamental soliton duration 7, is limited by the total
cavity dispersion value [26] whereas the fundamental soliton
energy E; is inherently limited by the soliton area theorem [27]

B o 121 @

Y Tp .
Here  is the fiber nonlinear coefficient, v = 0.78 W 'km!.
If the pump power is strongly increased laser pulses tend to
break into multi-soliton operation, giving rise to the soliton
quantization effect [27], which is responsible for the pulse en-
ergy limitation of common soliton fiber lasers.
The soliton order, scaled by the peak power value of funda-
mental soliton, could be found as [28]

2 ]Dpeak"}/'Tg
3115,

Assuming pulse parameters achieved in both short and long
cavities, soliton order would vary from 2 to 9.5 before transmit-
ting through the output coupler, as it is shown in Fig. 9. Pre-
viously higher-order soliton generation was reported in mode-
locked dye [29] and Ti:Sapphire lasers [30]. It is well known
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that higher-order solitons undergo periodical evolution while
propagating in an optical fiber, but restore their shape with the
so-called soliton period determined as [27]

Zo=T .03 2 4
0=75"0 B )

The estimated change of the soliton period through the pulse
average power increase is shown in Fig. 9 (red plots).

Itis important to stress, however, that pulse propagation in the
laser cavity in general cannot be explained with a standard the-
ory of higher-order soliton periodical evolution. A laser presents
a complex nonlinear dissipative system and pulse experiences at
high powers strong intracavity variations [31], [32]. Due to the
distribution of gain and losses along the cavity, pulse energy sig-
nificantly varies during propagation, resulting in pulse energy
and, consequently, soliton order decrease before it is restored
again in the gain medium. Thus, periodical multi-soliton evo-
lution is overimposed on the strong intra-cavity dynamics and,
actually, occurs only in the fiber segment of the 65-cm length
on the distance between the thulium-doped fiber and the output
coupler [33], [34]. At the highest pulse peak powers soliton pe-
riod corresponds to 14.7 and 48.15 propagation lengths for short
and long cavity laser setups respectively. This means that pulse
at the laser output is not changed dramatically and its shape is
close to one of the fundamental soliton.

V. CONCLUSION

In conclusion we have demonstrated the hybrid passive mode-
locked thulium-doped all-fiber soliton laser. Application of
SWCNTs-based saturable absorber (as comparatively slow one)
facilitates mode-locking startup whereas the fast NPE mech-
anism based on the nonlinear optical Kerr effect allowed to
achieve high average output power and pulse energy with the
high long- and short-term stability. The laser benefits from the
simple ring cavity design and single-mode pumping by avail-
able high-power laser diode at 1.55 pm. Two different cavity
schemes have been studied, possessing different cavity lengths.
Thus, laser with the short cavity generates 600-fs or 1.28-ps
pulses at 72.5 MHz repetition rate with the average output
power of 300 mW, that is more than one order of magnitude
higher than earlier reported results for SWCNT mode-locked
fiber lasers. The peak power has reached 4.88 kW and the pulse
energy is 2.93 nJ. The lasing efficiency is 32.6%. At a 21.6-m
long ring cavity (at 9.25 MHz repetition rate) laser generates
500-fs pulses with corresponding energy up to 10.87 nJ and a
pulse peak power of 21.7 kW. The average output power reached
120 mW at the slope efficiency of 17.46%.

Such a high pulse energy and peak power with the excellent
long and short-term stability could find numerous applications,
including supercontinuum generation in Mid-IR range. Typical
sources in this case are pumped by a master oscillator power
amplifier consisting of seed mode-locked fiber laser and one or
several amplification stages. Such a complicated scheme makes
it technically challenging for applications whereas obtaining
high power directly from a seed laser without the chirped pulse
amplification technique is very attractive.
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