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Stability of an optical soliton with Gaussian tails
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(Received 19 June 1997

The structure and stability of a soliton with Gaussian tails is studied in the model that presents the nonlinear
Schralinger equation with additional parabolic potential. It is suggested to use in-line phase modulators to
create and to transmit such pulses in cascaded fiber links. It is proved that the soliton with Gaussian tails is
stable and can be potentially used as an information carrier in the optical transmission.
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PACS numbes): 42.65.Tg

Interaction between two neighboring pulses is one of thesuch a model presents an intermediate state between the
main factors limiting bit rate achievable by modern soliton-NLSE sech-type soliton and a Gaussian pulse. In this Rapid
based transmission systefiis-3]. Overlap of the exponen- Communication the stability of the soliton with Gaussian
tial tails of the closely spaced pulses leads to perturbativédils is proved. We demonstrate that the solitary wave solu-
interaction of the solitons and the system performancdion in the considered model has fast decaying tails in com-
degradation. To provide stable transmission, a separatiop@rison with the sech-type soliton. Note also that the consid-
between two neighboring fundamental solitons typicallyered model is rather general and occurs in different physical
should be not less than five soliton widths. This is a principalcontexts, for instance, it describes a pulse propagation in the
limitation for transmission based on soliton with sechpPreformed plasma channésee, e.g.[7,8] and references
shape described by the nonlinear Schinger equation therein.

(NLSE). Consider as a basic model for average evolution of the

One possible way to increase transmission bit rate is t§oliton with Gaussian wings the following dimensionless
use as an information carrier a solitary wave with the tailsmodification of the NLSHsee, e.g.[5,6)):
decaying faster than exponential wings of the NLSE soliton.

This results in a substantial suppression of the soliton inter- 1

action and consequently in a possibility of a more dense ; - 20 4120 —

information packing. Stable propagation )(/)f the linear Gauss- 1Qz+ 5 Qut QI*Q-at’@=0. D

ian pulses cannot be realized in a conventional fiber line,

because of the nonlinear Kerr effect that in a combination

with dispersion leads to the generation of the solitons with Here, depending on the specific problemis either a
sech-type profiles. The Gaussian tails can result, howevenormalized time, or the self-similar variable related to time
from an effective pulse chirping combined with strong dis-[5,6,9. Parametea is assumed to be positive>0. This
persion management or other physical mechanisms such aquation includes the most important effects, namely, disper-
for instance, phase modulation. This kind of soliton has beesion (or averaged dispersigmnonlinearity, and the effective
discussed in recent worg—6]. In [6], for instance, it has parabolic potential that can result from different physical
been shown that a stationary quasisoliton can be formed ugiechanisms. Note that such an equation has been derived
ing specially programmed chirp and dispersion profile. Torecently in the context of optical pulse dynamics in the links
avoid misleading with using the term soliton, note that inwith dispersion compensation and quasisoliton propagation
contrast to the NLSE soliton, a solitary pulse with Gaussiaralong the line with special dispersion prof{,6,9. In the
tails is not a soliton in terms of the integrable models. How-case of a dispersion-managed soliton with maps considered
ever, from the viewpoint of practical applications this differ- in [4,5,9 an effective potential is of a nontrapping type (
ence is not critical. Numerical simulations show that such a<0). In [10] it has been shown, however, that additional
pulse holds most of the important features of the fundamengrating can provide Gaussian tails of the carrier pulse. Inser-
tal soliton. Stability is the central issue for the physical rel-tion of in-line phase modulators in the cascaded optical com-
evance of the localized pulses with Gaussian tails and theimunication line can be also described in an average by
implementation as information carriers in the high-bit-rateEq. (1) with positivea. Similar models occur in the descrip-
optical transmission systems. Long-term “averaged” dy-tion of the mode-locking laser systems using electro-optical
namics of the soliton with Gaussian tails in some systems ophase modulators. Because this equation seems to be a
practical importance is governed by the NLSE with addi-fundamental generic model describing propagation of a soli-
tional parabolic potential. As an example, we point out inton with Gaussian tails in different practical realizations, in
this Rapid Communication that the use of in-line phasethis Rapid Communication we concentrate mostly on the
modulators in the fiber transmission lines allows us to creatgeneral properties of the model rather than on specific appli-
an effective parabolic potential for propagating the soliton.cations. We consider here only the trapping potential with
This leads to the formation of nonlinear carrier pulses witha>0.

Gaussian tails. The steady-state solitary wave solution in Equation(1) can be written in the Hamiltonian form
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FIG. 1. Shape of the soliton with Gaussian tails. It is plotted ~FIG. 2. Enhancement of the energywith increasinga. The
power distribution|F(t)|? (normalized to the peak power of the €nergy of the soliton is plotted as a function of the parameter
fundamental solitonin the solutions of Eq(1) with k=0.5 for ~ k=0.5. The energy of the fundamental solitGr 2 corresponds to
different values ofa vs normalized timeé. Dashed line, soliton of a=0.

the NLSE @=0); solid line, the soliton with Gaussian wings for . )
a=10. energy of the solitort as a function of the parametarfor

k=0.5. An important feature of the soliton with Gaussian
tails is the enhancement of the energy in comparison with the

igz oH , 2 NLSE soliton for the same average dispersias-Q). How-
gz s5Q* ever, comparing solitons with the same pulse widths it can be
_ o shown that the energy of the considered soliton with
with the Hamiltonian Gaussian tails is less than the energy of a corresponding

1 1 sech-type soliton. The enhancement of the energy of the
_ - 244 = 4 210024+ —1 . dispersion-manged soliton observed 4] is due to the tun-
H 2[ Qi 2[ Il dt+aft QFFdt=11=12%15. neling of the radiation in the case<0. For the dispersion
(©)) compensating systenj$] the parameten depends on the
i S . . characteristics of the dispersion map, pulse power, and re-
The integralE = [|Q|“dt is an additional conserved quantity gjqya| dispersion. We do not consider in this publication the
typically having the meaning of the energy. case of negativa that typically takes place for dispersion-
Consider a steady-state soliton solution of the form managed soliton.

Q(z.t) = F(t)exdikz] @ Equation(5) can be presented in a variational form

. - : o(H+kE)=0; (6)

The soliton shape is given by the equation
from here it is easy to find that the soliton solution realizes
the extremum oH for a fixedE. This variational form can
be used to gain some qualitative information about stability.
Consider scaling transformation of the Hamiltonidrkeep-

One can see that a shape of the localized pulse is &g E constantQ=F(t/a)/\/e. Using such a trial function
intermediate state between the sech-type profile of the NLSke get forH
soliton and the Gaussian pulse. The typical pulse profile for
differenta is shown in Fig. 1. In what follows we consider a Iy 1,
ground state that is reéhpart from a constant phase fagtor H@)=——-—_+als. (7)
Note that the parameté&rcan be negative for some localized «

solutions. In the limita=0 the solution is a soliton of the Te first two terms are associated with the NLS equation. It
NLSE F=2k/cosh{/2kt). In the opposite limiting case s clear from Eq.(7) thatH has a global minimum. Using
a—, the solution is close to a Gaussian pule ell-known properties of the Sturm-Liouville operators, it is
=exd—/at?/\/2] and the latter describes also asymptoticeasy to show that this global maximum is attained at the
decreasing of th& for larget. It is clear that the tails of the solution without zeroe§(F(t)>0].

localized pulse witha#0 decay much faster than the  To study the stability of a solitary puld&q. (5)] let us
exponential wings of the fundamental solitoa<0). As a  consider the evolution of small perturbations on the soliton
result, solitons with Gaussian tails can be spaced mucBolution. Let us linearize Eq1) on the soliton and decom-
closer to each other still keeping interaction betweempose the perturbation into real and imaginary p&ts (F
neighboring pulses suppresdédl1]. Obviously, this allows 4+ f+ig)exffikz]. After standard consideration, making

more dense packing of the information. This bright-typeFourier transformation we obtain the following spectral
soliton exists in the anomalous dispersion rediomapplica-  problem:

tion to the dispersion compensating systems, the residual
dispersion must be anomalgudn Fig. 2 is plotted the w’f=H,H_f; (8

1 2 2
—KkF+ 5 Fy+ |[FIF-at?F =0. (5)
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65 : ' : ‘ ' - , - monotonically grows with increasing of the wave numker
of therefore, the solitons with Gaussian tails described by Eq.
] (1) are stable.

o~ One can find some integral condition on the characteris-
1 tics of an input signal which provides that a maximum of the
a5y . 1 peak power will be bounded from below by a constant de-
termined by the input signal parameters. First, let us estimate
the HamiltonianH using the following inequality,\aE

= —aft(QQ} +Q* Q) dt=[|Q|2dt+aSt?Q|%dt:

Energy £

2H=f |Qt|2dt—J |Q|4dt+2aft2|Q|2dt

L L ( L L L
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Wave number k

=./2aE—maxQ|’E. (12
FIG. 3. The energy of the soliton as a function of the wave
numberk for differenta: solid line fora=0 (fundamental soliton BecauseH and E are conserved quantity, we can

dashed line close to solid one is far=1, and dotted curve foa estimate the maximum of a pulse peak power at afpm
=10. Monotonic growth of the energy with increasinglotleter-  pg|ow:

mines the stability of the soliton with Gaussian wings.

2H
here ma>4Q|2>\/2_—E. (13)
H,=k—=——|F[?+at’, H_=H,—2|F]2. (9) Thus, if an input .pulse satisfies the conditiorH 2
2 d¢2 <.2aE, then a maximal peak power cannot decrease

with pulse evolution below some constant value that is
The stability of a solitonic pulse is determined by the estimated by the right-hand-side of E4.3). This indicates
properties of the operatoks$, , H_. It is easy to check that that the energy cannot be dispersed among linear modes
H,.F=0, and H_F;=—2atF. Additionally H,tF=—F; in a way that a peak power decreases below some constant
andH _(dF/dk)=—F. value.
OperatorH , is nonnegative, because the eigenfuncéon Additional information about pulse dynamics in the sys-
has no zeros and, consequently, corresponds to the lowesim described by Eq1) can be obtained considering evolu-

eigenvalue. The minimum ab? can be found as tion of the average square of the pulse width. Defthas
R= [t?|A|2dt/f|A|?dt. This quantity has a meaning of the
(f|H_f) average square of a pulse width,
w’=min——-; (10)
(fH*)
R H I H 1 IW(R)
here(f|g)=/f*gdt and the minimum is considered in the _22=2E+2E—6aR>2E+ Sr 6aR=——0—;

subspace of functions orthogonal t. From the latter
expression it is seen that the stability is determined by

the existence of a negative eigenvalue of the opertor  the latter representation allows us to use the analogy with the
with an additional orthogonality conditiofF|f)=0. Using  motion of a particle in the effective potentia(R)=3aR?

the standard techniquesee, e.g.[12,13 for details, itis  _2HR/E—0.5InR) treatingz as the effective “time.” One
easy to find that the stability of the soliton is determinedphservation that can be seen from this analogy is that an
by a sign of the first derivative of the energywith respect  average pulse width can reach neither zero nor infinity. Of
to k. Omitting mathematical details, a sketch of the proofcoyrse, this does not prohibit compression of the central peak
is as follows. Presenting in the formf=gF/9k?>— Cg with on the broadening background.

C (F|g)=(F| dF/ok?) we reformulate problem of the  |n conclusion, the stability of the soliton with Gaussian
minimization of the functional(f|[H_f) under additional tails is proved. Such a soliton is an intermediate state be-
constraint(F|f)=0 as a problem of a determination of tween the NLSE sech-type soliton and a Gaussian pulse. Fast
the absolute minimum of the functionalG[g] decay of the Gaussian tails leads to a substantial reduction of

(14)

=(g|H_g)/((Flg)?). N the soliton interaction and consequently to a possibility of
It can be found that under condition much dense information packing in comparison with the fun-
damental solitons. Stability of the solitons with Gaussian
E tails makes them promising candidates for use as information
>0 (11 U . L .
ok carriers in high-bit-rate transmission systems. It is suggested

) o ) ) to use in-line phase modulators to transmit solitons with
this absolute minimum of5[g] is attained and the corre- G4yssian tails.

sponding minimum of f|H _f) (under condition(F|f)=0)

is zero. Thus, under this condition, there is no growing mode | would like to thank E. G. Shapiro for support and assis-
and the conditior{11) is the criterion of the soliton stability. tance and E. A. Kuznetsov, S. Evangeledis, and P. Mamy-
In Fig. 3E versusk for different fixeda is plotted. Energfe ~ ushev for useful discussions.
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