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Abstract—Nonlinear Fourier transform (NFT) and eigenvalue
communication with the use of nonlinear signal spectrum (both
discrete and continuous) have been recently discussed as promising
transmission methods to combat fiber nonlinearity impairments. In
this paper, for the first time, we demonstrate the generation, detec-
tion, and transmission performance over transoceanic distances of
10 Gbd nonlinear inverse synthesis-based signal (4 Gb/s line rate),
in which the transmitted information is encoded directly onto the
continuous part of the signal nonlinear spectrum. By applying
effective digital signal processing techniques, a reach of 7344 km
was achieved with a bit error rate (2.1 x 10~2) below the 20% FEC
threshold. This represents an improvement by a factor of ~12 in
data capacity X distance product compared with other previously
demonstrated NFT-based systems, showing a significant advance
in the active research area of NFT-based communication systems.

Index Terms—Coherent, inverse scattering, nonlinear fourier
transform, nonlinear optics, nonlinear signal processing, orthogo-
nal frequency division multiplexing.

1. INTRODUCTION

HE increasing demand from the growing number of
bandwidth-hungry applications and on-line services (such
as cloud computing, HD video streams, on-line content sharing
and many others) is pushing the required communication ca-
pacity of fiber optical systems close to the theoretical limit of a
standard single-mode fiber (SSMF) [1], which is imposed by the
inherent fiber nonlinearity (Kerr effect) [2]. In the last decade,
extensive efforts have been made in attempting to suppress the
impact of Kerr nonlinearity through various nonlinearity com-
pensation techniques, including digital back-propagation (DBP)
[3], digital [4] and optical [5]-[7] phase conjugations at the mid-
link or installed at the transmitter [8], and phase-conjugated twin
waves [9]-[11]. However, there are still many limitations and
challenges to overcome in applying the aforementioned nonlin-
ear compensation methods in terms of flexibility and especially
the implementation complexity. As a result, further research in
novel methods to combat the impairments due to fiber nonlin-
earity is highly desirable.
In recent years, an alternative approach of designing fiber
optical communication systems [12]-[16], which takes into
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account the fiber nonlinearity as an essential element rather
than a destructive effect has been actively discussed—the non-
linear Fourier transform (NFT)-based approach. The main idea
behind this approach is based on the fact that without per-
turbation the nonlinear Schrodinger equation (NLSE), which
governs the propagation of optical signal in SSMF, is an in-
tegrable nonlinear system [17]-[19]. As a consequence of this
integrability, the field evolution over the NLSE channel can be
effectively presented within a special basis of nonlinear normal
modes (nonlinear signal spectrum), including non-dispersive
solitonic (discrete) and quasi-linear dispersive radiation (con-
tinuous) modes. The evolution of such special nonlinear modes
in the fiber channel is essentially linear, which means that the
nonlinearity-induced cross-talk between these modes is effec-
tively absent during the propagation (neglecting signal corrup-
tion due to noise). As a result, the parameters of nonlinear
modes can be effectively used for encoding and transmitting
information in fiber channel without suffering from nonlinear
crosstalk [14], [19]-[22]. This general idea was first introduced
by Hasegawa and Nyu in [12] and was termed there as “eigen-
value communication.”

There are two main directions in the NFT communications
methodology categorized according to what part of the nonlin-
ear spectrum (solitonic discrete part or continuous part) is used
for the modulation and transmission. The approach of using dis-
crete (solitonic) components of the nonlinear spectrum for data
communications [16], [22]-[25] is often referred to as nonlinear
frequency division multiplexing (NFDM) and initial experimen-
tal demonstrations have been reported recently [16], [24], [25].
In [16] the transmission of a 4 Gb/s NFDM system at 1 Gbd in
burst mode was demonstrated over 640 km. In this experiment,
each burst, which carries 4 bits, contains two eigenvalues each
modulated by QPSK constellations. In [24] three-eigenvalue
ON-OFF-keyed multi-soliton NFDM signals at 0.5 Gbd was
successfully transmitted over 1800 km. However, the NFDM
method requires considerable optimization of the pulse shapes
for the purpose of maximizing the resulting spectral efficiency
(SE) [26]. The second approach based on the modulation of
the continuous part of the nonlinear spectrum, was proposed in
[20] and was assessed in detail numerically in [27]-[30] (for
optical links with ideal Raman amplification, Erbium doped
fiber amplifiers (EDFAs), and non-ideal Raman amplification,
respectively)—and was termed there as the nonlinear inverse
synthesis (NIS) method. Recently, both the continuous and dis-
crete parts have also been considered simultaneously [31].

In this paper, we report the first experimentally demonstration
of a 10 Gbd NFT-NIS-based signal with 120 bits/burst over a
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Fig. 1. Tlustration of NFT and INFT for a given input the potential g(¢), which
is assumed to decay as t — +oo.

distance of 7344 km, showing a factor of 12 improvement in
data capacity x distance product compared with other previ-
ously demonstrated NFT-based systems [16], [24]. We would
like to stress that this is not a “hero experiment” in conventional
terms, but rather an important achievement in the emerging
field of the NFT transmission techniques. The obtained perfor-
mance is also comparable to the performance of a conventional
CO-OFDM transmission. In this experiment, the transmitted in-
formation is encoded directly onto the continuous part of the
nonlinear spectrum using QPSK OFDM via an inverse NFT
(INFT) [20], [27], [28], [32].

The remainder of the paper is organized as follows. An
overview of NFT-based transmission is given in Section II. In
Section III, the experimental setup including the transmitter, re-
ceiver, digital signal processing (DSP), and recirculating loop
used to emulate transmission are described. In Sections IV and
V the simulation and experimental results are presented and
discussed. Section VI concludes the paper.

II. OVERVIEW OF NFT-BASED TRANSMISSION METHOD

In this section, we briefly discuss various designs of NFT-
based transmission systems with a particular emphasis on NIS
method. The numerical methods for calculating the NFTs can
be found in [20], [22], [27], [28], and [30].

A. Basics of NFT Operations

As explained in [20], [22], and [27] and illustrated in Fig. 1,
the NFT maps the initial field, ¢(f), onto a set of scattering
data > = [(r(&), & is real); (s,, C,)], where the index n runs
over all discrete eigenvalues of the Zakharov—Shabat problem
(if the latter are present). Herein, r(£), s,,, C), are the continuous
part, discrete eigenvalues and discrete part (initial position and
phases of soliton) of the signal’s nonlinear spectrum, respec-
tively. However, within the NIS approach [27] utilized further
in our paper, we deal with the soliton-free case without any
discrete spectrum. As a result, the complete nonlinear spectrum
consists of just the continuous part 7(£). Under the noise-free
assumption, the evolution of (&) in lossless NLSE channel can
be effectively modelled as linear all-pass filter [20], [22], [27],
[28], [30]:

r(z,€) = r(0,€) - e €, (1)

This remarkable property makes the continuous part of the
signal’s nonlinear spectrum ideal information carriers in non-
linear fiber channels.
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Fig.2. (a)Basic designs of NFT-based transmission systems; (b) transmission
in the NFD; (c) NFD based BDP (NFD-DBP).

B. NFT-Based System Designs

The basic designs and concept of NFT-based transmission
systems are presented in Fig. 2, where yellow blocks (Tx/Rx) in-
dicate the conventional Tx/Rx. In general, NFT-based transmis-
sion systems can be divided into two major groups, which can
be referred to as transmission in the nonlinear Fourier domain
(NFD) and NFT-based DBP. In the first design (see Fig. 2(b)),
the transmitted information is encoded directly onto the non-
linear signal spectrum (discrete and/or continuous parts) via the
INFT. So far, the modulations of continuous spectrum [20], [27],
discrete spectrum [24]-[26] are often considered separately due
to the numerical complexity of the full NFT-INFT cycle. The
resulted transmission methods are usually termed as NIS and
NFDM, respectively. In the second design (see Fig. 2(c)), the
NFTs are used to cancel the nonlinearity distortion in fiber op-
tical communication systems. This can be effectively achieved
in the NFD with single-tap phase-shift removal as the evolution
of nonlinear spectrum is trivial [19], [33].

In NFDM transmissions, if only one purely imaginary eigen-
value is modulated with ON—OFF keying signal the resulted trans-
mission scheme converges to the conventional soliton transmis-
sion scheme. In this case, the transmitted signal can be detected
at the receiver without NFT operation (using the conventional
time domain sampling receiver). In general, NFDM can be con-
sidered as multi-soliton transmission scheme, where one or more
solitons, which are modulated in amplitude (imaginary part of
eigenvalues), frequency (real part of eigenvalues) or initial po-
sition (discrete part, C,, ), are transmitted simultaneously in one
burst.
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DSP; (c)—block diagram of the Rx DSP; (d)—illustration of a transmitted burst with a duration of 30 ns carrying 120 bits (60 QPSK symbols) and illustration of
synchronization error, (e)—structure of the transmitted signal, including one synchronization symbol, two training symbols for channel estimation and 100 OFDM

NIS-based bursts.

On the other hand, in comparison to NFDM, NIS is an or-
thogonal approach, where the vast amount of available degrees
of freedom contained in the continuous part of the nonlinear
spectrum is exploited for data transmission. As a result, various
conventional modulation formats, such as QAMs, can be effec-
tively combined with the NIS method, providing the flexibility
in the system’s design for achieving a high SE [20], [27], [28],
[30]. In addition, NIS is a fully DSP-based approach, and thus, it
can be easily integrated with the current coherent transmission
technology. Finally, the numerical complexity of NIS, which
is independent to the transmission distance, can be competitive
and potentially even outperform that of the DBP based meth-
ods [27]. Therefore, in this work we focus only on NIS-based
transmission schemes.

III. EXPERIMENTAL SETUP OF 10 GBD OFDM
NIS-BASED TRANSMISSION

To demonstrate the possibility of encoding and detecting
information using the signal’s nonlinear spectrum we have
designed a 10 Gbd NIS-based system in burst mode and
experimentally evaluated its transmission performance over
transoceanic distances.

A. Tx DSP and Setup

The schematic of the experimental setup, together with the
Tx, Rx DSP are shown in the Fig. 3(a)—(c), where the green
blocks indicate the required additional DSP blocks for NIS-
based transmission. For each burst and each predefined launch
power, a 10 Gbd OFDM waveform (one OFDM symbol, 6 ns
of duration, no cyclic prefix) was generated offline using an
IFFT (size of 128), where 60 subcarriers were filled with QPSK

data and the remaining subcarriers were set to 0 for oversam-
pling purposes. Guard bands of 12 ns were added to both the
beginning and the end of the OFDM symbol to avoid inter-burst
interference effects, giving a total burst period of 30 ns (the bit-
rate is 4 Gb/s). The generated signal was then normalized using
the lossless path average NLSE model for optical links with
lumped amplification [28]. The resulting signal was upsampled
(by a factor of 10 times) before being fed into the INFT block.
Herein, the INFT maps the linear spectrum of the input signal
to the continuous part of the nonlinear spectrum of the output
signal [20], [27]. Since the OFDM waveform was used as the
input signal of the INFT block, the continuous part of the non-
linear spectrum of the output signal was directly modulated by
QPSK data. Upsampling is necessary here to reduce the error
associated with the INFT. Finally, the generated signal after
INFT was downsampled to 25 Gs/s before being loaded into
the arbitrary waveform generator with a DAC providing around
5.6 bits of effective resolution (over a bandwidth of 12.5 GHz)
and fed through a linear amplifier to drive an IQ modulator.

B. Recirculating Loop

The transmission experiment used a re-circulating loop con-
sisting of a4 x 102 km span single mode Sterlite OH-LITE (E)
fiber (~17.5 ps/nm.km of dispersion, ~19 dB insertion losses
per span of 102 km) and a gain flattening filter (leveller), acting
as a bandpass filter. In addition to the channel under test, we
used ten loading channels with ~5 nm guard band in each side.
The signals were amplified in EDFAs with a noise figure of
6 dB. At the receiver, the channel under test was filtered and
amplified (using a low-gain EDFA) before being coherently de-
tected using a real-time 80 Gs/s sampling oscilloscope. Both the
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transmitter laser and local oscillator were external cavity lasers
each with a linewidth of ~100 kHz.

C. Rx DSP

The Rx DSP (see Fig. 3(c)) firstly used a training symbol
to perform both timing synchronization and frequency offset
compensation. The signal was then separated into a number of
discrete 30 ns bursts before being normalised according to the
lossless path averaged model [28]. The normalized power was
adjusted to be slightly different from the actual launch power
to account for the power variation during each re-circulation
resulting from wavelength dependent gain-loss imperfections.
After normalization, the NFT was performed to recover the
continuous part of signal’s nonlinear spectrum and single-tap
dispersion compensation was performed to remove the effects
of both the chromatic dispersion and fibre nonlinearity:

rE) = r(z,€) - 67 @)

Next, the IFFT was performed to recover the transmitted time
domain signal and then the guard bands were removed and the
resulting signal was fed into the traditional OFDM receiver. For
the NIS-based systems, synchronization error (A¢) will result in
a frequency dependent phase shift in the NFD:

r(g(t — At), &) = e % r(g(t), €), 3)

where r(g(1), &) is the continuous part of the nonlinear spectrum
of the signal ¢(7).

Since the synchronization error is constant for all bursts in
one frame, the resulting frequency dependent phase shift can
be readily corrected through a single-tap channel estimation
and equalization using training sequences. Herein, the first two
bursts were used for channel estimation (see Fig. 3(e)). The
impact of laser phase noise was compensated after channel es-
timation using four pilot subcarriers in each OFDM burst. We
corrected for the common phase error only, the impact of which
on the NIS-based systems is similar to those of the conventional
linear transmission schemes. Finally, the system performance
was evaluated directly from the BER by processing ten recorded
traces (each with 100 bursts), and the results are expressed as a
Q factor.

IV. SIMULATION RESULTS

In general, NIS-based transmission scheme can be under-
stood as a nonlinear pre-distortion technique. At the transmitter,
the linear spectrum of an encoded signal is mapped to the con-
tinuous part of the nonlinear spectrum of another signal to be
transmitted over the fiber link [27], [28]. As this mapping op-
eration is nonlinear, the generated signal via the INFT block
strongly depends on the input’s signal power. In Fig. 4, different
output signals of the INFT block given the same input OFDM
waveform with different power levels are compared. It can be
seen that, as the input signal power is increased, the amount of
signal’s energy contained in the decaying tail generated after
INFT also increases. This long decaying tail tightens the DAC
resolution requirement in NIS-based transmission systems. In
this work, we assume that the signal’s energy contained in the
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tail generated after INFT is small enough and can be eliminated
when defining the effective burst power in following discus-
sions. Herein, the effective burst power is defined as the ratio of
the total signal energy within a burst to the initial signal duration
(before INFT, 6 ns).

One important property of the nonlinear spectrum is that the
discrete part is absent and the continuous part converges to the
ordinary Fourier transform at low power values [20], [22], [27].
As a result, at low signal power values, the traditional receiver
(without NFT and IFFT blocks, Fig. 3(c)) can also be used
in NIS-based transmissions. However, as the signal power is
increased the continuous part of the signal’s nonlinear spectrum
diverges to its linear counterpart leading to performance penalty
if the conventional receiver (without NFT) is employed.

Extensive simulations were performed to understand the per-
formance penalty associated with a conventional OFDM re-
ceiver and the finite DAC resolution. In simulation, the system
performance was evaluated through error vector magnitude and
then was converted to Q-factor for comparison purposes. In
Fig. 5 the back-to-back performances of NIS-based 10 Gbd
OFDM systems sampled at 25 Gs/s with and without NFT re-
ceivers are compared. To eliminate the impact of DAC resolu-
tion, we first considered a high DAC resolution of 10 bits. In
Fig. 5, if the NFT receiver is employed (blue curve with circle
marker), only slight performance degradation (~2 dB) is ob-
served if the burst power is increased from —13 up to —1 dBm.
The performance degradation is due the fact that increasing the
signal power leads to a longer decaying tail, a part of which
falls outside the burst duration of 30 ns and is truncated. When
the conventional receiver (without NFT) is employed, the per-
formance penalty significantly increases with the increasing of
the burst power. This clearly indicates that the NFT receiver is
mandatory for the NIS-based systems operating with medium-
to-high signal power. The received constellations of NIS-based
10 Gbd OFDM systems with and without NFT receiver are
compared in Fig. 6, for a burst power of —3 dBm.

If the DAC resolution is reduced to a practical value of 5
bits, a significant performance penalty can be observed, ranging
from ~5 dB for —13 dBm burst to ~8 dB for a —1 dBm burst.
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Fig. 6. Received constellations of NIS-based 10 Gbd OFDM system at 25
Gs/s with and without NFT receiver, Pburst = —3 dBm.

This result clearly indicates that the performance penalty due
to a low DAC resolution increases with the growth of the burst
power. We believe that this is due to the fact that a higher DAC
resolution is required to preserve the longer decaying tail when
the burst power is increased.

The performances of NIS-based 10 Gbd OFDM systems as
functions of the DAC resolution for different burst power values
are plotted in Fig. 7. In this figure the required DAC resolutions
for negligible performance penalty are 6, 7 and 8 bits for Pburst
=-10, -5 and -3 dBm, respectively.

V. EXPERIMENTAL RESULTS
A. Back-to-Back Performance

The performances of OFDM systems with and without NIS as
functions of OSNR for different burst power values are given in
Fig. 8, where closed symbols and solid lines with open symbols
depict the experimental and simulation results, respectively. At
a low burst power value the OSNR penalty compared with the
conventional OFDM system (with the same parameters) is as
small as 1 dB. However, the OSNR penalty of the NIS-based
system increases quickly with the rise of the burst power. At
a high burst power value of —2 dBm, a BER level of 1073
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Fig. 8.  Back-to-back performances of 10 Gbd OFDM and NIS-based OFDM
systems for different burst power values. Closed symbols are experimental data.
The solid lines with open symbols are simulation results, the DAC resolution
was set to 5 bits.

(Q~9.8 dB) could not be achieved. As discussed above, we
attribute this phenomenon to the fact that a higher burst power
requires a higher DAC resolution due to the longer decaying
tail. As a result, with a fixed DAC resolution (~5.6 bits) and a
fixed guard interval duration, the OSNR penalty increases with
the rise of the burst power.

This phenomenon can also be confirmed by simulation results
presented in Fig. 8, where the OSNR penalty increases signifi-
cantly with the rise of the burst power (the effective DAC reso-
lution was fixed at 5 bits). In comparison to simulation results
obtained with ideal Rx and Tx with a limited DAC resolution as
the only impairment, the implementation penalty also increases
with the rise of the burst power. This result clearly suggests that
NIS-based systems are also very sensitive to other transceiver
imperfections such as Rx ADC resolution, DAC, ADC transfer
functions and laser phase noises. As a result, novel and effective
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Fig. 9. Constellation diagrams at the burst power of —5 dBm after 4080 km
of transmission distance, (a)—before dispersion removal, (b)—before channel
estimation, (c)—before phase noise compensation, (d)—final constellation after
phase noise compensation.

transceivers’ equalization techniques are desirable to minimize
the back-to back implementation penalty. This is an important
topic for future research.

B. Experimental Transmission Performance

Typical constellation diagrams after several receiver DSP
blocks, including single-tap dispersion removal, channel estima-
tion, and phase noise estimation, are presented in Fig. 9 for the
burst power of -5 dBm after a distance of 4080 km. At each step,
the constellation was achieved by feeding the obtained signal
directly into the conventional OFDM receiver. After the single
tap dispersion removal, a clear open “eye” can be observed (see
Fig. 9((b)). Next, channel estimation was performed to remove
the frequency dependent phase-shift due to synchronization er-
ror. The obtained constellation, Fig. 9(c), clearly shows that the
synchronization error induced phase-shift was effectively re-
moved. The final constellation diagram, Fig. 9(d), indicates that
the transmitted QPSK data was successfully recovered.

The performance of the conventional OFDM system (without
NFTs at both Tx and Rx) and the NIS-based OFDM system are
compared in Fig. 10 for the 4080 km distance. If the receiver
normalized power was set to be equal to the launch power, the
optimum Q-factor was found to be ~9 dB (blue curve), which
is ~0.9 dB worse than the conventional OFDM system. How-
ever, by adjusting the normalized power an additional 1 dB gain
in Q-factor can be achieved (red curve), which is comparable
to the conventional OFDM system. At the launch power of
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—5 dBm, the optimum receiver normalised power was
—6.2 dBm. The power correction value in this case was —1.2 dB.
We attribute this phenomenon to the gain-loss imperfection of
the loop due to non-optimized setting of the leveller and EDFA
gain reduction caused by the accumulation of ASE noise dur-
ing the recirculation. The gain-loss imperfection leads to the
power variation after each re-circulating loop, degrading the ac-
curacy of the nonlinear pre-distortion technique. In the highly
nonlinear regime, by optimizing the normalized power the NIS-
based OFDM system shows up to 2 dB performance advantage
over the conventional OFDM system, and 1 dB increase in the
nonlinear threshold. We believe that the low DAC resolution
hinders the observation of further performance benefit of NIS-
based system, although parametric noise amplification [34] and
the finite guard interval may also contribute to performance
degradation.

The optimum Q-factors as functions of transmission dis-
tance is depicted in Fig. 11, for NIS-based and the conventional



LE et al.: DEMONSTRATION OF NONLINEAR INVERSE SYNTHESIS TRANSMISSION OVER TRANSOCEANIC DISTANCES

OFDM systems. We see equal performance over both systems to
~5700 km, where the conventional system starts to outperform
the NIS-based system. Again this is thought to be due to the rea-
sons outlined above. After propagation over 18 loops (7344 km)
the BER obtained (2.1 x 10~2) was below 20% FEC threshold.
This result indicates the record distance reach of any NFT-based
systems up date. Taking into account the expected uncertainty
in measured Q factor from the finite sample size, we believe
that these results are close to those observed for conventional
OFDM.

VI. CONCLUSION

We have experimentally demonstrated the record distance
reach (7344 km at BER = 2.1 x 1072) of any NFT-based
systems by encoding and detecting information on/from the
continuous part of the nonlinear signal spectrum using the NIS-
based transmission ideology [20], [27], [28]. In comparison
with the conventional system, the NIS-based system shows up
to 2 dB performance gain in the highly nonlinear regime. How-
ever, the overall system performance benefit is hindered by the
transceiver’s imperfections, the low DAC resolution and other
system design’s constrains, leaving good potential for further
system performance improvement using NFT technique. These
preliminary results are very close to conventional OFDM, and
we anticipate that addressing the system imperfections outlined
above will enable net performance gains to be observed when
comparing NIS and conventional transmission schemes. Along-
side with this, our results have also revealed the potential of
using the continuous nonlinear spectrum part for the transmis-
sion purposes.
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