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In order to perform the numerical stability analysis of 
Eq. (1), we first calculated the homogeneous solution. 
Then we added a small complex perturbation to each 
spectral mode of the spectrum and integrated the 
CGLE for one modulation period Tf. To be more 
specific, a 4 by 4 transfer matrix M was obtained for 
each mode pair +k and –k, whose first and second row 
entries are the real and imaginary parts of the modes +k 
and –k amplitudes after the evolution of real and 
imaginary perturbations to mode k. The third and 
fourth rows of M contain the real and imaginary parts 
of +k and –k mode amplitudes, respectively, after the 
evolution of real and imaginary perturbations of mode 
–k. The resulting modes' amplitudes were normalized 
to the initial perturbation’s absolute value. 

The diagonalization of matrix M provides a set of 
four eigenvalues F(k) for modes +k and –k: the so-
called Floquet multipliers. A mode k is considered 
unstable when at least one of the absolute values of its 
eigenvalues is greater than 1. To visualize the 
instability spectrum, we plotted Max(|F(k)|) – the 
maximal absolute value of the Floquet multipliers – for 
each mode. As the instability spectrum is symmetric, 
only the positive part the spectrum (k>0) has been 
plotted. 
  The mechanism of dissipative parametric modulation 
instability differs from those of the classical Benjamin-
Feir and Faraday instability due to its antiphase 
modulation dynamics depicted in Fig. 3(b) of the main 
article. Specifically, the amplitudes of modulation 
modes symmetrically located at +k and –k, 
respectively, both grow on average over time. During 
this increase, however, their amplitudes are not equal at 
every instant point of evolution due to the action of the 
spectrally dependent losses. This feature clearly 
distinguishes the reported dissipative parametric 
instability from the BF and the Faraday ones. 

In the case of Faraday instability, the growth 
process is synchronized with the external forcing. In 
the Benjamin-Feir case, since no periodic forcing is 
applied, the growth is due to the increase of the small 
perturbations during the evolution (see Supplemental 
Fig. 1). Hence, the synchronization with the external 
forcing is a common feature of both Faraday and 
dissipative parametric instability. 

 

Supplemental FIG. 1. Growth process of the symmetrically 
(in wavenumber space) located maximally unstable modes 
a(+k) and a(–k) (blue and dashed red line) (a) and generalized 
phase (b) for the BF instability. The same for the Faraday 
instability: modes (c) and generalized phase (d). Dashed lines 
in (b) and (d) correspond to the optimum value of the 
generalized phase for synchronization with the homogeneous 
mode. For Faraday instability, the oscillatory growth process 
is synchronized with the external forcing. The parameters 
used are those considered in Fig. 1 of the main article. 

We provide now a heuristic explanation of the growth 
of the unstable modes in the dissipative parametric 
instability of the CGLE, showing how, in presence of 
the alternating (zig-zag) damping, the coupling 
between modes can provide the energy necessary for 
the growth. Let us consider the CGLE (Eq. (1) of the 
main article). After perturbation of the homogeneous 
solution choosing the following ansatz for the field 
A(t,x)=A0exp(ic|A0|2t)[1+a+exp(ikx)+a-exp(-ikx)]; and 
linearization of CGLE with respect to the small 
perturbations, the evolution equation for the 
modulation mode a+k(t), reads: 
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!"

= 𝜇𝑎! − 𝑏𝑘!𝑎! + 𝑖𝑑𝑘!𝑎! + 𝑖𝑐 𝑎! + 𝑎!∗ 𝐴!! −
𝑠 2𝑎! + 𝑎!∗ 𝐴!!.                                   (SE 1) 
                      
The (+) mode is coupled to the mode a–k

*(t): 
!!!∗

!"
= 𝜇𝑎!∗ − 𝑏𝑘!𝑎!∗ − 𝑖𝑑𝑘!𝑎!∗ − 𝑖𝑐 𝑎! + 𝑎!∗ 𝐴!! −

𝑠 2𝑎!∗ + 𝑎! 𝐴!!.                                               (SE 2) 

 

                              
The solution of Supplemental Eqs. (1) and (2) can be 
sought in the form of exponentially decaying 
oscillations (Bogoliubov-De Gennes excitations): 
a(t)=exp(Dt) [a1 cos(ωBt)+a2 sin(ωBt)]. The frequency 
of the oscillations ωB and the damping rate D, are given 
by the imaginary and real part of the eigenvalue 
spectrum of the CGLE, respectively: 

 
.           (SE 3) 

 
In the limit d2k4+2cdk2µ/s > µ2, the frequency and the 
damping coefficient are, respectively: 

                     (SE 4) 

D = –µ–bk2                       (SE 5) 
and the corresponding solutions of Supplemental Eqs. 
(1) and (2) read: 

𝑎! 𝑡 = 𝑒𝑥𝑝 −𝜇 − 𝑏𝑘! 𝑡 𝑎! cos 𝜔!𝑡 +
𝑎!∗ 𝜔! 𝑖𝑐 𝜇 𝑠 − 𝜇 +
𝑎! 𝜔! 𝑖𝑑𝑘! + 𝑖𝑐 𝜇 𝑠 sin 𝜔!𝑡                      (SE 6) 

               
𝑎!∗ 𝑡 = 𝑒𝑥𝑝 −𝜇 − 𝑏𝑘! 𝑡 𝑎!∗ cos 𝜔!𝑡 +
𝑎! 𝜔! −𝑖𝑐 𝜇 𝑠 − 𝜇 +
𝑎!∗ 𝜔! −𝑖𝑑𝑘! − 𝑖𝑐 𝜇 𝑠 sin 𝜔!𝑡                                         (SE  7)                                              
          

with a+(0) = ã+ and a*
–(0) = ã–

*. We can obtain the 
temporal evolution for the mode a–k(t) by taking the 
complex conjugate of Supplemental Eq. (7): 

𝑎! 𝑡 = 𝑒𝑥𝑝 −𝜇 − 𝑏𝑘! 𝑡 𝑎! cos 𝜔!𝑡 +
𝑎!∗ 𝜔! 𝑖𝑐 𝜇 𝑠 − 𝜇 +
𝑎! 𝜔! 𝑖𝑑𝑘! + 𝑖𝑐 𝜇 𝑠 sin 𝜔!𝑡                    (SE 8)
                      
where ã– = a–(0). 

 

Supplemental FIG. 2. Temporal evolution of Bogoliubov-De 
Gennes modes for k = ±100×2π obtained evaluating 
Supplemental Eqs. (6) and (8) with the same parameters as in 
Fig. 3 of the main article. The excitations experience 
oscillatory behaviour with asymptotic decay of the 
amplitudes (blue and over-imposed dashed red line) (a) when 
the initial conditions are equal; in particular, we have chosen 
ã+ = ã– = 1. When one mode is damped, a rapid growth of its 
amplitude occurs, as shown in (b); in this case ã+ = 1 and ã– = 
0.3. Alternating the damping of modes ±k with a temporal 
periodicity, which allows the successive growth of the 
damped mode, leads to the average growth of both sidebands, 
resulting in the dissipative parametric instability. 

The amplitudes of the excitations exponentially decay 
asymptotically, oscillating at frequency ωB as 
illustrated in Supplemental Fig. 2(a). However, when 
the initial amplitude of one mode, say a–, is much 
lower than the amplitude of the other one, a+, then the 
amplitude of a– grows due to the coupling, as depicted 
in Supplemental Fig. 2(b). 
When the losses for modes a– and a+ are introduced in 
an alternating way and with a period large enough to 
allow for the growth of the damped mode – but not too 
large – to avoid the asymptotic decay, then an average 
growth of a– and a+ occurs.  
The evolution described in terms of Supplemental Eqs. 
(6) and (8) is valid in the linear regime, when the 
quadratic terms in the mode amplitudes are negligible. 
In order to describe the nonlinear dynamics, numerical 
integration of the master Eq. (1) of the main paper is 
required. Nevertheless, the linear analysis presented 
above sheds light on how the instability develops 
before entering the nonlinear regime, where the 
sidebands amplitudes are no longer small and the 
saturation process takes place. In principle, the 
instability can develop as a result of periodically 
imposed losses only on one mode (say with 
wavenumber k) or on a spectral region (say +Δk), this 
kind of excitation could not lead to pattern formation – 
only to a frequency shift in the spectrum. In order to 
achieve pattern formation, the spectral zig-zag 
modulation configuration is required. 
 
Motivated by the synchronization between the growing 
modes and the external forcing shown in Fig. 3(b) of 
the main article, we present here an analytical estimate 
of the wavenumber of the maximally growing mode of 
the dissipative parametric instability (dashed black line 
in Fig. 3(d)). This is done by imposing the parametric 
resonance condition to the dispersion relation of the 
dissipative Bogoliubov modes of the CGLE. This 

λ± = −µ − bk
2 ± −d 2k 4 − 2cdk2 µ s+µ 2

ωB = d 2k 4 + 2cdk2 µ s−µ 2
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condition assumes that the first excited mode has a 
wavenumber that is related, via the dispersion relation 
ω(k), to a temporal frequency equal to half of the 
forcing one. Starting from the instability spectrum of 
the CGLE, the dispersion relation is given by 
Supplemental Eq. (4). In the long wave limit, 2cdk2µ/s 
>> d2k4, Supplemental Eq. (4) simplifies to: 

, which allows straightforwardly 
to estimate, for µ ≤ π/Tf, the wavenumber of the first 
excited mode kinst by imposing the parametric 
resonance condition: 
 

 .      (SE 9) 

Supplemental Eq. (9) is generic and gives the estimate 
of the first unstable mode for the parametric 
instabilities. In the presence of strongly detuned filters, 
the homogeneous field intensity |A0|2 is not exactly 
equal to the nominal value µ/s, since the strongly 
detuned filters can damp the homogeneous mode. 
However, we have checked that the minor damping of 
the homogeneous mode due to the detuned filters is not 
a necessary condition for the development of the 
dissipative parametric instability. In the absence of 
filters, selective and alternate damping of modes placed 
at ±k leads to their average growth. To plot the 
theoretical prediction (on Fig. 3(d)), we calculated kinst 
from Supplemental Eq. (9), using the intensity 
numerically averaged over one modulation period, 
instead of µ/s. In Supplemental Fig. 3(c) this scaling is 
compared with the one that results from Supplemental 
Eq. (9) evaluated with the nominal value of µ/s. 
We have also considered an instability map similar to 
the one shown in Fig. 3(d) of the main article, but 
obtained for fixed modulation period and varying µ. 
The instability map depicted in Supplemental Fig. 3(a) 
shows the unstable region as a function of the average 
intensity, which differs from the nominal value µ/s 
(Supplemental Fig. 3(b)) for the reasons mentioned 
above.  

Another distinctive feature of the dissipative 
parametric instability is the scaling of the wavenumber 
of the most unstable mode with respect to the 
amplitude of the background wave. Our calculations at 
different wave amplitudes A0 indicate that the 
maximally growing wavenumber decreases with field 
intensity (Supplemental Fig. 3), as can be expected for 
Faraday instability. This phenomenon contrasts with 
the well-known BF instability scaling in which the 
wavenumber of the maximally unstable mode always 
increases with the amplitude of the homogeneous field, 
in other words, with nonlinearity.  

 Despite its phenomenological origin Supplemental Eq. 
(9) provides a useful tool for a qualitative (or semi-
quantitative) description of the dissipative parametric 
instability. 

 
Supplemental FIG. 3. Instability map obtained varying µ 
from 0.5 to 2.142 and plotted in the wavenumber-average 
intensity space (a); the coloured regions correspond to 
instability; the remaining parameters are the same as in Fig. 3 
of the main article. The scaling of the maximally unstable 
mode kinst versus the field intensity (b): red points are the 
results of Floquet analysis, the black line is Supplemental Eq. 
(9) with µ/s substituted by the effective average intensity 
calculated numerically. In (c), the scaling of the maximally 
unstable mode versus Tf, corresponds to Fig. 3(d) in the main 
article. The black line corresponds to Supplemental Eq. (9) 
using the average intensity, while the blue one is 
Supplemental Eq. (9) with the nominal value of the ratio µ/s. 

In the main article, we have provided an example of a 
pattern formation initiated by the dissipative parametric 
modulation instability. Even though a detailed study of 
the pattern stability conditions in the asymptotic 
nonlinear regime is beyond the scope of this study, we 
provide here two examples of regular and irregular 
patterns showing their temporal evolution. In 
Supplemental Fig. 4(a), a regular periodic pattern is 
depicted corresponding to the parameters used in Fig. 3 
of the main article. Supplemental Fig. 4(b) shows the 
possibility of irregular patterns where repeated 
processes of creation and annihilation of spatial 
structures occur. The irregular pattern has been 
generated by reducing the detuning of the filters while 
retaining the remaining parameters as in the case of 
regular patterns. Supplemental Figs. 4(a) and 4(b) both 
depict a set of frames showing the spatial distribution 
of field intensity taken at the end of each modulation 
period, right after the second filter. We call a pattern 
“stable” if its shape remains unchanged for used long 
simulation time. Note, that this consideration does not 
prove true stability, but it gives a good indication of a 
possible stability of such patterns. As further check we 
have verified that performing the simulations which 
lead to pattern formation like the ones in Figs. 3(f) and 
4(c), also in presence of additive noise, the resulting 
patterns remain unchanged. Stable patterns form when 
the noisy background which develops between the 

ωB = 2cdk2 µ s−µ 2

kinst ≈
π Tf( )
2cdµ s
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coherent structures is efficiently suppressed due to the 
combined action of nonlinear-dispersive spectral 
broadening and dissipative periodic filtering. If such 
suppression does not occur, then neighbour structures 
can grow between the already existing ones entering 
into competition with them with a related creation and 
annihilation process, as it is illustrated in Supplemental 
Fig. 4(b). The presence of diffusion helps the pattern 
stabilization. 

 

Supplemental FIG. 4. Temporal evolution of the one-
dimensional patterns generated by the dissipative parametric 
instability. In (a), a stable pattern corresponding to the case of 
Fig. 3 of the main article is depicted; while in (b) the 
temporal dynamics of an unstable pattern shows continuous 
processes of creation and annihilation of coherent structures. 
Figure (b) has been obtained using k0 = 1570.8, while 
keeping the remaining parameters as in (a). 

Pattern formation through dissipative parametric 
instability in the two-dimensional system gives more 
freedom in the choice of the structure of the dissipative 
elements. Here we provide more details of the scheme 
illustrated in the main article and show them in 
Supplemental Figs. 5(a) and 5(b) where the dissipation 
function takes the form: 

f1,2 = exp[–(kx±k0x)2/σ2].                     (SE 10) 

In contrast with the results presented in Fig. 4 of the 
main article, the patterns shown in Supplemental Fig. 5 
are not tilted, because of the different shape of the 
dissipation in wavenumber space. A similar pattern, but 
with a spatial modulation along the orthogonal 
direction y, can be obtained by using the same 
dissipation function as in Supplemental Eq. (10), but 
replacing kx with ky and k0x with k0y (see Supplemental 
Figs. 5(c) and 5(d)). 

 

Supplemental FIG. 5. The two Gaussian transmission 
functions used to modulate the dissipation (a) and the 
corresponding 2-dimensional pattern created due to 
dissipative parametric instability (b) for  k0x = 1. A π/2 
rotation in k-space of the transmission function (exchange of 
kx with ky and k0x with k0y) for k0y = 1, leads to the generation 
of a pattern with a periodicity along the spatial direction y 
(d). The parameters used are as follows: µ = 0.2, d = 0.05, b = 
0.001, c = 0.35, s = 0.3, Tf = 5π, and σ = 1. 

We finally provide a phenomenological 
characterization of the patterns temporal evolution and 
functional shape. Once the pattern has appeared 
through progressive increase of the modulation of the 
homogeneous field background, the individual 
coherent structures which form the pattern evolve 
dynamically and periodically during each modulation 
period. The evolution in normal diffraction, in presence 
of gain, resembles the formation of similaritons in fiber 
amplifiers and leads to a considerable broadening 
associated with a modification of the original Gaussian 
shape into an almost parabolic one. The patterns shapes 
at the end of the nonlinear evolution just before the 
filter action are reported in Supplemental Fig. 6. 
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Supplemental FIG. 6. In (a) the 1-D pattern just before the 
filter action is depicted: the structures exhibit a clear 
broadening towards parabolic shape, while high frequency 
noise spikes are clearly visible between neighbour structures. 
In 2D we have the same broadening effect towards parabolic 
shape: (b), (c) and (d) are the corresponding intensity profiles 
before filter action for Fig. 4(c), Supplemental Figs. 5(b) and 
5(d).   
 
We have characterized the functional shape of 
individual structures fitting them with Gaussian and 
parabolic functions respectively after and before the 
action of the filter as it is clearly depicted in 
Supplemental Fig. 7. 
 

 
 
 
Supplemental FIG. 7. In (a) we present a section of the 
pattern depicted in Supplemental Fig. 5(b), in blue is the 
intensity profile before filtering while in red after filtering. In 
(b) and (c) are the fits of the single structures respectively 
after (Gaussian fit) and before (parabolic fit) the filter action.  
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