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We present a theory of coherent propagation and energy or power transfer in a low-dimension array of coupled
nonlinear waveguides. It is demonstrated that in the array with nonequal cores (e.g., with the central core) stable
steady-state coherent multicore propagation is possible only in the nonlinear regime, with a power-controlled
phase matching. The developed theory of energy or power transfer in nonlinear discrete systems is rather generic
and has a range of potential applications including both high-power fiber lasers and ultrahigh-capacity optical
communication systems.
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Nonlinear dynamics in discrete systems is an interdisci-16

plinary research field that has links to a large number of areas of17

science and technology. A broad interest to studies of nonlinear18

discrete systems is based on their generic nature—a range of19

different physical systems can be effectively described by the20

same mathematical model. Nonlinear discrete systems occur in21

a variety of phenomena in condensed matter, nonlinear optics,22

biology, and other fields: from energy transport in molecular23

chains and protein molecules to light propagation in waveguide24

arrays (it is not possible to properly cite all important works25

in the field—see, e.g., Refs. [1–20] for particular examples26

relevant to the systems studied here). In this Rapid Commu-27

nication we present a theory of coherent evolution and energy28

exchange in specific albeit generic low-dimension nonlinear29

discrete systems, using as a particular example a practically30

important application, light propagation in a multicore fiber.31

We demonstrate features of coherent light transmission in such32

multicore systems that are different from properties previously33

studied in the infinite nonlinear discrete lattices [1,6–16],34

symmetric dimers [5], and directional couplers [2,3,19,20].35

The mathematical analysis of nonlinear dynamics in multi-36

core fibers and, in a more general mathematical formulation,37

the nonlinear evolution of the electromagnetic field in a small38

number of interacting waveguides is directly relevant to the39

design of a new generation of fiber laser and telecommu-40

nication systems. An exponentially increasing demand for41

communication system capacity and the projected exhaus-42

tion of the current infrastructure (“capacity crunch” [21])43

is the driving force for the introduction of spatial-division44

multiplexing using multicore fibers. Multicore fiber (MCF)45

technology enables the necessary scale-up in capacity per fiber46

through spatial multiplexing where individual cores serve as47

independent channels [22]. The important challenge here is48

space utilization efficiency and optimization of capacity per49

unit area measured in (bits/s/m2). Interactions between the50

cores can be theoretically made small at the expense of space51

by using large core separation. However, this decreases the52

spatial density of capacity. More efficient space utilization is53

achieved in the homogeneous MCF [23] (with more dense54

core spacing), making positive use of the proximity of the55

cores to produce controlled linear core coupling. In coherent56

optical communication most of the linear transmission effects57

can be undone at the receiver by digital signal processing. 58

However, the coupling might be affected by nonlinear effects 59

imposing limits on enhancing performance through an increase 60

of signal power (required to improve the signal-to-noise ratio). 61

The nonlinearity affects energy coupling between the cores that 62

can result in information losses. It is important, therefore, to 63

determine the fundamental threshold for the destructive energy 64

transfer effects. 65

Similar mathematical problems arise in the field of powerful 66

fiber lasers [24,25]. The single-mode fiber can transport only 67

the power below a certain threshold value determined by the 68

nonlinear effects. The use of multicore fibers is a promising 69

way for coherent combining to create high brightness sources. 70

However, nonlinear interactions can destroy the mutual coher- 71

ence. It is important, therefore, to know the limits imposed by 72

the nonlinear interaction on the maximum power transmitted 73

through the MCF without loss of final beam quality. 74

In this Rapid Communication we demonstrate that in arrays 75

with nonequal cores (the most simple albeit general case is 76

N − 1 peripheral cores surrounding the central core; here 77

N is not very large due to geometrical and manufacturing 78

restrictions), phase matching and stable coherent propagation 79

is possible only due to nonlinear effects for a certain power 80

split between the cores. We solve the stability problem of 81

steady-state propagation and derive analytical conditions of 82

the linear instability and energy transfer. This instability is an 83

extreme discrete limit of the classical modulation instability 84

in the continuous media and fiber arrays [12,16,26–28]. 85

The basic model considered here is a low-dimension version 86

of the discrete nonlinear Schrödinger equation 87

i
∂Ak

∂z
+

N∑
m=0

CkmAm + 2γk|Ak|2Ak = 0, k = 0, . . . ,N.

(1)

Here Ak is a field in the kth core, with A0 (when applied) 88

corresponding to the central core, and Ckm = Cmk is the 89

coupling coefficient between modes m and k; Ckk = βk 90

are wave numbers in different cores that are not assumed 91

to be the same. The phase matching and stable mutually 92

coherent continuous-wave (cw) propagation in arrays with 93

nonequal cores (e.g., cases 3 and 4 in Fig. 1) is provided 94
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FIG. 1. (Color online) The schematic depiction of the multicore
fiber.

by certain nonlinear phase shifts that we will determine below.95

Equation (1) governs all the designs shown in Fig. 1:96

1 : Cmk = C1; 2 : Ck,k+1 = C1, Ck,k+2 = C2;

3,4 : Ck,k±1 = C1(k �= 0), Ck,0 = C0.

Note that in general, e.g., for systems with a distinctive97

central core, nonlinear coefficients in different cores might98

be different. Consider first the instability in cases 1 and 299

in Fig. 1. Let Ak = (
√

Pk + ak + ibk)eiqz, ak,bk � √
Pk ,100

where Pk = P0. Cumbersome, but direct, calculations of the101

dispersion relation for q show that for the case with three cores102

the instability occurs when P0 > P
(3)
th = 3C1/(4γ ). In the case103

of four cores (case 2) the instability threshold is P0 > P
(4)
th =104

(C1 + C2)/(2γ ). When propagation constants are different,105

or in the case of multiple peripheral cores surrounding a106

central one, even the existence of a steady-state solution is107

nontrivial and we look at it in more detail. In the main order,108

dynamics in systems with similar peripheral cores can be109

reduced (assuming Ak = A1, k = 1, . . . ,N) to an analysis110

of an effective two-core model that is a symmetric limit of111

multicore systems:112

i
∂U0

∂z
= −U1 − 2Nγ0

γ1
|U0|2U0 = ∂H

∂U ∗
0

, (2)

i
∂U1

∂z
= −κU1 − U0 − 2|U1|2U1 = ∂H

∂U ∗
1

. (3)

Here we introduced normalized variables:113

A0,1 = √
P0,1 U0,1e

iβ0Lz, z′ = z/L, L = 1

C0

√
N

, (4)

P0 = NP1 = N3/2C0/γ1, κ = (β1 − β0) + 2C1

C0

√
N

. (5)

The system of Eqs. (2) and (3) is a Hamiltonian one (as114

well as Eq. (1)) with the following conserved quantities: total115

(normalized) power Pt and the Hamiltonian H , 116

Pt = N (|U0|2 + |U1|2), (6)

H = −κ|U1|2 − (U ∗
0 U1 + U ∗

1 U0) − |U1|4 − Nγ0

γ1
|U0|4.

(7)

We would like to stress that despite its simple appearance, 117

even the stationary, steady-state solution of the Eqs. (2) and 118

(3) is nontrivial anymore (compared, e.g., to the symmetric 119

dimer [5]). To provide for coherent light evolution in multiple 120

cores, the difference in propagation constants has to be 121

compensated by the nonlinear phase shifts: 122

{U0,U1} = {A,B}eiλz, � = B

A
, (8)

|A|2 = Pt

N (1 + �2)
, λ = � + 2γ0Pt

γ1(1 + �2)
, (9)

�4 −
(

κ + 2Pt

N

)
�3 −

(
κ − 2γ0Pt

γ1

)
� − 1 = 0. (10)

The steady-state solutions and their stability for a more 123

general situation including gain and attenuation have been 124

considered numerically in Ref. [29]. In a dissipative system 125

only a numerical evaluation for some specific parameters is 126

possible and the emphasis in Ref. [29] was on the formation of 127

localized structures. Here we are interested mainly in energy 128

or power transfer between the cores. The relatively simple 129

mathematical result (8)–(10) leads to quite nontrivial physical 130

consequences. Namely, steady-state dynamics in such a system 131

is possible only with a certain imbalance (given by factor �2) 132

between powers propagating in different cores. The physics is 133

rather transparent—this power split is due to a nonlinear phase 134

shift contribution to the phase-matching condition required for 135

coherent propagation in multiple cores. Surprisingly, there are 136

several power distributions (between central and peripheral 137

cores) that can provide for a coherent steady-state propagation 138

of light. The amount of power that has to be coupled to each 139

core for steady-state evolution given by solutions of (10) 140

depends on four parameters: (i) N , (ii) input power Pin (or 141

total power Pt ), (iii) linear phase mismatch κ , and (iv) the 142

ratio between the nonlinear coefficients γ0/γ1. To get an idea 143

of the solution structure, consider the practically important 144

case Pt � 1. In this case from (10) we will get four families 145

of solutions (see Fig. 2). In �1 = 2Pt/N and �3 = γ1/(2γ0Pt ) 146

most of the energy propagates in the ring or central core, 147

correspondingly. For �2,4 = ±√
γ1N/γ0 the ratio of energy 148

in the ring and central core is independent of propagating 149

power. Negative � means out-of-phase fields in the central 150

and peripheral cores. Figure 3 shows an excellent applicability 151

of the analytical results. 152

Consider now the stability of the steady-state solutions 153

of (8)–(10), the analog of the modulation instability for a low- 154

dimension discrete system. The small amplitude disturbance 155

is taken in a standard form, {U0,U1} = {A + a + ib,B + c + 156

id}eiλz, for perturbations proportional to exp[pz] the growth 157

rate of instability is 158

p2 + 2 = − 1

�

(
1

�
− 4B2

)
− �

(
� − 4Nγ0A

2

γ1

)
. (11)
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FIG. 2. (Color online) Four values of � corresponding to different
power splits between cores as functions of total input power; here
γ0/γ1 = 0.5 and κ = 1. The blue long-dashed, green solid, and red
dashed-dotted branches are stable while the black short-dashed one
is unstable. Here different curves for each branch correspond to N

varying from 3 to 12 (from the bottom to the top). For the red short-
dashed curve only odd N are shown.

In the limit Pt � 1 only mode �2 is unstable. Instability159

results in periodic oscillations of energy between cores with an160

amplitude of modulations depending on total power, i.e., the161

relative modulation depth decreases with growing input power.162

The most important consequence of the instability is that it163

makes control of the power dynamics hardly possible. For a164

system with more than three cores, the instability, in general,165

produces stochastic modulation breaking the mutual coherence166

in the cores. The energy exchange oscillations can be produced167

not only as a result of the instability, but also as a result of initial168

conditions (in the case of arbitrary input powers).169

The Hamiltonian structure of the equations and the170

additional conserved quantity greatly restricts dynamics in171

the considered low-dimension dynamic system, imposing172

constraints on the evolution of the waves and the energy173

FIG. 3. (Color online) Dependence of the four solutions of
Eq. (10) (shown by squares) on N . Here Pt = 40, γ0/γ1 = 1, and
κ = 1. Solid lines are for the analytical solutions valid in the
limit Pt � 1. Blue circles curve: �1 = 2Pt/N ; black squares line:
�2 = √

γ1N/γ0; green triangles line: �3 = γ1/(2 γ0 Pt ); and red
inverse triangle line: �4 = −√

γ1N/γ0.

FIG. 4. (Color online) Y axis (left): The comparison of
numerically calculated threshold for energy or power transfer (red
markers) and the analytical formula (12) (solid line). Y axis (right):
Numerically calculated period of the power oscillations (gray
markers) and analytical approximation, 3.23 + 2.04/N2 (solid line).
Insets: Energy or power transfer with distance. The complete transfer
occurs only at certain distances.

exchange between cores. For instance, considering the 174

evolution of initial powers equally distributed between all 175

cores |U0|2 = Pin/N , |U1|2 = Pin, using the connections 176

between the fields imposed by dH/dz = 0, it is easy to show 177

that complete energy transfer from the outer cores to the 178

central one is possible only for one specific value of input 179

power (and at a specific propagation length): 180

Pin = P th
in = κ + 2N−1/2

γ0(N + 2)/γ1 − 1
. (12)

The observed effect—localization of all initially evenly 181

distributed power into the central core—can be considered as 182

an ultimate discrete version of the self-focusing of light. 183

Figure 4 shows a comparison of the analytical result (12) 184

and the numerically calculated threshold of an energy trans- 185

fer given by �0U = (N |U0|2 − |U1|2)/Pt [Pt = (N + 1)Pin]. 186

Here γ0 = γ1, C0 = C1, β0 = β1. The period of the energy 187

exchanges decays with N as N−2. 188

Note that the presented theory can be easily generalized 189

to pulse propagation and nonlinear temporal dynamics having 190

numerous applications. In the recent important work [30] the 191

efficiency of nonlinear matching of optical fibers through a 192

fundamental soliton coupling from one fiber into another has 193

been studied, opening a range of engineering applications, e.g., 194

optimized Raman redshift and supercontinuum generation. 195

To conclude, in this Rapid Communication we have pre- 196

sented a theory of energy or power transfer in low-dimension 197

arrays of coupled nonlinear waveguides. The developed theory 198

is rather generic and has a range of potential applications. 199

Without loss of generality, particular emphasis in the analysis 200

was made on multicore fiber technology, important in the 201

fields of both high-power fiber lasers and ultrahigh-capacity 202

optical communication systems. We have derived for the array 203

with nonequal cores the nonlinear phase-matching conditions 204

that provide for stable coherent steady-state propagation in 205

multiple cores. We solved the stability problem and found an 206

exact analytical condition of complete energy transfer from 207
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the peripheral to the central core, the ultimate discrete analogy208

of the self-focusing effect.209
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