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Nonlinear combining and compression in multicore fibers
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We demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing)
energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber
(MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were
performed to determine the conditions of the most efficient coherent combining and compression of pulses
injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total
energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. A pulse compression
factor of about 720 can be obtained with a 19-core ring MCF.
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I. INTRODUCTION

The technology of optical multicore fibers (MCFs) is one
of the possible methods of implementing spatial-division
multiplexing (SDM) for future high-capacity optical com-
munications (see [1–9]). A brute-force solution of the ever-
growing capacity problem is to deploy multiple communica-
tion systems over parallel fibers in order to meet demand.
However, the use of multiple systems over parallel fibers will
lead to linearly scaled (with growing capacity) transmission
costs and power consumption. The SDM technology might
potentially enable a substantial reduction in cost per bit and
improved energy efficiency. At the moment, however, SDM
technology is in the research stage and major research activities
worldwide are exploring and testing various MCF designs
and this potentially disruptive new platform. In MCFs the
optical pathways are defined by an array of physically distinct
single-mode cores. In conventional optical communications,
the nonlinear effects that occur during signal propagation
in a fiber due to the proximity of other data-transmission
channels are typically undesirable. An obvious approach to
limiting cross-talk between spatial channels is to keep the fiber
cores well spaced. Laboratory experiments demonstrate the
feasibility of MCF technology for Pb/s fiber transmission [10].

The MCFs can also be used for very different, high-power
applications [11]. At high signal power and coupling among
cores, existing MCFs can be also considered as nonlinear
discrete physical systems, interesting both for fundamental
science [12,13] and for various potential practical applications
as nonlinear photonic devices [14,15]. With a large number of
cores, the continuous limit of discrete models in the form of
the well-known nonlinear Schrödinger (NLS) equations can be
used for a qualitative understanding of the system evolution. In
particular, for propagation in MCFs with the so-called anoma-
lous dispersion, the two- and three-dimensional NLS equations
describe the well-known effects of self-focusing and wave
collapse. Specifically, pulse compression and concentration of
the energy in a few fibers are expected (see [16] and references
therein).

When the energy is concentrated in a single core, the
problem becomes effectively one-dimensional and the collapse

stops. Hence, the discreteness must limit the the combining
and compression. The idea to use the collapse for pulse
compression in fiber arrays was proposed more then 20 years
ago [16], but to build the fiber arrays is an technological
challenge. A multicore fiber is an example of a fiber array with
a specific distribution of relatively low total number of cores
in which the proposed ideas can be implemented. This type of
nonlinear combining is substantially different from currently
popular schemes of linear beam combining [17] and can be
advantageous for some other energy-transfer and -delivery
applications.

In this paper we focus on a theoretical study of the key
underlying models and their mathematical properties. We
consider two types of MCF. In the first, the cores are placed as
a ring in the fiber cross section with each core interacting with
two neighbors only (see Fig. 1). In this case, the continuous
model is the two-dimensional (2D) nonlinear Schrödinger
equation.

As a second example, we examine hexagonal or square
positioning of the cores (2D core distribution, as shown in
Fig. 2) with each core interacting with several (more than two,
compared to the first case) neighbors, resulting in a stronger
nonlinear interaction. The continuous model in this situation
is the 3D NLS equation (NLSE). The evolution of NLSE
collapsing solutions, in both 2D and 3D, has been studied in
detail (see, for example, the review [18]). Using these classical
results, we can obtain insight into the optimization of the
energy-localization process.

The existence of such regimes was demonstrated in our
previous paper [19]. There it was shown that pulses initially
injected into all cores of a MCF were combined into a small
number of cores with simultaneous pulse compression. In
this paper, we evaluate through numerical modeling optimal
conditions for nonlinear pulse combining and compression in
multicore fibers. We study the process for MCF with different
core numbers which corresponds to an increase of collapse
range. We found a qualitative difference in compression and
combining for the ring and 2D configurations (hexagonal and
square lattices).

We demonstrate that the conditions for optimal combining
and compression are substantially different. In the 7-core ring
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FIG. 1. Schematic depiction of the considered MCF waveguide
with 7 (left) and 19 (right) cores arranged in a circle.

MCF we demonstrate a combining of 83.5% of energy into
a single core and pulse compression over 300 times. In the
19-core ring MCF we find regimes with 80% energy combining
and 720 times compression. Numerical modeling established
that a 7-core hexagonal MCF allowed us to combine 91.6% of
energy and to compress an optical pulse up to 256 times. In the
case of a 19-core hexagonal fiber, we find regimes providing
80.9% energy combining and compression with a factor
of 250.

We demonstrate that the 2D distribution of the cores across
the MCFs (see Fig. 2) increases the nonlinear interaction
between the channels, but this does not result in improvement
of the compression and combining efficiency compared to ring
configurations. However, 2D placement of the cores greatly
reduces the combining and compression length which can
be useful and is an important feature for practical device
design. Moreover, the combining and compression in a 2D
MCF is more robust and insensitive to variation of the initial
parameters. The analysis of the NLSE continuous limit helps
us to understand these results.

Finally, we summarize the results of the optimization for
the combining and compression, and we present the optimal
(within the considered schemes) MCF design. We also briefly
discuss the possible practical devices and their parameters.

II. BASIC EQUATIONS: SELF-FOCUSING AND COLLAPSE
IN 2D AND 3D

The electromagnetic field of optical pulses propagating
along MCF with 1D core distribution can be well approximated
by a superposition of modes,

E(x,y,z,t)

=
∑

k

Ak(z,t)Fk(x − xk,y − yk)ei(βkz−ωt) + c.c., (1)

FIG. 2. Schematic depiction of the considered multicore fiber
with hexagonal and square geometry and 2D numbering of cores.

where F gives the spatial mode structure and Ak is the complex
envelope of the electromagnetic field in core number k. In
the limit of a weak-coupling approximation one can derive a
system of equations for the envelopes Ak , i.e., the continuous-
discrete nonlinear Schrödinger equation [15],

i
∂Ak

∂z
= βk

2

2

∂2Ak

∂t2
− γk|Ak|2Ak −

N∑
m=1,m�=k

CkmAm, (2)

where k = 1, . . . ,N,βk
2 is the group-velocity dispersion

parameter for the mode k, γk is the Kerr parameter, and
the quantities Ckm are the coupling coefficients between the
cores. In such approximation mutual nonlinear interactions
are several orders of magnitude smaller in comparison with
self-nonlinearity, so they can be neglected [15,20,21].

The system (2) can be simplified for the case of identical
cores as discussed in [13]. Consider first the ring core
geometry (Fig. 1). Taking into account the interaction between
nearest neighbors only, we can simplify the analysis with the
assumption

Ck,k+1 = C > 0 (3)

and neglect all other coupling terms. We consider βk
2 = β2 <

0, γk = γ (k = 1, . . . ,N).
It is convenient to introduce normalized variables,

Ak = exp(i2z′)
√

C/γUk , where z′ = z/L, L = 1/C, t ′ =
t/T , T 2 = −β2/(2C). The dimensionless equations (omitting
the primes) read

i
∂Uk

∂z
= −∂2Uk

∂t2
− (Uk+1 − 2Uk + Uk−1) − |Uk|2Uk. (4)

In the case of a 2D core distribution we have the system for
the envelopes An,m [22],

i
∂An,m

∂z
= β2

2

∂2An,m

∂t2

−
∑

(k,l)�=(n,m)

Cn,m,k,lAk,l − γ |An,m|2An,m. (5)

Consider two different geometries, the square and hexagonal
lattices (Fig. 2). We introduce normalized envelopes An,m =
exp(i4z′)

√
C/γUn,m for the square geometry and An,m =

exp(i6z′)
√

C/γUn,m for hexagonal geometry, where C is the
same for all the neighboring core coupling coefficients (other
couplings may be neglected) and dimensionless variables z′ =
z/L, L = 1/C, and t ′ = t/T , T 2 = −β2/(2C), the same as
for the ring geometry. Finally, omitting the primes, the system
of NLSE takes the form [22]

i
∂Un,m

∂z
+ ∂2Un,m

∂t2
+ (CU )n,m + |Un,m|2Un,m = 0, (6)

where (CU )n,m is the linear coupling profile at site (n,m). For
the square and hexagonal core configurations, the combination
(CU )n,m is given by expression

(CU )sqr.
n,m = Un−1,m + Un+1,m + Un,m−1 + Un,m+1 − 4Un,m,

(CU )hex.
n,m = Un−1,m−1 + Un+1,m−1 + Un−2,m

+Un+2,m + Un−1,m+1 + Un+1,m+1 − 6Un,m.

(7)
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The continuous-discrete NLSEs (4) and (6) conserve the
total energy (normalized by C/γ ),

(1D) E =
N∑

k=1

∫ ∞

−∞
|Uk(z,t)|2dt,

(2D) E =
∑
n,m

∫ ∞

−∞
|Un,m(z,t)|2dt, (8)

and Hamiltonian

(1D)

H =
N∑

k=1

∫ ∞

−∞

[∣∣∣∣∂Uk

∂t

∣∣∣∣
2

+ |Uk − Uk−1|2 − |Uk|4
2

]
dt,

(2D)

H =
∑
n,m

∫ ∞

−∞

[∣∣∣∣∂Un,m

∂t

∣∣∣∣
2

− (CU )n,mU ∗
n,m − |Un,m|4

2

]
dt,

(9)

and the master equations have the Hamiltonian structure:

i
∂Un,m

∂z
= δH

δU ∗
n,m

. (10)

The system (4) with a large number of cores and smooth
intensity distribution that experiences only small changes
between neighboring cores for the ring geometry (Fig. 1)
is equivalent to the continuous 2D NLSE for U (k,t,z),
considering the index k as a continuous variable,

i
∂U

∂z
+ ∂2U

∂t2
+ ∂2U

∂k2
+ |U |2U = 0, (11)

with Hamiltonian

H =
∫ ∞

−∞

[∣∣∣∣∂U

∂t

∣∣∣∣
2

+
∣∣∣∣∂U

∂k

∣∣∣∣
2

− |U |4
2

]
dt. (12)

Equation (11) is equivalent to the NLSE that describes the self-
focusing of light in various nonlinear media. The continuous
analog can be used for insight in discrete system evolution.

In the conventional theory of self-focusing governed by the
NLSE, the initial wave distribution collapses into singularity
when the Hamiltonian H is negative or when the beam power
exceeds the critical value Pcr. This value depends on the
beam shape and is minimal for the Townes mode. In our
case, the role of power is played by the total energy injected
into the MCF E = ∫

dtdn|Un|2. When the input energy
exceeds the critical value E0 [for the Townes beam, E0 =
Ecr = 4π , in terms of the dimensional variables Ecr =
4π

√
−Cβ2/(2γ 2)], making H < 0, the intensity distribution

is self-compressed over k and t . We can expect that the
injected MCF pulses distributed over the cores with smooth
maxima will be focused into a few cores around the maxima
with simultaneous pulse compression. When the energy is
concentrated into a few cores the discreteness of the cores
arrests further compression. When the input energy E � 4π ,
the distribution breaks into a few collapsing clusters with
E ≈ 4π (similar to filamentation in the continuum limit). In
every cluster the compression and combining takes place, but
the location of the peaks is difficult to predict and this situation

is not practical for the goals of beam combining or pulse
compression.

The continuous version of the continuous-discrete 3D
NSLE (Fig. 2) takes the form

i
∂U

∂z
+ ∂2U

∂t2
+ ∂2U

∂k2
+ ∂2U

∂l2
+ |U |2U = 0 (13)

for U (z,t,k,l), where the spatial variables k and l take the
values of a certain bounded domain S [e.g., S = {(k,l) : k2 +
l2 < R2} for a circle of radius R]. The Hamiltonian in this case
has the following form:

H =
∫ ∞

−∞

∫
S

[∣∣∣∣∂U

∂t

∣∣∣∣
2

+
∣∣∣∣∂U

∂k

∣∣∣∣
2

+
∣∣∣∣∂U

∂l

∣∣∣∣
2

− |U |4
2

]
dkdldt.

(14)

An increase in the number of neighbors enhances the
nonlinear interaction and makes collapse possible even for
positive values of H [23]. In this case we can expect that the
injected MCF pulses will be focused into a few central cores
with simultaneous pulse compression. Nonlinear systems
described by Eq. (13) have stronger collapsing features, and
a MCF with 2D configuration of cores could demonstrate
better compression results, which will be shown later. In
the 3D situation, the collapse is “weak” (see definitions
in [23]) and the energy involved in the compression processes
decreases [18]. In this case, the optimal compression and
combining is reached in a transient regime and the choice
of parameters is not universal. We will present the results of
the modeling of compression and combining in both situations
and will examine the selection of the optimal parameters.

III. 2D COMPRESSION AND ENERGY COMBINING IN
7-CORE AND 19-CORE RING MCFS

First we consider pulse evolution in MCFs with the ring
design shown in Fig. 1. The 7-core and 19-core MCFs with
the cores arranged in a circle are considered for comparing
with 7- and 19-core hexagonal MCFs. All simulations were
based on the model (4). The analysis of pulse compression
and combining in a MCF with 1D location of the cores was
carried out for the initial conditions given by the same Gaussian
pulses in each core,

Uk(0,t) =
√

P exp

(
− t2

2τ 2

)[
1 + M cos

(
2πk

N

)]
, (15)

where M is the modulation coefficient, and k = 1, . . . ,N .
The modulation M cos (2πk/N ) produces the smooth initial
intensity modulation with a maximum in the designated
core. This modulation accelerates the compression and, most
importantly, makes it less sensitive to the perturbation of the
initial parameters. On the other hand, the perturbation must be
small enough for the efficient utilization of each core (M 	 1).
Recently [19], we demonstrated effective compression and
combining in this situation. Here we present the optimal
parameters for the most efficient system performance. Based
on the results of the previous study [19], we set M = 0.3.
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We perform simulation of light-pulse propagation initially
distributed according to Eq. (15) aiming at the optimization of
pulse compression and energy combining. The dependencies
of the basic compression parameters are obtained for the range
of parameters P ∈ [0.31; 1000],τ ∈ [0.05; 60] for the 7-core
MCF and P ∈ [0.05; 1000],τ ∈ [0.05; 230] for the 19-core
MCF. The numerical solution of Eqs. (4) was performed by
the split-step Fourier method with the Padé approximation with
scaling and squaring for the matrix exponential (see [24,25]).

The range of values of the initial pulse parameters P and
τ was discretized by 250 × 250 nodes. For each parameter
pair (P,τ ) of the grid, the simulation of the dynamics of
optical pulses with the form (15) injected into every core of the
appropriate MCF was made. We tracked the first peak power
maximum of the propagating pulse to get the compression or
energy conversion at the minimum possible distance along the
fiber. In what follows we call such a distance an “optimal” one.
Moreover, we took into account only those maxima at which
peak power is increased by more than 0.2N times, where N

is the number of cores (N > 5). This approach was applied
to cut off the situations when the peak power maximum is
observed without the pulse compression. The value 0.2N was
chosen empirically. When the energy E is comparable with
Ecr, the particular initial distribution is not optimal and it can
have a few oscillations before the collapse (here, sharp energy
localization to few cores). In this situation, even when strong
compression and combining takes place, the position of peaks
is sensitive to the initial variations of the power and pulse
durations and, for the purpose of this study, we consider the
situation as not practical. The above procedure eliminates this
type of dynamics. The general further “turbulent” evolution
after peak compression (combining) is complex (see, e.g., [26])
and beyond the frame of this paper. It is worth noting that in
the general case the parameters for the optimal temporal pulse
compression and maximum energy combining in a single core
are different, and the distances along the fiber z0 of maximum
compression and combining are also varying in modeling.

An initial demonstration of the effect for the ring configu-
ration was discussed in [19]. Here we present a more detailed
study of the parameter space and evaluation of the optimal
input signal characteristics for compression and combining.

The maps of combining and compression performance for
the 7-core ring MCF are presented in Fig. 3. In Fig. 3(a) we
see the coherent effective beam combining. For the optimal
choice of parameters, 83.5% of the initial energy is combined
in one core at the distance 10.36 (in the dimensionless variable
z). The combined pulse is smooth, and the side satellite peaks
have an intensity of 4% of the peak intensity. The total energy
in the wings is about 1.9%. Note that the region of the
maximal combining lies close to the line H = 0. The map
of the compression efficiency is quite different. The blue area
denotes pairs of parameters P and τ , for which there is no
pulse compression or the initial pulses (15) break into clusters
as a result of the modulation instability. It is interesting that
isolines of pulse compression factor in Fig. 3(b) correlate with
isolines of the ratio of the dispersion length LD = τ 2/|β2|
and the nonlinear length LNL = 1/(γP ). The zone of optimal
compression is the stripe narrowing toward high total energies
and is confined by the level LD/LNL ≈ 3000. If LD/LNL >

3000, a large nonlinearity destroys a smooth pulse shape before

FIG. 3. Dependence of the percentage of total energy E combined
in the core with pulse compression (a) and the pulse-width compres-
sion factor in the logarithmic scale (b) on the initial pulses [Eq. (15)];
parameters P and τ for the 7-core MCF with ring core configuration
and modulation coefficient M = 0.3. The isoline E = Ecr = 4π is
indicated by the yellow dots; the level H = 0 is depicted by white
dashes.

the compression point. In the area of P and τ values for which
the compression occurs, the compression factor of up to 307
times can be obtained. The maximal compression is reached
at the distance z = 9.68.

The evolution of the peak intensities in the different cores
in the case of optimal combining (83.5% of all energy
combines in the single core) is presented in Fig. 4. We see
that the combined pulse has a smooth temporal shape with
low-intensity wings. The length of combining is about 10.36
in dimensionless units, due to the slow initial development. In
the final stage, as one can see in Fig. 4(a), the intensity growth

FIG. 4. Evolution of the input Gaussian pulses [Eq. (15)] with
the parameters P = 0.5, τ = 2.0, and M = 0.3 injected in all cores
of the 7-core ring MCF (best combining) (a). Corresponding input
intensity distribution in core 7 (dashed red line) and the distribution
at compression point (solid blue line) are shown in logarithmic (b)
and normal (c) scales. 83.5% of total input energy E is combined
in core 7. The pulse width (FWHM) is reduced by 5.74x. The peak
power increases in 19.5x.
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FIG. 5. Evolution of the input Gaussian pulses [Eq. (15)] with the
parameters P = 0.436, τ = 42.5, and M = 0.3 injected in all cores
of the 7-core ring MCF (best compression) (a). Corresponding input
intensity distribution in core 7 (dashed red line) and the distribution
at compression point (solid blue line) are shown in logarithmic (b)
and normal (c) scales. 35.8% of total input energy E is combined in
the 7th core. The pulse width (FWHM) is reduced by 307.6x. The
peak power increases in 123.7x.

is about exponential. The pulse compression is modest (about
6 times).

The evolution of the intensity in the different cores for the
case of maximal pulse compression is presented in Fig. 5.
The pulse compressed over 300 times. The compressed pulse
is still mainly smooth, with noticeable wings. In this case,
only about 36% of the energy combined in the compressed
pulse. The interesting feature of the compression is a long
initial evolution which is consistent with high sensitivity to
the initial conditions.

To obtain insight for the optimal parameters for the
compression and combining, let us use the continuous limit.
For classical self-focusing the collapse takes place at P > Pcr.
At powers well above Pcr, the beam breaks into filaments
with a power close to Pcr. Using the similarity of our
problem with self-focusing, we can expect that for the optimal
operation the total energy E > Ecr. For E � Ecr we must
have the undesirable filamentation, energy concentration in
a few different cores, and temporal modulations of the
pulses. The results of the combining modeling are consistent
with the above arguments. The parameter area where pulse
compression occurs is easily distinguishable and is confined
near the line H = 0. For optimal combining, the size of
the distribution over cores and the temporal width must be
comparable. As a result, we can expect that the optimal pulse
duration for the combining must increase proportionally to
N . The optimal combining corresponds to almost complete

FIG. 6. Dependence of the percentage of total energy E combined
in the core with pulse compression (a) and the pulse-width compres-
sion factor in the logarithmic scale (b) on the initial pulses [Eq. (15)];
parameters P and τ for the 19-core MCF with ring core configuration
and modulation coefficient M = 0.3. The isoline E = Ecr = 4π is
indicated by the yellow dots; the level H = 0 is depicted by white
dashes.

concentration in one core. The pulse compressed about 6 times,
which indicates the collapse of the distribution as a whole.

To study effect of cores numbers, we compare our results
with the modeling of propagation in 19-core rings. The maps
of the efficiency of the combining and compression for the
19-core ring MCF are presented in Fig. 6. Qualitatively, the
maps are similar to the case of 7 cores with higher sensitivity
to the initial variations of the pulse energy and duration. The
maximal efficiency of combining is about the same as for 7
cores and, qualitatively, the behavior is similar (see Fig. 7),
but the compression distance z is much larger, namely 65.9.

FIG. 7. Evolution of the input Gaussian pulses [Eq. (15)] with the
parameters P = 0.09, τ = 4.33, and M = 0.3 injected in all cores
of the 19-core ring MCF (best combining) (a). The input intensity
distribution in core 19 (dashed red line) and the distribution at
compression point (solid blue line) are shown in logarithmic (b) and
normal (c) scales. 80.0% of total input energy E is combined in the
19th core. The pulse width (FWHM) is reduced by 12.7x. The peak
power increases in 111.0x.
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FIG. 8. Evolution of the input Gaussian pulses [Eq. (15)] with
the parameters P = 0.0545, τ = 184.0, and M = 0.3 injected in all
cores of the 19-core ring MCF (best compression) (a). The input
intensity distribution in core 19 (dashed red line) and the distribution
at compression point (solid blue line) are shown in logarithmic (b)
and normal (c) scales. 10.9% of total input energy E is combined in
the 19th core. The pulse width (FWHM) is reduced by 720.4x. The
peak power increases in 314.8x.

For the maximum combining, the compression of the pulse is
higher, according the above discussion.

The maximal compression was obtained by the initial pulses
with LD/LNL ≈ 3000 and approximately equals 720, and the
compressed pulse has a smooth profile (see Fig. 8). With
increase of the number of cores the optimal conditions for the
maximal compression become more sensitive to the initial con-
ditions. Also, the distance to the compression point increases
and is equal to 141.08. Qualitatively, the compression and
combining maps looks similar (see Figs. 3–5), in agreement
with continuous model arguments.

IV. COMPRESSION AND COMBINING IN HEXAGONAL
AND SQUARE MCF

In this section we consider the optical MCFs with 2D core
distribution design in nodes of square and hexagonal grid
shown in Fig. 2. Let us start with a discussion of the continuous
limit, considering the evolution of the intensity distribution
according [Eq. (13)]. The collapse of the distribution in 3D
(cores, coordinates, and time) takes place even for positive val-
ues of the Hamiltonian [27]. It is clear that the boundary value
of H = Hc corresponds to the z-independent (“stationary”)
localized solution [13,23]. The distributions with H < Hc

collapsed.
The collapse within the 3D NLSE is weak [24], and the

energy leaks from the collapse. This means that it is not
beneficial to greatly increase the number of cores, and efficient
combining and compression take place in the transient regime.

FIG. 9. Dependence of the percentage of total energy E com-
bined in the core with pulse compression (a) and the pulse-width
compression factor in the logarithmic scale (b) on the initial pulses
[Eq. (15)]; parameters P and τ for the 7-core hexagonal MCF without
modulation. The level H = Hc is depicted by white dashes.

As was mentioned above, the initial distribution is not
optimal for the collapse. The optimum for the beam combining
is different from the optimum for beam compression (analog
of 3D collapse).

A comprehensive analysis of pulse compression and com-
bining in MCF with 2D location of the cores using Eqs. (6)
was carried out for initial pulses having the same Gaussian
profile in each core, namely,

Un,m(z = 0,t) =
√

P exp

(
− t2

2τ 2

)
. (16)

We compare the efficiency of a 7-core and a 19-core MCF with
hexagonal core distribution and a 21-core MCF with square
core configuration. Such specific core numbers are determined
by the requirement of a symmetry of the hexagonal and square
lattices. The dependencies of basic compression parameters
are shown for the same range of parameters P,τ , as in the case
of the ring MCFs.

First, we consider the hexagonal MCFs. The maps of
the pulse combining and compression for 7 cores case are
presented in Fig. 9. The blue area denotes pairs of parameters
P and τ , for which there is no pulse compression, or the initial
pulses (15) with this parameters break into filaments or are
compressed after the distance along the fiber where the first
local maximum of peak power is located. Due to the symmetry
of the problem, both combining and compression take place in
the (0,0) core. We see that the optimal conditions for combining
and compression are very different from the the results for
the ring core distributions (Fig. 3). The optimal parameters
for the compression are very different from combining similar
to the ring MCF. Efficient combining takes place in a much
broader range of parameters in the vertical band, insensitive
to the pulse duration. This indicates that collapse takes
place mainly in the transversal direction. The efficiency of
combining and compression is comparable with the ring MCF,
but much less sensitive to variation of the initial parameters.
The maximum combining efficiency for a 7-core hexagonal
MCF is better and equals 91.6% (Fig. 10) at the distance z =
1.78. In contrast to the ring core configurations, a wide region
in the plane of parameters (P,τ ) exists, where the part of the
energy in the central core at the compression moment exceeds
70% of the initial energy E. The presence of this region allows
us to obtain well-compressed pulses having most of the total
energy E, which is of great practical importance. However, in
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FIG. 10. Evolution of the input Gaussian pulses [Eq. (16)] with
the parameters P = 0.687 and τ = 1.775 injected in all cores of
the hexagonal 7-core MCF (best combining) (a). The input intensity
distribution in the central core (dashed red line) and the distribution
at compression point (solid blue line) are shown in logarithmic (b)
and normal (c) scales. 91.6% of total input energy E is combined in
the core (0,0). The pulse width (FWHM) is reduced by 6.37x. The
peak power increases in 37.7x.

this case a substantial part of the energy goes into the wings,
rather than into the central peak of the compressed pulse.

An increase in the number of cores to 19 (Fig. 14) does
not qualitatively change the map, and the maximal efficiency
of combining is about 80.9%. Optimal combining takes place
in a vertical band of parameters. The independence of the
combining efficiency from the pulse duration indicates a 2D
collapse in m,n variables. Another indication of the 2D nature
of the combining process is that the band of the high combining
efficiency is limited by the line H = 0, which for long pulses
coincides with the 2D collapse criteria. The distance along
the 19-core hexagonal fiber to the point at which the best
combining occurs equals z = 2.07.

The distribution over cores can collapse even without pulse
compression. In Figs. 9 and 12 one can see that it is possible to
obtain efficient combining practically without compression. In
a 2D MCF, combining and compression typically go together
with different rates.

Using the 7-core fiber, a maximal pulse compression up
to 256 times can be achieved (Fig. 11). In contrast to the
combining pattern, at the point of maximal compression a
significant fraction of energy is left in the neighbor cores. The
peak power increases greatly at the compression point. The
best compression occurs in the case of a high-power input
pulse. Too much nonlinearity (LD/LNL ≈ 4000) destroys the
pulse shape before the compression point and confines the
maximal pulse compression factor. On the other hand, it is
difficult to define the optimal compression case in the presence
of high nonlinearity. The pulse compression factor close to its

FIG. 11. Evolution of the input Gaussian pulses [Eq. (16)] with
the parameters P = 536 and τ = 3.2 injected in all cores of the
hexagonal 7-core MCF (best compression) in the logarithmic scale
(a). The input intensity distribution in the central core (dashed red
line) and the distribution at compression point (solid blue line) are
shown in logarithmic (b) and normal (c) scales. 16.6% of total input
energy E is combined in the core (0,0). The pulse width (FWHM) is
reduced by 256.3x. The peak power increases in 21.85x.

maximal value can be obtained for different pairs of parameters
P, τ and the distance to these compression points decreases
with growth of the parameter P . The compression distance is
sufficiently small for both the 7-core and the 19-core hexagonal
MCFs (z � 0.1 and z � 0.5, respectively).

The pulse shapes after compression and combining and the
intensity evolutions are presented in Figs. 10–13. As in the
ring core geometry, the compressed pulse has a smooth shape
and the energy is localized mainly in one central core.

As we discussed, one can expect that the efficiency of
combining and compression can degrade with increasing

FIG. 12. Dependence of the percentage of total energy E com-
bined in the core with pulse compression (a) and the pulse-width
compression factor (b) on the initial pulses [Eq. (15)]; parameters P

and τ for the 19-core hexagonal MCF without modulation. The level
H = Hc is depicted by white dashes.
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FIG. 13. Evolution of the input Gaussian pulses [Eq. (16)] with
the parameters P = 0.36 and τ = 1.69 injected in all cores of a
hexagonal 19-core MCF (best combining) (a). The input intensity
distribution in the central core (dashed red line) and the distribution
at compression point (solid blue line) are shown in logarithmic (b)
and normal (c) scale. 80.9% of total input energy E is combined in
the core (0,0). The pulse width (FWHM) is reduced by 7.3x. The
peak power increases in 103.4x.

numbers of cores, but the total energy in the central cores
continue to grow. The stronger nonlinear interaction for a
2D MCF does not increase the efficiency of compression
(combining) but greatly reduces the required distance and
increases the process robustness.

Summing up, the 7-core hexagonal MCF offers a better
combining than the 19-core ring MCF, but the latter one can
provide higher level of compression.

Furthermore, we have tried to improve the combining
scheme using a 19-core hexagonal MCF, and we have also
studied its stability against modulation. First, the effect
of amplitude modulation of initial pulses on compression
characteristics was considered (see Fig. 14). Initial conditions
were given by the same Gaussian pulses in each core, but

FIG. 14. Dependence of the percentage of total energy E com-
bined in the core with pulse compression (a) and the pulse-width
compression factor in the logarithmic scale (b) on the initial pulses
[Eq. (17)] parameters P and τ for hexagonal 19-core MCF with
modulation coefficient M = 0.3. The level H = Hc is depicted by
white dashes.

the amplitudes from core to core were slightly perturbed,
depending on the distance to the central core:

Ũn,m(0,t)

=
√

P exp

(
− t2

2τ 2

)[
1 + M cos

(
π

n2 + 3m2

N2

)]
.

(17)

Here N is the maximum modulus index of a core (n or m)
and M is the modulation coefficient. For calculations the value
M = 0.3 was chosen, as in the case of ring core configurations.
The influence of modulation is not as dramatic as in the case of
ring MCFs, but it still has the same features. The compression
region in the plane of the parameters (P,τ ) is widened due to
the increased robustness of the compression scheme. The abso-
lute width of compressed pulses and pulse compression factor
are less by 5%–10% as compared with the case M = 0, as
caused by lower level of the total energy. Also the peak power
increase factor lessened by up 2 times. The distance to the point
of compression is less by up to 20%. The portion of the total
energy E combined at the central core and at the central peak
of the pulse have approximately the same order [Fig. 14(b)].

Let us now discuss the 2D core configuration with a square
lattice and 21 cores. Our calculations showed that there is
no noticeable difference between the square MCF and the
19-core hexagonal MCF, so we do not present figures for this
type of MCF. The pulse compression factor for the hexagonal
MCF is slightly smaller compared to the square MCF, and the
peak power increase factor is larger for the square MCF, but
these two facts can be explained by the increased number of
cores (N = 21) and larger value of the total energy E. On the
other hand, the maximum number of neighboring cores for the
square MCF is less than for the hexagonal MCF (4 rather than
6), so the distance to the compression point is larger for the
square MCF.

The results of all the calculations were summarized in
Table I, where we added the modeling results for few more
numbers of the cores. One can see that for the ring geometry,
when collapse traps the fixed amount of energy, the increase
in cores numbers increases the pulse compression. Because
the Ecr is independent of core numbers the optimal conditions
required the decrease of the power in the core with core number
increase. It results in a decrease of the sufficient nonlinearity
and increases in the length of the optimal compression and
combining. The compression also becomes more sensitive
to the variation of the initial pulse power and duration. For
hexagonal and square core geometry the increase the number
of cores does not increase the efficiency of the compression and
combining, but the evolution is more robust and less sensitive
to the variation of initial power and pulse durations. It is impor-
tant to notice the sharp decrease in the length to the peak com-
pression and combining points. Also, we see a small qualitative
difference between the hexagonal and square geometries.

V. DISCUSSION

We have demonstrated that a MCF fiber can be effectively
used for coherent wave combining and compression. The
degree of compression can be continuously changed by varying
the incident beam parameters. We have demonstrated the
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TABLE I. Pulse parameters for maximum combining and maximum compression regimes for various types of MCFs. The unit of
measurement for the distance and energy is arbitrary units, while the reduction is measured in number of times.

MCF Distance Reduction Distance
type and Maximum to the Energy of of combined Maximum to the Duration of
number combining maximum combined pulse’s compression maximum compressed
of cores (%) combining point pulse duration (FWHM) (FWHM) compression point pulse

Ring 7 83.5 10.36 12.97 5.74 307.6 9.68 0.23
Ring 13 75.4 14.79 14.78 16.1 569.0 47.32 0.42
Ring 19 80.0 65.90 13.71 12.7 720.4 141.08

0.39
Square 9 91.3 3.27 12.78 6.25 ≈250 <0.4 ≈0.02–0.07
Square 13 82.1 2.85 14.42 6.01 ≈250 <0.6 ≈0.02–0.06
Square 21 80.7 3.57 16.03 5.74 ≈250 <1.1 ≈0.02–0.09
Hex 7 91.6 1.78 15.13 6.37 ≈260 <0.1 ≈0.02
Hex 13 84.7 0.99 24.44 5.00 ≈250 <0.2 ≈0.02–0.03
Hex 19 80.9 2.07 20.49 7.30 ≈250 <0.6 ≈0.02–0.07
Hex 31 75.0 1.37 43.47 5.28 ≈240 <0.9 ≈0.02–0.07
Hex 37 70.7 1.47 58.67 4.87 ≈250 <1.3 ≈0.02–0.08

possibility of compression exceeding a few hundred and
coherent combining with efficiency over 80%. For a smooth
distribution of energy, the evolution of the intensities in the
cores is described by the NLSE: 2D for the ring core distri-
bution and 3D for the hexagonal and square cores structures.
The well-studied collapse phenomena provide insight in the
processes of beam combining and compression. We have
demonstrated that the combining process is consistent with col-
lapse phenomena. However, the maximal compression regime
is qualitatively different from, and the maximal compression
greatly exceeds, what one can expect from the collapse model.

We have demonstrated that for the ring MCF the efficiency
of compression and combining can grow with an increase in the
number of cores, but the results becomes increasingly sensitive
to the initial conditions. Also the length of interactions
increases with the number of cores.

For a hexagonal MCF, the efficiency of combining and
compressing generally degrades with increasing number
of cores, but the process is more robust and insensitive to
the initial conditions. Also, the interaction length is greatly
reduced. This potentially makes the hexagonal MCF the best
option among the considered ones for practical applications.

The above results were presented in terms of dimensionless
variables, so as to be generic. Let us discuss the results
in dimensional variables, choosing some specific possible
applications. The typical length of interaction is a 1/C, where
C is the coupling coefficient. For a typical telecom fiber, C

values for MCF C = 15.7 1/km [15] and the typical length is
about 64 m. The time scale T = √−β2/(2C) is about 0.8 ps.
The typical scale of energy E = CT/γ = 10 pJ.

The compression of the pulses of this duration will produce
within our model the pulses with few-fs duration. For such a
short pulse, of course, the Kerr model of nonlinearities ceases
to apply; the modification of dispersion must be taken into
account. Equations (2) and (5) are not applicable anymore and
the evaluation of the maximal compression required the special
analysis.

If one considers MCF with weaker coupling and larger
dispersion β2, the pulse length suitable for the compres-

sion can be increased to the tens or hundreds of picosec-
onds. The compression up to 100 fs will be within our
description. In this situation the wave evolution will be
sensitive to the spatial variation of the coupling coefficient,
and it must be evaluated before discussion of the practical
applications.

Let us discuss some practical possible applications. The
ultrashort pulse material processing has a multiple applications
due to the small collateral damage and the absence of a
heat-affected zone. To have this advantage the pulse duration
must be shorter than electron-lattice exchange time, about a
few picoseconds. The pulse with duration of the hundreds of pi-
coseconds can be produced with simple electro-optic shutters.
The generation of the shorter pulse required more complex and
expensive technology-chirped pulse amplification. Multicore
fiber compressors from hundreds to a few picoseconds can
simplify the ultrashort pulse laser design and reduce their cost.
The combining in MCF can be used in the fiber laser instead of
amplifiers. We demonstrated that for hexagonal core patterns
the efficient combining is possible practically for the all pulse
durations (see Figs. 9 and 12), which can be a convenience for
the laser design.

A practical device can be based on a piece of MCF. The
small energy pulses injected in the different cores can be
combined and compressed. It is technically difficult to make
MCF with uniform coupling over the entire length (the effect of
coupling spatial dependence will be discussed in the separate
paper). To make a practical device, it is desirable to reduce
the length of interaction. This means that one has to increase
the coupling coefficient. The reduction of length to about
1 m makes it easier to keep C uniform along the MCF. In
this case, the typical scale of time is 100 fs and the typical
energy is about 1 nJ. We demonstrated that it is possible to
combine pulses with energy ∼ 1000Ecr ≈ 1 μJ. By changing
the parameters, it is possible to compress pulses from ps to tens
of fs.

Probably, the most important point not taken into account
is the spatial nonuniformity of the coupling. Technically, it
is difficult to keep constant the distance between the cores in
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MCFs. The coupling coefficient depends exponentially from
the distance between the cores and, as a result, even for the
Gaussian statistics in position variation, the coupling coeffi-
cients can be far from Gaussian. The problem is nontrivial and
required special consideration.

Fortunately, the important feature of the proposed scheme
is it robustness. The coupling inhomogeneity, initial phase
mismatch, and delays between the pulses affect the collapse
threshold only. After the collapse starts, the nonlinear effects
self-organize the field evolution and make is robust.
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