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We demonstrate that an interplay between diffraction and defocusing nonlinearity can support stable self-similar
plasmonic waves with a parabolic profile. Simplicity of a parabolic shape combined with the corresponding para-
bolic spatial phase distribution creates opportunities for controllable manipulation of plasmons through a combined
action of diffraction and nonlinearity. © 2013 Optical Society of America
OCIS codes: 190.4350, 240.6680, 130.4310, 190.5940.

Light localization and manipulation in plasmonic systems
beyond the diffraction limit offer many promising appli-
cations, including nanoantennas, biological and chemical
sensing, and nanolasers [1,2]. Functionality of plasmonic
devices depends on the ability to tune and control the
light propagation. Recently, plasmon dispersion engi-
neering in specifically designed waveguiding geometries
was intensively discussed as a prospective tool for a
passive control over the plasmon propagation, including
waveform shaping for plasmon lensing and nondiffraction
propagation [3–5], and plasmon nanofocusing in tapered
plasmonic waveguides [6–9]. Nonlinearity (focusing or
defocusing) might offer simple means for dynamic tuning
of plasmonic systems and plasmonic beam propagation
[10]. Nevertheless, nonlinear mechanisms of self-tuning
typically employed in optical fibers are dramatically sup-
pressed in plasmonic structures due to high losses [11,12].
However, using techniques similar to pulse manipulation
in fiber-optic tapers [13], it might be possible to compen-
sate effectively the losses in plasmonic systems [14]. In
particular, tapered plasmonic waveguides were suggested
for enhancing nonlinear effects and nonlinear self-
focusing of plasmonic beams [15]. In this Letter we
propose and explore an approach to create plasmonic
beams with special shapes using tapered waveguides
and nonlinear effects.
It is well established in fiber optics that the ability to

manipulate signals depends critically on availability of
the basic waveforms with simple shapes, e.g., square top-
flat, triangular, parabolic, and so on. Moreover, focusing
and defocusing nonlinearities provide power controlled
possibility for generation of a variety of temporal wave-
forms [16–20]. In particular, an interesting class of pulses
with a parabolic power distribution in the energy-
containing core and parabolic (in time) phase can propa-
gate in a fiber with normal group-velocity dispersion
[16–19]. Parabolic pulses propagate in a self-similar man-
ner holding certain relations between the varying pulse
power, pulse, and chirp.
We propose a type of plasmons with self-similar profile

propagating in nonlinear tapered waveguides, transfer-
ring the knowledge of the pulse manipulation from fiber
optics to plasmonics. We introduce the general theory

that can be used in a range of current and future plasmo-
nic systems, and also present numerical results for a
particular implementation with specific parameters.

We consider a tapered metal–dielectric–metal slot
waveguide filled with a nonlinear dielectric material
(see Fig. 1). We assume that the tapering angle ϕ is small,
so that the adiabatic approximation remains applicable.
Within this approximation, we consider that a variation
of the waveguide thickness along the propagation direc-
tion is negligible, dh∕dz ≪ 1. Such an approach allows
us to present the plasmonic field in the form of an
eigenmode envelope slowly varying with propagation,
H � A�z; y�H0�x; β� exp�i

R
βdz�, where A�z; y� is the

slowly varying complex amplitude, H0�x; β� is the local
plasmonic eigenmode with wavevector β�h� of slot wave-
guide with thickness h. Substituting this field representa-
tion into the wave equation, we derive the nonlinear
Schrodinger equation with the coefficients varying along
the propagation [11,15],

2iσ
∂A
∂z

� ∂2A

∂y2
I � iA

�
dσ
dz

� Γ
�
� NnljAj2A � 0; (1)

where the I � hE2
x0 � E2

z0ix is the effective beam inten-
sity, σ � hEx0Hy0ix is proportional to the overall energy
flow in the propagation direction per unit length, Γ �
hε00�E2

x0 � E2
z0�ix is the effective dissipation defined with

the mode structure, where ε00 is the imaginary part of the

Fig. 1. (Color online) (a) Schematic of a tapered metal–
dielectric–metal waveguide. (b) Schematic of the plasmonic
beam propagation in linear (dashed curve) and nonlinear (solid
curve) regimes.
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metal permittivity, and Nnl � hα�E2
x0 � E2

z0�2ix is the
effective nonlinear coefficient, α is the third-order non-
linear coefficient. Here the symbol h·ix corresponds to
the integration over the transverse coordinate x, and
Ex;y0 are the electric field components of the correspond-
ing eigenmode.
Effective losses �dσ∕dz� Γ� in Eq. (1) are composed

of two terms: Γ describes the electromagnetic damping
due to the field penetration into lossy metals, and dσ∕dz
appears solely due to waveguide tapering. Quantity
σ decreases with the slot width, so that the derivative
dσ∕dz is negative, hence, it compensates the material
losses in the taper. It is possible to show that the condi-
tion dσ∕dz� Γ � 0 describes the taper where the effec-
tive losses in the system are completely compensated by
tapering (although the total energy flow is still dissipat-
ing). We note that this condition can be fairly well
modeled by a straight taper with some critical angle ϕc
[14]. For ϕ > ϕc tapering leads to an effective gain of
plasmons employed for linear [7] and nonlinear [15]
nanofocusing.
Next, we search for solutions of Eq. (1) in the self-

similar form, A � a�z�u�z; ξ� exp�iC�z�y2�, where
ξ � y∕b�z�, and a, b, and C are functions describing the
amplitude, width, and phase chirp, respectively [18].
Substituting this form of complex amplitude A into
Eq. (1) and enforcing the following relations,

2σ
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dz

� 2IC �
�
dσ
dz

� Γ
�
� 0;

− 2σ
dC
dz

− 4IC2 −
Na2

b2
� 0;

− 2
σ

b
db
dz

� 4IC � 0; (2)

we finally derive a partial differential equation describ-
ing the evolution of parabolic plasmonic beams,

2iσ
∂u
∂z

� I

b2
∂2u

∂ξ2
� Nnlna2�ξ2 � juj2�u � 0: (3)

Equation (3) shows that the plasmonic beam with a para-
bolic profile A�z � 0� � a�0���1 − x2∕b�0�2��1∕2 preserves
its parabolic nature under the constrains Eq. (2), so
that its amplitude u remains self-similar with propaga-
tion, juj2 � �1 − ξ2�.
We illustrate the general theory by solving Eq. (1) by

the beam propagation method for realistic parameters.
For our simulations, we consider a nonlinear dielectric
with permittivity εd � 4.84, sandwiched between two
silver plates. As an example, we study the case of defo-
cusing nonlinearity with the nonlinear coefficient is
χ � −1.4 × 10−19 m2∕V2, and the light wavelength of
1550 nm [10]. We also consider a taper with the width
of 600 nm at z � 0 decreasing toward the tip (note that
in this case ϕc � 1.2°). We select a parabolic initial
beam profile, A�z � 0� � a�0���1 − x2∕b�0�2��1∕2, where
b�0� � 7.5 μm, a�0� is the initial beam amplitude; also
initial phase chirp C�0� � 0.
First, we study the plasmon propagation with a small

initial amplitude Hy�z � 0� � 0.77 A∕μm, in the linear

regime for both untapered (ϕ � 0) and tapered
(ϕ � 1.6°) waveguides. We observe that the self-similar
parabolic nature of the beams is preserved, which is evi-
dent from the beam cross-sections after the propagation
for 20 μm plotted in Figs. 2(a) and 2(b). Clearly, the
numerical simulations match well the analytical predic-
tions. We note that the field distortion and slight devia-
tion from the parabolic shape after some propagation
[see Figs. 2(a) and 2(b)] arise from the evolution of the
discontinuities at the boundaries of the initial parabolic
profile.

We observe that in a slot waveguide the amplitude de-
creases with propagation, in contrast to the amplitude
growth in the case of tapering, see Figs. 2(a) and 2(b).
We expect that the amplitude growth in the case of
nanofocusing in a tapered waveguide will enhance non-
linear response. In Fig. 4(a), we plot the corresponding
evolutions of the analytically obtained amplitude.

Next we study the plasmon propagation in the non-
linear regime, taking the larger input amplitude
Hy�z � 0� � 7.7 A∕μm, see Figs. 3(a) and 3(b). In this
case, the defocusing nonlinearity contributes to the beam
diffraction enhancing the beam broadening with propa-
gation. However, in the untapered waveguide, due to a
rapid amplitude decrease caused by losses in the system,
the nonlinear response decreases with the plasmon
propagation, and the beam propagation does not deviate
significantly form that observed in the linear regime. The
latter clearly follows from the evolution of the beam
cross-sections [see Fig. 2(a)] and the amplitude evolution
[see Fig. 4(a)].

In the case of tapering, the amplitude grows with
propagation resulting in the enhancement of the beam
defocusing, which manifests itself in a stronger beam
broadening with propagation, as shown in Figs. 2(b)
and 3(b). From the analysis of the corresponding beam
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Fig. 2. (Color online) Beam cross-sections for (a) untapered
and (b) tapered waveguides, respectively, after 20 μm of
propagation. Solid curves correspond to numerical results,
whereas dashed are our analytic predictions. Solid parabolic
curve corresponds to the input beam profile.
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Fig. 3. (Color online) Magnetic field profiles at the metal–
dielectric interface for (a) nonlinear untapered (ϕ � 0°) and
(b) nonlinear tapered (ϕ � 1.6°) waveguides. Field profiles
are plotted up-till few microns from the taper tip.
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cross-sections, we see that in the case of a nonlinear
taper both the beam width and amplitude are increased
significantly in comparison with the initial beam profile.
We notice that because of a strong beam broadening, in
the nonlinear case the corresponding amplitude growth
is weaker, see Fig. 4(a).
Finally, in order to prove the self-similar nature of the

plasmonic beams, we study the evolution of the product
a2b which should remain invariant to variations of the
input power. Figure 4(b) shows the evolution of the pro-
duct a2b for both tapered and untapered waveguides.
Clearly, this value remains independent of the initial
beam amplitude for both cases of tapering, which under-
lines the self-similar nature of the observed beams. We
would like to stress that though in the considered numer-
ical examples the manifestation of nonlinear effects are
limited by the propagation distance (or taper angle) and
chosen nonlinear parameters, the proposed plasmonic
beam shaping approach is more general and can be used
in low power nonlinear plasmonic structures [21].
In conclusion, we have predicted a type of self-similar

plasmonic beam with a parabolic profile. Such parabolic
plasmonswith the corresponding parabolic spatial phase
can be useful for controllable manipulation and proces-
sing of plasmonic waves and new design possibilities for
nanophotonic devices.
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Fig. 4. (Color online) (a) Evolution of the beam amplitude
with propagation obtained from the analytical theory for all stu-
died cases. The fields are normalized to the initial amplitude
a�0�. (b) Evolution of product a2b with propagation for tapered
and untapered waveguides, for different input amplitudes.
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