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We propose a novel algorithm for the numerical computa-
tion of discrete eigenvalues in the Zakharov–Shabat prob-
lem. Our approach is based on contour integrals of the
nonlinear Fourier spectrum function in the complex plane
of the spectral parameter. The reliability and performance
of the new approach are examined in application to a
single eigenvalue, multiple eigenvalues, and the degenerate
breather’s multiple eigenvalue. We also study the impact
of additive white Gaussian noise on the stability of numeri-
cal eigenvalues computation. © 2018 Optical Society of
America
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The Zakharov–Shabat (ZS) spectral problem [1] has attracted a
lot of attention recently in the context of optical communica-
tions, see Refs. [2–4] and references therein. It is important for
various applications ranging from the design and fabrication of
fiber Bragg gratings [5] to solving nonlinear equations via the
so-called inverse scattering transform (IST)—original name for
the nonlinear Fourier transform (NFT). The importance of the
ZS problem is greatly enhanced by its relation to the integra-
bility of the nonlinear Schrödinger equation (NLSE)—the
master model for nonlinear science with a number of appli-
cations in physics, biology, and engineering. Efficient numeri-
cal computation of the nonlinear spectra of the ZS problem
is therefore important for various applications. We consider
the case of the focusing NLSE, corresponding to anomalous
dispersion of the optical fiber, where the associated ZS prob-
lem becomes non-Hermitian. Importantly, the anomalous
dispersion NLSE supports the existence of bright solitons cor-
responding to discrete complex eigenvalues of the ZS prob-
lem [1].

The conventional ZS problem deals with the determination
of the NFT spectrum corresponding to a complex “potential”
q�τ� (e.g., optical signal), vanishing at τ → �∞. In general, for
the case of anomalous dispersion, the NFT spectrum consists
of a continuous part (a complex function of the real-valued

parameter ξ) and a discrete part (complex eigenvalues and
related additional parameters, the so-called norming constants).
The eigenvalues have a positive imaginary part and describe the
solitonic modes, while the continuous NFT spectrum refers to
the radiative components [1–3]. The ZS problem is defined as a
pair of coupled ordinary differential equations,

dϕ1

dτ
� −iξϕ1 � q�τ�ϕ2,

dϕ2

dτ
� −q��τ�ϕ1 � iξϕ2, (1)

written for two auxiliary functions ϕ1,2�τ, ξ�. To determine the
NFT spectrum, we need to study the particular solutions of the
ZS problem (1) fixed through their asymptotes at τ → −∞:
ϕ1�τ� → e−iξτ, ϕ2�τ� → 0. These special solutions of the ZS
problem are called Jost functions [1]. (It also is possible to deal
with Jost solutions fixed at τ → ∞ [2].) The ZS system involves
a (generally complex) spectral parameter ξ, playing, as was
noted before, the role of frequency. The core part of the
NFT—the spectral functions (scattering coefficients) associated
with our profile q�τ�—are defined through Jost solution
asymptotes at τ → ∞,

a�ξ� � lim
τ→�∞

ϕ1eiξτ, b�ξ� � lim
τ→�∞

ϕ2e−iξτ, (2)

and the continuous spectrum (reflection coefficient) r�ξ� is
given by the ratio r�ξ� � b�ξ�∕a�ξ� for real ξ. The zeros of
the spectral function a�ξ� in the upper half-plane of ξ represent
solitonic eigenvalues, and the norming constants in the case of
simple zeros are the residues of r�ξ� at its poles (if b is analytic).
For our purposes it is important that a�ξ� is an analytic func-
tion in the upper half-plane of ξ, while b�ξ� is analytic in the
region Iξ > 0 only if q�τ� has a finite support [6].

In this Letter we focus on the numerical computation of
discrete (solitonic) eigenvalues, i.e., on finding zeros of the
function a�ξ� from Eq. (2). The most common approach aim-
ing at that, among the NFT-related works, implies the use of
iterative methods [2,3,7], the spectral method, based on the
solution of block matrix eigenproblem [3], or the application
of specifically optimized grid search in the upper half-plane
of ξ [8]. However, these approaches are not always reliable
(e.g., in optical transmission applications the eigenvalues can be
considerably corrupted by the optical noise [2,9]) and possess
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some drawbacks described below. Here we apply the con-
tour integration method (the well-known Delves–Lyness zero-
search algorithm [10]) for eigenvalues’ evaluation that mitigates
some of the existing problems, especially in the case when the
eigenvalues are settled in close proximity to each other or
degenerate.

For the transmission applications, the discrete eigenvalues of
the ZS problem are often located inside a certain (usually
known a priory) area in the complex ξ-plane. In optical com-
munications, this zone in the complex ξ-plane can be defined
by the encoding alphabet [11] or can encompass “a band” in a
multiplexed NFT spectrum. We refer to this area as the region
of interest (ROI). The principal advantage of the proposed
method is that it locates all eigenvalues simultaneously, such that
its complexity weakly depends on the number of eigenvalues
inside the given ROI. The spectral and iterative methods do
not limit any area of the search by default, as in the grid search
approach. In contour integrals approach, instead of computing
the ZS problem solution (the a�ξ�-function) at each mesh node
using some sufficiently fine ROI grid (red stars in Fig. 1), we
just need to determine a�ξ� values for the points along the
boundary of ROI (green dots in Fig. 1). In contrast to iterative
algorithms, the performance of our method depends in a pre-
defined way on the ROI size or sampling interval, and it is not
affected by the accuracy of the initial guess for an eigenvalue.
The spectral method returns a lot of eigenvalues, while only a
few of them are true components of a discrete spectrum; there-
fore, this method requires additional processing with larger
complexity for expected higher accuracy. The contour integrals’
approach does not have this issue. These properties make the
contour integrals a viable tool for multieigenvalue NFT com-
munication [11–13].

An efficient method in implementing the contour integrals
for an analytic function zeros’ search was described in [10].
According to their work, to find the eigenvalues, we define
the set of contour integrals fspgPp�1

as

sp �
1

2πi

Z
C
ξp
a 0�ξ�
a�ξ� dξ �

XP
j�1

ξpj , p � 1…P, (3)

where C is a (simply connected) manually chosen contour in
the complex ξ-plane, enclosing our ROI, and the prime
designates the derivative with respect to ξ. The expression with
p � 0 gives the total number of eigenvalues P inside C ,
accounting for their multiplicity (if we have any degenerate
zeros). The evaluation of fspg allows deriving the so-called
Newton’s identities fσpgPp�1

,

σ1 � −
PP

j�1 ξj,

σ2 � ξ1ξ2 � ξ2ξ3 �…� ξP−1ξP ,

…

σP � �−1�Pξ1ξ2…ξP ,

(4)

which are linked to contour integrals sp as

s1 � σ1 � 0,
s2 � s1σ1 � 2σ2 � 0,

…
sN � sN−1σ1 �…� s1σN−1 � NσN � 0:

(5)

This system of equations can be solved recurrently using the
values of σp obtained in the previous iteration, as follows:

σp �
1

p

�
sp �

Xp−1
j�1

sjσp−j

�
, p � 1…P: (6)

The same σp-s are (up to a sign) the Vieta’s formulae for the
following polynomial:

M�z� � zP � σ1zP−1 � σ2zP−2 �…� σP−1z � σP: (7)

The polynomial M �z� has exactly the same zeros as the initial
function a�ξ�. Therefore, using any polynomial root-finding
technique, the desired set of eigenvalues fξjgPj�1

can be found.
The promising feature of the presented approach is its

intuitive stability: all eigenvalues can be located inside the de-
sired ROI, while all spurious eigenvalues arising from the pres-
ence of either optical noise or numerical imperfections,
typically appear outside the ROI and thus can be readily elim-
inated. Note also that the iterative and grid search algorithms
cannot distinguish the simple and multiple zeros of a function
unless additional procedures are embedded into the respective
root-finding algorithm, though even in that case the algorithm
can fail to produce the correct result. This might be especially
important for NFT-based communication schemes operating
with higher-multiplicity eigenvalues [14]. The contour inte-
grals’ approach is free from the aforementioned problems: it
evaluates the eigenvalues according to their multiplicity and
is not affected by how close the eigenvalues are.

We specifically stress the advantage of the proposed numeri-
cal algorithm in terms of the computational complexity (the
estimated number of elementary operations involved).
Compared to the grid search, using the notations of Fig. 1 with
Δξ being a length of subinterval along the integration contour
and aROI, and bROI being (rectangular) ROI dimensions,
the complexity of the contour integrals’ method is
O�2�aROI � bROI�∕Δξ · N ZS�, while for the grid search the
complexity isO�aROIbROI∕Δξ · N ZS�. (N ZS here is the number
of operation to solve Eq. (1) for a single value of ξ.) This re-
duction can be substantial for a large ROI or a dense grid. We
note that the numerical error of the contour integrals’ approach
is inversely proportional to the distance between the boundaries
of ROI and the nearest zero [10]. So, it is possible to improve
the contour integrals’ approach accuracy by the larger
factor than grid search improvement gaining less penalty in
complexity. When using the additional iterative refinement
to reach the acceptable eigenvalue accuracy, as it was done
in Refs. [6,8], we need to perform O�aROIbROI∕Δξ · N ZS ·
PN iter� operations. The iterative algorithm, implemented
alone, requires O�N ZS · PN iter� operations, where N iter is the
number of steps to reach the desired zero with a given accuracy.

Fig. 1. Concepts of grid search and contour integrals for eigenvalues
computation in the ξ-plane.
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But when we have an insufficiently accurate initial guess, the
number of required iterative steps N iter can be dramatically
large, going to infinity when the algorithm cannot converge.
The spectral method has complexity O�N 3� for N -sample
signal, and it requires additional processing with unpredictable
complexity. The conventional ZS problem solution methods
require O�N 2� [3,15], though the spectral method requests
rougher sampling for the same level of accuracy. Finally, we
note that our root-finding method can be straightforwardly
paired with the fast NFT method [7], which reduces the com-
plexity of signal processing, and of the eigenvalues’ search in
our case.

The main parameter that affects the accuracy of a NFT
method is the temporal discretization step Δτ. Having in mind
the optical communications application, we test the contour
integrals’ approach using the sequence of profiles with ran-
domly chosen eigenvalues from the given constellations that
were suggested for NFT-based transmission [16]. Here we
use two kinds of constellations depicted in the inset of Fig. 3.

We examine the performance of the contour integrals’ ap-
proach for single solitons, two-eigenvalue and four-eigenvalue
profiles. We use the Darboux method [4] to generate such
states with the arbitrary chosen norming constants and
compute the respective eigenvalue portrait in the perfect
back-to-back scenario (deterministic case, Fig. 2) and in
back-to-back adding a white Gaussian noise to the profile in
the temporal domain (Fig. 3). As a metric of computational
accuracy (for the computed eigenvalue ξ from the initial one
ξ0), we use an error vector magnitude (EVM) defined as
EVM2 � hjξ − ξ0j2i∕hjξ0j2i, where hi designates the averaging
over the sequence of profiles and over eigenvalues in the pro-
files. The normalization over the mean value of constellation
points appears after centering of the constellation diagram. For
solving the ZS problem we use the popular Bofetta–Osborne
method [8,15], known to have second-order accuracy and often
superlative performance compared to other options [6]. For the
strongly decaying signals used on our work we truncate them
when jq�τ�j is close to zero. The signal is presented as a set
of N samples at the successive equidistant time moments:
q�τm� � qm for τm lying inside the symmetric finite interval

�−τN∕2, τN∕2	, sampled with step size Δτ. The discrete ana-
logues of Jost functions, ϕ1,2�τ�, are fixed at the left edge
of the interval: Φ�−τN∕2� � �ϕ1�−τN∕2�,ϕ2�−τN∕2��T �
�eiξτN∕2 , 0�T , and the τ-evolution is performed by using the
transfer matrix method [6]:Φ�τm�1� � TmΦ�τm�. In our case,
we employ the Bofetta–Osborne transfer matrix Tm [6,15].
Contour integrals sp are computed using the trapezoidal rule
along the contour. However, we notice that the error of the
ZS problem solution (a�ξ� evaluation at each ξ) is O�Δτ2�,
while the contour integration is carried out inside the spectral
domain giving the spectral error of the order of O�Δξ2�, such
that choosing the consistent number of subintervals along the
contour requires some further study. The back-to-back tests are
performed for different temporal domain discretization step
Δτ, and the tests for noise-corrupted profiles are performed
studying the accuracy in dependence on the signal-to-noise
ratio (SNR), defined as a fraction of signal and noise powers,
irrelatively of the solitonic nature of our signals. The SNR value
was altered through adding white Gaussian noise with varying
noise power in the time domain.

In Figs. 2 and 3 we predictably observe the reduction of
EVM (i.e., of the method’s error value) with the decrease of
discretization step Δτ and with the increase of SNR. By chang-
ing the contour sampling (Δξ), we can manipulate the numeri-
cal accuracy of the contour integrals’ approach and get
advantage comparably to the iterative method. The grid search
and spectral methods display a higher error. The accuracy is
typically better for the eigenvalues located along the imaginary
axis (the constellation, corresponding to the filled circles in the
inset of Fig. 3). The number of eigenvalues slightly influences
the value of numerical error. One of the advantages of the con-
tour integrals’ approach is its capability to easily evaluate a de-
generate eigenvalue. We demonstrate this on the example of the
degenerate breather [17]: a limiting case of a two-eigenvalue
soliton, when the eigenvalues approach each other. In the case
of purely imaginary degenerate eigenvalue ξ � ix, we can use
the profile given in [17]

qdeg�τ� �
8ix�2τx sinh�2xτ� − cosh�2xτ��

8x2τ2 � cosh�4xτ� � 1
: (8)

We expect to get two equal eigenvalues from the numerical
algorithms, and it would mean that a�ξ� has a double zero
at that point. We observe that similarly to the nondegenerate

Fig. 2. EVM2 for noiseless profiles with different number of eigen-
values, contour sampling Δξ, and numerical method with varying Δτ.
Results for the spectral method correspond to N � 51.

Fig. 3. EVM2 evaluation for different constellations (circles—along
the imaginary axis, squares—symmetrically around the imaginary axis)
for a single eigenvalue and a four-eigenvalue solution in dependence
on SNR (temporal domain is sampled with Δτ � 0.007, contour is
sampled with Δξ � 0.0125).
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case, the accuracy of grid search is worse than that for the iter-
ative and contour integral approaches (see Fig. 4). Decreasing
Δξ, we can improve the accuracy for both grid search and
contour integral algorithms. The error for contour integrals is
generally smaller and degrades faster with the increase of 1∕Δτ
than the error for the iterative algorithm.

The actual behavior of the contour integrals and iterative
methods for the degenerate eigenvalues search is compared
in Fig. 5. (The results for all eigenvalues are given in the
coordinate system with the origin at the eigenvalue, the red
square.) None of the used numerical methods locate both
eigenvalues at exactly the same point even for a noiseless profile.
The contour integrals’ approach gives the symmetrical points
around the actual eigenvalues, and their deviations are smaller
than those for the iterative method. The initial guess point also
influences the accuracy of the iterative method’s result (see the
scattered points in the lower part of Fig. 5).

We also studied the performance of the contour integrals’
approach using the degenerate breather with added noise, in
dependence on the SNR (Fig. 6). The results obtained are
similar to those presented in Fig. 3 earlier.

However, one of the important findings of our Letter is that
the accuracy of the eigenvalues’ computation increases with the
magnitude of the degenerate eigenvalue. The latter is related to
the signal power. Therefore, we anticipate that the applicability
of the contour integrals’ approach will be even more important

for the high-power signal processing. The paramount goal of
NFT processing is to operate in the highly nonlinear regime
where conventional linear techniques fail.

In this Letter we proposed and successfully tested a new
numerical method for finding soliton eigenvalues, based on
the computation of contour integrals. We demonstrated that
even in the presence of noise, the accuracy of the proposed
technique is only slightly affected by the number and multiplic-
ity of eigenvalues. This feature can result in a substantial benefit
for the NFT-based systems that use multiple eigenvalues or the
degenerate eigenvalues. The method shows a rather small com-
putational error for the degenerate and multieigenvalue “poten-
tials” in comparison to the conventional iterative methods.
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Fig. 4. EVM2 behavior for degenerate eigenvalue evaluation via dif-
ferent numerical method, using noiseless degenerate breather profile
Eq. (8), with the change of Δτ.

Fig. 5. Deviation of numerically evaluated eigenvalues of the
noiseless degenerate breather profile (ξ � 1.2i, Δτ � 0.023, Δξ �
0.0125), computed via contour integrals and via iterative method.

Fig. 6. EVM2 behavior for the contour integrals method applied for
the computation of eigenvalue corresponding to degenerate breather,
with the change of SNR (Δξ � 0.0125, Δτ � 0.003).
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