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Abstract: Theory of the energy evolution in laser resonators with saturated 
gain and non-saturated loss is revisited. An explicit analytical expression for 
the output energy/average power in terms of the gain saturation energy, 
cavity loss and small signal gain parameters is derived for a ring cavity 
configuration. 
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1. Introduction 

There exist a wide variety of laser systems that cater to a range of applications in very diverse 
areas of science and industry. However, despite multiplicity of configurations, material bases 
and applications, the underlying operational and design principles appear to be the same from 
one device to another, and, thus, similar basic models can be applied to rather different 
families of lasers [1]. Performance and operation of many modern high power/energy 
advanced lasers are determined by a rather complex interplay between a number of physical 
effects that include gain, loss, dispersion and nonlinearity. Effects of saturation, the spectral 
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dependence of gain and loss, and the nonlinear dynamics of radiation in the laser cavity make 
such lasers even more complex physical systems. Therefore, design optimization and 
modeling of such lasers presents a multi-parametric nonlinear problem and any analytical or 
semi-analytical results are very important to reduce the number of optimization parameters 
and calibrate the model coefficients for comparison with experimental data. 

Spatial evolution of the average power in CW lasers or pulse energy in pulsed lasers along 
the cavity is one of the important characteristics of system operation. Spatial dynamics of the 
energy/average power in a typical laser system is defined by the effects of gain provided by an 
amplifying medium; cavity losses that include both distributed and point losses, and effects of 
saturation of gain and loss. Note that in general, gain and loss can be frequency dependent 
either due to the spectral dependence of the gain/loss or as a result of optical filtering. Of 
particular interest are mathematical models describing high power mode-locked laser systems 
that present examples of nonlinear dissipative systems in which stable structures (dissipative 
solitons) emerge as a result of the balance between effects of gain/loss, dispersion and 
nonlinearity. Evidently, due to complex nature of such systems, there is a variety of possible 
mechanisms of formation of stable pulses. Note that typically, in many practical systems, the 
effect of the spectral dependence of the gain is small compared to other effects and does not 
play a critical role in the generation of stable pulses. The effect of the saturable absorber, on 
the contrary, is important for self-starting of the mode-locking. However, despite being of 
critical importance for generation of coherent structures from noise, in some systems and 
operational regimes, the saturated loss is not effectively involved in stabilization of pulse 
parameters at high energies. In this work we consider an energy balance equation in systems 
with dispersion, instantaneous nonlinearity (e.g. Kerr-type nonlinearity), saturated gain and 
non-saturated loss. The derived analytical results provide useful insight into the evolution of 
the energy along the cavity. However, we would like to stress the limitations of the 
considered, relatively simple mathematical model. Obviously, in practical laser schemes, 
especially at high-powers, additional physical constraints such as e.g. thermal effects, optical 
damage limits, pumping source brightness, mode overlap and others have to be taken into 
account. Note also, that our results are directly relevant to the mode-locking and/or Q-
switched fibre laser systems, but the derived theory is rather general and can be applied in a 
variety of laser applications. 

We consider here the master model that is often called either the nonlinear Schrödinger 
equation with dissipative terms [2–5] or the Ginzburg-Landau equations [6–16]. In the context 
of laser applications this model describes the temporal and longitudinal evolution of the 
slowly varying optical field envelope A(z,t) along the cavity medium (e.g. the active/passive 
fiber segments) in which the effects of point laser system elements (e.g. splicing loss) might 
be included as the corresponding distributed effects: 

 

 (1) 

 

 

Here the dispersive terms include higher-order dispersion expressed through derivatives of the 
propagation constant β(ω) with respect of omega, γ is the nonlinearity parameter, g is the 
power dependent (saturated) gain and α is an effective distributed loss. The gain is saturated in 
the following manner 
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Here TR = 2nL/c is a round trip time, a homogeneous broadening is assumed, 0g is a small 
signal gain, satP  is the saturation power (that in the context of fibre lasers is a product of the 
saturation intensity by the effective mode area) – of the signal power passing through the 
amplifying medium that saturates gain down to half of the small-signal gain 0g . Here 
saturation effects are intentionally presented either through the pulse energy or using the 
average power, to reflect the fact that the obtained results can be applied both in the context of 
CW lasers (when it is more appropriate to use average power) and in pulsed lasers. Note that 
the model (1) does not include terms responsible for the action of saturable absorber and for 
in-cavity filtering and in this sense is less general then the master equation introduced by Haus 
[6,7] or the model considered in [8] based on using the so-called ABCD approach [1]. In 
modern powerful laser systems the effects of nonlinearity and dispersion per cavity round trip 
might not be small resulting in a strong spectral and temporal evolution during pulse 
propagation through the laser resonator. Generation of laser radiation is determined by the 
complex interactions of different physical effects described by the master Eq. (1), with 
dispersion and Kerr nonlinearity playing critical roles. However, dispersive and nonlinear 
effects in Eq. (1) do not impact the energy of the radiation. In other terms, without the 
gain/loss dissipative term Eq. (1) is of the Hamiltonian type and the total energy is conserved. 
Evolution of the pulse energy (average power) along the amplifying medium with an effective 
distributed loss is governed by the ordinary differential equation that can be applied to both 
CW and pulsed lasers: 

 0

1 / sat

g EdE E
dz E E

α= −
+

  (2) 

 

Note that this equation has been well studied in context of CW lasers and the general solution 
has been already described in the literature [1] and often is called a Rigrod analysis [17]. In 
this work we revisit these results in the context of specific cavity configurations to derive an 
analytical expression linking the output energy/average power and the cavity gain/loss 
parameters. Note that such exact energy evolution analysis, in general, cannot be applied in 
models used in [6–8]. Once more, it is important to point out that in many laser systems, the 
saturable absorber is critically important for initiation of generation, but does not have strong 
impact on the shaping of the generated pulses and the main features of the energy evolution 
along the cavity. We would like to point out that the obtained results are not directly 
applicable in systems where strong filtering is playing important role in shaping the generated 
laser pulse, for instance as in [18]. Note also, that our results are mostly applied in the 
situations when generated radiation propagates in one direction (e.g. ring cavity), however, 
the derived results can be also used under certain assumptions in more general configurations. 
Without loss of generality, we will refer in what follows to the pulse energy, having in mind 
that similar results can be derived for the averaged power in CW laser systems. First of all, it 
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Here 0z is a conserved quantity (integral of motion) of Eq. (1) that is determined by the initial 
value of the energy at z = 0. Evidently, in the limit 0α →  Eq. (3) diverges into the known 
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relation: 0 0ln 1 ( )
sat sat

E E
g z z

E E
+ + = −  [1]. The Eq. (3) allows us to express energy at any point 

along the cavity through the accumulated gain and the initial energy: 
1 1

0 0
( ) ( ) (0) (0)[1 (1 )] exp[( )( )] ( ) [1 (1 )] .s s

sat sat sat sat

E z E z E Es g z z G z s
E E E E

α
− −

− + = − − = × − +  

It is convenient to introduce a function of two variables
1

( ) [1 ] s
sf x x s sx

−
= × − −  with s and x 

varying within the intervals 1
0 , 0 1.

s
x s

s
−

< < < < The function ( )sf x  has an 

evident limit            The inverse function 1( )sf x−  can be easily 
tabulated and used in numerical simulations in a way similar to any elementary functions. 
Figure 1 shows typical behaviour of the inverse function 1( )sf y− with growing argument y for 
different values of the parameter s. It is important to note that the inverse function is 
calculated and tabulated once and forever and should not be recalculated each time it appears 
in equations. 

 

Fig. 1. The inverse function 1( )sx f y−=  for different values of the parameter s. 

Evolution of the energy along the cavity then can be presented in a compact form: 
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This expression can be used to present the balance of gain/loss in different configurations 
of the laser cavity. It is particular useful for the analysis of the energy mapping problem – 
evolution of the energy after one round trip and radiation shedding at the output coupler. As 
an example, we consider a Fabry-Perot cavity scheme where the action of the reflectors at the 
edges of the cavity is described by the transformation 1( ) ( )E L R E L− +=  and 2(0) (0)E R E+ −= . 
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mirrors (e.g. fibre Bragg gratings in the case of fibre lasers) with the reflectivities 1 2,R R  in a 
compact form: 

 1 1
2 1

(0) (0){ [ ( ( ))]}s s s s
sat sat

E ER f G f R f G f
E E

− −= ×   (4) 

Here ( )G G L=  is one pass cavity gain. The transcendent Eq. (4) is not just a mathematical 
trick allowing to present energy evolution in the apparently closed way. This presentation 
greatly simplifies calculations of the energy dependence on 1 2 0, , , , /satG R R E s gα=  as a 
solution of the mapping problem (4). In the limit / 1satE E <<  the mapping Eq. (4) can be 
resolved analytically leading to the well-known laser resonator 
formula 1 2 0exp[2( ) ] 1R R g Lα× × − = . 

For a ring laser configuration (1 ) ( )outE R E L= −  and (0) ( )E R E L= , where L is a length of 
the ring cavity. In this case, one can derive an analytic expression linking laser output 
characteristic (energy or average power) with cavity and amplifying medium parameters: 

 

 

  (5) 

 

 

This compact analytical result connecting the key system and generated radiation 
characteristics can be used for calibration of parameters. Note that the analytical formula (5) is 
derived under assumption of unidirectional ring resonator and homogeneous broadening. In 
the limit 0α →  the expression reproduces the well-known formula [1]: 
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practically defined as the resonator length larger than a scale at which the in-cavity energy 
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Equation (5) can be re-written using an effective gain parameter,  

assuming a net gain in the cavity: exp[ ] 1R G× Δ ≥  (this, for a given reflectivity restricts 
interval of allowed GΔ  to exp[ ] 1 /G RΔ ≥  and vice versa), and a loss/small gain ratio 
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Equation (5) is the key result of the work. This equation provides an analytic expression 

for the output energy/power as a function of laser system and amplifying medium parameters. 
It is seen that a large effective gain means that energy reaches an asymptotic value in one 
transit, mathematically this corresponds to the limit 1s GΔ >> , then the exponential terms can 
be neglected and the output energy is determined by the asymptotic value. Figures 2-4 
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illustrate Eq. (6) presenting the normalized energy / satE E  as a function of ,s GΔ  
( 10[ ] 10 log ( ) 4.343GG dB e GΔΔ = × = ×Δ ) and R. 

 

Fig. 2. Contour plot of the normalized energy / satE E  in the plane (gain, R); here s = 0.03. 

Figure 2 presents dependence of the output energy on R and effective gain. Crosses of the 
horizontal lines (corresponding to fixed reflectivity) with the energy isolines (constant energy) 
show how much effective gain is needed to reach a certain output energy for a given R. For 
instance, it is seen that for reflectivity R in the range between 0.8 and 1, after certain value, 
further growth of the effective gain does not increase the output energy. The vertical tangent 
to the curve of constant output energy determines a minimal effective gain required to reach 
such output energy and a reflectivity R that is optimal (provides for lasing with minimal 
effective gain). Vertical lines corresponding to a fixed effective gain show that the same 
output energy can be achieved for two values of R. 

 

Fig. 3. Normalized energy / satE E  as a function of an effective gain for different R and s. 
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Fig. 4. Normalized energy / satE E  vs. the reflectivity R for different gains and s. 

Figure 3 illustrates that in the limit ( ln ) 1s G RΔ + < ,                   
(blue and green dashed lines); while in the opposite limit 1s GΔ >>  (three first lines from the 
bottom): 

 

 

and this limit can be also seen in Fig. 4 (yellow dashed and green dot-dashed lines). An 
important result from Fig. 4 is that there are optimal out-coupling reflectivities R that provide 
the maximum output energy for a given effective gain. It is seen from Fig. 4 also that 
performance is strongly affected by the loss/gain parameter 0/s gα= . In particular, the 
optimal reflectivity R can be shifted from values close to 1 as on solid blue line to very small 
R as for dashed green and yellow. Therefore, the ratio of non-saturated cavity loss to the small 
gain (saturated at larger energies) is an important physical parameter that should be taken into 
account in the design of such lasers. 

Finally, note that a similar analytical expression can be derived for pulsed lasers based on 
the Fabry-Perot resonator with one highly reflective mirror ( 1 1R = ). The approximate 
expression for the energy at the location of the mirror for Fabry –Perot cavity is then the same 
as Eq. (5) with the following replacements: 22 ,L L R R→ → . 

In conclusion, the energy mapping in laser resonators with saturated gain and non-
saturated loss is examined. An analytical expression for the output energy/average power in 
terms of the gain saturation energy, cavity loss and small signal gain parameters is derived for 
a ring cavity configuration. The described approach is applicable to a wide range of CW and 
pulsed laser systems and can be used for reduction of the space of optimization parameters 
and/or for calibration of the model parameters against the measured system characteristics. 
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