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Stability of an optical soliton with Gaussian tails

Sergei K. Turitsyn
Institut für Theoretische Physik I, Heinrich-Heine-Universita¨t Düsseldorf, 40225 Du¨sseldorf, Germany

~Received 19 June 1997!

The structure and stability of a soliton with Gaussian tails is studied in the model that presents the nonlinear
Schrödinger equation with additional parabolic potential. It is suggested to use in-line phase modulators to
create and to transmit such pulses in cascaded fiber links. It is proved that the soliton with Gaussian tails is
stable and can be potentially used as an information carrier in the optical transmission.
@S1063-651X~97!50310-2#

PACS number~s!: 42.65.Tg
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Interaction between two neighboring pulses is one of
main factors limiting bit rate achievable by modern solito
based transmission systems@1–3#. Overlap of the exponen
tial tails of the closely spaced pulses leads to perturba
interaction of the solitons and the system performa
degradation. To provide stable transmission, a separa
between two neighboring fundamental solitons typica
should be not less than five soliton widths. This is a princi
limitation for transmission based on soliton with se
shape described by the nonlinear Schro¨dinger equation
~NLSE!.

One possible way to increase transmission bit rate is
use as an information carrier a solitary wave with the ta
decaying faster than exponential wings of the NLSE solit
This results in a substantial suppression of the soliton in
action and consequently in a possibility of a more de
information packing. Stable propagation of the linear Gau
ian pulses cannot be realized in a conventional fiber li
because of the nonlinear Kerr effect that in a combinat
with dispersion leads to the generation of the solitons w
sech-type profiles. The Gaussian tails can result, howe
from an effective pulse chirping combined with strong d
persion management or other physical mechanisms suc
for instance, phase modulation. This kind of soliton has b
discussed in recent works@4–6#. In @6#, for instance, it has
been shown that a stationary quasisoliton can be formed
ing specially programmed chirp and dispersion profile.
avoid misleading with using the term soliton, note that
contrast to the NLSE soliton, a solitary pulse with Gauss
tails is not a soliton in terms of the integrable models. Ho
ever, from the viewpoint of practical applications this diffe
ence is not critical. Numerical simulations show that suc
pulse holds most of the important features of the fundam
tal soliton. Stability is the central issue for the physical r
evance of the localized pulses with Gaussian tails and t
implementation as information carriers in the high-bit-ra
optical transmission systems. Long-term ‘‘averaged’’ d
namics of the soliton with Gaussian tails in some system
practical importance is governed by the NLSE with ad
tional parabolic potential. As an example, we point out
this Rapid Communication that the use of in-line pha
modulators in the fiber transmission lines allows us to cre
an effective parabolic potential for propagating the solito
This leads to the formation of nonlinear carrier pulses w
Gaussian tails. The steady-state solitary wave solution
561063-651X/97/56~4!/3784~4!/$10.00
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such a model presents an intermediate state between
NLSE sech-type soliton and a Gaussian pulse. In this Ra
Communication the stability of the soliton with Gaussi
tails is proved. We demonstrate that the solitary wave so
tion in the considered model has fast decaying tails in co
parison with the sech-type soliton. Note also that the con
ered model is rather general and occurs in different phys
contexts, for instance, it describes a pulse propagation in
preformed plasma channel~see, e.g.,@7,8# and references
therein!.

Consider as a basic model for average evolution of
soliton with Gaussian wings the following dimensionle
modification of the NLSE~see, e.g.,@5,6#!:

iQz1
1

2
Qtt1uQu2Q2at2Q50 . ~1!

Here, depending on the specific problem,t is either a
normalized time, or the self-similar variable related to tim
@5,6,9#. Parametera is assumed to be positive,a.0. This
equation includes the most important effects, namely, disp
sion ~or averaged dispersion!, nonlinearity, and the effective
parabolic potential that can result from different physic
mechanisms. Note that such an equation has been de
recently in the context of optical pulse dynamics in the lin
with dispersion compensation and quasisoliton propaga
along the line with special dispersion profile@5,6,9#. In the
case of a dispersion-managed soliton with maps consid
in @4,5,9# an effective potential is of a nontrapping type (a
,0). In @10# it has been shown, however, that addition
grating can provide Gaussian tails of the carrier pulse. Ins
tion of in-line phase modulators in the cascaded optical co
munication line can be also described in an average
Eq. ~1! with positivea. Similar models occur in the descrip
tion of the mode-locking laser systems using electro-opt
phase modulators. Because this equation seems to
fundamental generic model describing propagation of a s
ton with Gaussian tails in different practical realizations,
this Rapid Communication we concentrate mostly on
general properties of the model rather than on specific ap
cations. We consider here only the trapping potential w
a.0.

Equation~1! can be written in the Hamiltonian form
R3784 © 1997 The American Physical Society



ty

S
fo
a
r
d

tic

e

uc
e

pe

du

an
the

be
ith
ding
the

re-
the
-

es

ity.

. It

is
the

ton
-

g
al

ed
e

r

RAPID COMMUNICATIONS

56 R3785STABILITY OF AN OPTICAL SOLITON WITH GAUSSIAN TAILS
i
]Q

]z
5

dH

dQ*
, ~2!

with the Hamiltonian

H5
1

2E uQtu2dt2
1

2E uQu4dt1aE t2uQu2dt5I 12I 21I 3 .

~3!

The integralE5* uQu2dt is an additional conserved quanti
typically having the meaning of the energy.

Consider a steady-state soliton solution of the form

Q~z,t !5F~ t !exp@ ikz# ; ~4!

The soliton shape is given by the equation

2kF1
1

2
Ftt1uFu2F2at2F50 . ~5!

One can see that a shape of the localized pulse is
intermediate state between the sech-type profile of the NL
soliton and the Gaussian pulse. The typical pulse profile
differenta is shown in Fig. 1. In what follows we consider
ground state that is real~apart from a constant phase facto!.
Note that the parameterk can be negative for some localize
solutions. In the limita50 the solution is a soliton of the
NLSE F5A2k/cosh(A2kt). In the opposite limiting case
a→`, the solution is close to a Gaussian pulseF
5exp@2Aat2/A2# and the latter describes also asympto
decreasing of theF for larget. It is clear that the tails of the
localized pulse withaÞ0 decay much faster than th
exponential wings of the fundamental soliton (a50). As a
result, solitons with Gaussian tails can be spaced m
closer to each other still keeping interaction betwe
neighboring pulses suppressed@6,11#. Obviously, this allows
more dense packing of the information. This bright-ty
soliton exists in the anomalous dispersion region~in applica-
tion to the dispersion compensating systems, the resi
dispersion must be anomalous!. In Fig. 2 is plotted the

FIG. 1. Shape of the soliton with Gaussian tails. It is plott
power distributionuF(t)u2 ~normalized to the peak power of th
fundamental soliton! in the solutions of Eq.~1! with k50.5 for
different values ofa vs normalized timet. Dashed line, soliton of
the NLSE (a50); solid line, the soliton with Gaussian wings fo
a510.
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energy of the solitonE as a function of the parametera for
k50.5. An important feature of the soliton with Gaussi
tails is the enhancement of the energy in comparison with
NLSE soliton for the same average dispersion (a50). How-
ever, comparing solitons with the same pulse widths it can
shown that the energy of the considered soliton w
Gaussian tails is less than the energy of a correspon
sech-type soliton. The enhancement of the energy of
dispersion-manged soliton observed in@4# is due to the tun-
neling of the radiation in the casea,0. For the dispersion
compensating systems@5# the parametera depends on the
characteristics of the dispersion map, pulse power, and
sidual dispersion. We do not consider in this publication
case of negativea that typically takes place for dispersion
managed soliton.

Equation~5! can be presented in a variational form

d~H1kE!50 ; ~6!

from here it is easy to find that the soliton solution realiz
the extremum ofH for a fixedE. This variational form can
be used to gain some qualitative information about stabil
Consider scaling transformation of the HamiltonianH keep-
ing E constant:Q5F(t/a)/Aa. Using such a trial function
we get forH

H~a!5
I 1

a2
2

I 2

a
1a2I 3 . ~7!

The first two terms are associated with the NLS equation
is clear from Eq.~7! that H has a global minimum. Using
well-known properties of the Sturm-Liouville operators, it
easy to show that this global maximum is attained at
solution without zeroes@(F(t).0#.

To study the stability of a solitary pulse@Eq. ~5!# let us
consider the evolution of small perturbations on the soli
solution. Let us linearize Eq.~1! on the soliton and decom
pose the perturbation into real and imaginary partsQ5(F
1 f 1 ig)exp@ikz#. After standard consideration, makin
Fourier transformation we obtain the following spectr
problem:

v2f 5H1H2 f ; ~8!

FIG. 2. Enhancement of the energyE with increasinga. The
energy of the soliton is plotted as a function of the parametera for
k50.5. The energy of the fundamental solitonE52 corresponds to
a50.
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here

H15k2
1

2

d2

dt2
2uFu21at2, H25H122uFu2 . ~9!

The stability of a solitonic pulse is determined by t
properties of the operatorsH1 , H2 . It is easy to check tha
H1F50, and H2Ft522atF. Additionally H1tF52Ft
andH2(]F/]k)52F.

OperatorH1 is nonnegative, because the eigenfunctionF
has no zeros and, consequently, corresponds to the lo
eigenvalue. The minimum ofv2 can be found as

v25min
^ f uH2 f &

^ f uH1
21f &

; ~10!

here^ f ug&[* f * gdt and the minimum is considered in th
subspace of functions orthogonal toF. From the latter
expression it is seen that the stability is determined
the existence of a negative eigenvalue of the operatorH2

with an additional orthogonality condition̂Fu f &50. Using
the standard technique~see, e.g.,@12,13# for details!, it is
easy to find that the stability of the soliton is determin
by a sign of the first derivative of the energyE with respect
to k. Omitting mathematical details, a sketch of the pro
is as follows. Presentingf in the form f 5]F/]k22Cg with
C ^Fug&5^Fu ]F/]k2& we reformulate problem of the
minimization of the functional̂ f uH2 f & under additional
constraint ^Fu f &50 as a problem of a determination o
the absolute minimum of the functionalG@g#
5^guH2g&/(^Fug&2).

It can be found that under condition

]E

]k
.0 ~11!

this absolute minimum ofG@g# is attained and the corre
sponding minimum of̂ f uH2 f & ~under condition̂ Fu f &50)
is zero. Thus, under this condition, there is no growing mo
and the condition~11! is the criterion of the soliton stability
In Fig. 3E versusk for different fixeda is plotted. EnergyE

FIG. 3. The energy of the soliton as a function of the wa
numberk for different a: solid line for a50 ~fundamental soliton!
dashed line close to solid one is fora51, and dotted curve fora
510. Monotonic growth of the energy with increasing ofk deter-
mines the stability of the soliton with Gaussian wings.
est
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monotonically grows with increasing of the wave numberk,
therefore, the solitons with Gaussian tails described by
~1! are stable.

One can find some integral condition on the characte
tics of an input signal which provides that a maximum of t
peak power will be bounded from below by a constant d
termined by the input signal parameters. First, let us estim
the Hamiltonian H using the following inequality,AaE
52Aa* t(QQt* 1Q* Qt)dt<* uQtu2dt1a* t2uQu2dt:

2H5E uQtu2dt2E uQu4dt12aE t2uQu2dt

>A2aE2maxuQu2E . ~12!

Because H and E are conserved quantity, we ca
estimate the maximum of a pulse peak power at anyz from
below:

maxuQu2>A2a2
2H

E
. ~13!

Thus, if an input pulse satisfies the condition 2H
<A2aE, then a maximal peak power cannot decrea
with pulse evolution below some constant value that
estimated by the right-hand-side of Eq.~13!. This indicates
that the energy cannot be dispersed among linear mo
in a way that a peak power decreases below some con
value.

Additional information about pulse dynamics in the sy
tem described by Eq.~1! can be obtained considering evolu
tion of the average square of the pulse width. DefineR as
R5* t2uAu2dt/* uAu2dt. This quantity has a meaning of th
average square of a pulse width,

d2R

dz2
52

H

E
12

I 1

E
26aR>2

H

E
1

1

2R
26aR52

]W~R!

]R
;

~14!

the latter representation allows us to use the analogy with
motion of a particle in the effective potentialW(R)53aR2

22HR/E20.5ln(R) treatingz as the effective ‘‘time.’’ One
observation that can be seen from this analogy is that
average pulse width can reach neither zero nor infinity.
course, this does not prohibit compression of the central p
on the broadening background.

In conclusion, the stability of the soliton with Gaussia
tails is proved. Such a soliton is an intermediate state
tween the NLSE sech-type soliton and a Gaussian pulse.
decay of the Gaussian tails leads to a substantial reductio
the soliton interaction and consequently to a possibility
much dense information packing in comparison with the fu
damental solitons. Stability of the solitons with Gaussi
tails makes them promising candidates for use as informa
carriers in high-bit-rate transmission systems. It is sugges
to use in-line phase modulators to transmit solitons w
Gaussian tails.
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