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Nonlinear systems with periodic variations of nonlinearity and/or dispersion occur in a
variety of physical problems and engineering applications. The mathematical concept of
dispersion managed solitons already has made an impact on the development of fibre
communications, optical signal processing and laser science. We overview here the field
of the dispersion managed solitons starting from mathematical theories of Hamiltonian
and dissipative systems and then discuss recent advances in practical implementation of
this concept in fibre-optics and lasers.
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1. Optical solitons: terminology, brief history and basics

The concept of soliton (this term with roots in Latin solitarius – solitary was created from ‘‘solitary wave’’ by Norman
Zabusky andMartin Kruskal in 1965 [1]) – that a stable, localized, particle-like object can be formed by nonlinear interactions
of field(s) (distributed waves) is one of the fundamental unifying ideas in modern theoretical physics and mathematics [2–
21]. Localization of the distributed field energy in time or space by nonlinearity is a very general phenomenon observed
in many areas of science. Ramifications of the soliton concept in a broad range from pure theory and mathematics to
technologies already implemented in practical devices is the best indication of the importance and generality of this
paradigm. The soliton theory has been applied to numerous practical and fundamental problems in areas as diverse as
hydrodynamics, plasma, nonlinear optics, molecular biology, field theory, and astrophysics. There are two key general
classes of solitons: dynamical and topological solitons. Dynamical solitons occur as a balance between linear effects (which
would spread a localized wave packet of small amplitude) and nonlinear effects. Topological solitons occur in systems with
topologically nontrivial ground states. Examples of topological solitons include vortices, kinks, domain walls, 2π optical
pulses and other structures [22–24]. Although solitons typically occur in certain nonlinear regimes and linear wave theory
is not adequate to describe the dynamics of such localized lumps of energy, their stability and robustness allows for a
convenient and adequate language to describe many complex nonlinear phenomena. In the mathematical literature this
term is often associated with particle-like solutions of a particular class of models—the so-called integrable nonlinear
equations, that interact elastically and regain their forms after collisions. In particular, in the inverse spectral transform
theory multi-soliton solutions of integrable nonlinear partial differential equations correspond to reflectionless potentials
for the associated scattering problems [3,4,12–14]. In terms of the scattering data corresponding to a solution of a Cauchy
problem there is a natural and well defined decomposition into a discrete set of eigenvalues which correspond to solitons
and continuous spectrum data (reflection coefficients) which correspond to non-soliton radiation. It can be shown that
the radiative part of the energy is dispersing and vanishing with propagation distance [3,12,25]. Under certain resonance
conditionsmultiple solitonsmay form bound states (soliton fusion) or decay intomore elementary solitons [26,27]. Solitons
also interact elastically with radiation which corresponds to non-diagonal elements of the scattering matrix [25,28,29].
There has been attempts made in some part of the mathematical community to keep the term soliton only for solutions
of integrable equations using the term ‘‘solitary wave’’ for non-integrable models. This attempt largely failed because the
detailed mathematical differences between solutions of integrable and non-integrable models to physicists and engineers
seem to be less important compared to the key soliton properties, such as, localization, coherence and stability that are
observed for both integrable and non-integrable nonlinear models. Many characteristics of solitons that are important
for applications are not related to its strict mathematical definition and integrability. Therefore, typically in physics and
engineering applications integrability is not the primary concern (and hence with any mathematical definitions of the
soliton) of the mathematical models involved. Indeed, in most real-world applications a more careful consideration of
practical perturbations or realistic boundary conditions leads to non-integrable modifications of the models. In general,
in such non-integrable models solitons interact inelastically, may exchange energy, momentum, or charges, and they may
create bound states or even annihilate. In this review we use the term soliton in a broad sense considering non-integrable
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nonlinear models that possess solutions that describe spatially or temporally coherent, localized structures. Stable particle-
like long term behaviour is the key feature in such a physical definition of the soliton. Though the mathematical models
and techniques that we will discuss are of very general use, we will focus in this review on the optical manifestations and
applications of soliton theory. Specificallywewill build our review of nonlinearmethods in fibre-optic and laser applications
around general soliton theory.Wewillmostly use here the term soliton for a robust localized (in time) electromagneticwave
that can propagate without significant distortion of its shape even in the presence of substantial nonlinear response of the
medium.

The generality of the soliton concept and a broad variety of applications of soliton theory in physics, biology, engineering
and other fields reflects the generic nature of the underlying mathematical models. Soliton prevalence is largely due to
a relatively small number of versatile nonlinear equations governing a wide range of physical and biological systems.
Nonlinear models governing rather different and otherwise unconnected physical phenomena engaging nonlinearity can be
quite similar or even exactly the same mathematically. Therefore, the analysis of such generic nonlinear models is of great
importance in a range of physical contexts. Optical soliton history can be linked to an introduction of the twomaster models
of optical solitons—the Ginzburg–Landau equation (GLE) and the nonlinear Schrödinger equation (NLSE). They provide a
platform for describing a large variety of physical phenomena. TheGinzburg–Landau equation arises in physics, in particular,
as a first-approximation ‘‘envelope’’ (or ‘‘amplitude’’) equation that governs the non-equilibrium dynamics of nonlinear
systems in the presence of gain/loss and other effects such as linear and nonlinear dispersion or gain/loss saturation,
depending on the specifics of the physical problem. It was first proposed, as one can guess, by Ginzburg and Landau in
the context of phase transitions and superconductivity [30]. Since it has been used to describe a vast variety of physical
phenomena, including convection [31,32], the theory of mode-locking laser systems [33] as well as generic nonlinear optics
models [34], and in a number of other physical problems (see e.g. [10,35,36] and references therein).

A precursor to the nonlinear Schrödinger equationwas the approach used as early as 1947 in the context of amicroscopic
theory of superfluidity (as a model of weakly interacting Bose gas) to describe the spectrum of a condensate [37].
Interestingly, a possibility of instability (which eventually became known as modulation instability) was also mentioned
in this study. In the 1960s the classical nonlinear Schrödinger equation was introduced in the studies of atomic Boson
systems and is also known in that field as the Gross–Pitaevskii equation [38,39]. Following this work, the NLSE was used
for the analysis of powerful optical beams [40–43] as well as in the context of describing hydrodynamical surface wave
instability [44]. Although these applications were quite different, it was interesting that the same general mathematical
model, the NLSE, was used to describe each of them. An important milestone was achieved by Zakharov in [44] when he
derived the nonlinear Schrödinger for an arbitrary Hamiltonian system under very general assumptions, thus, effectively
predicting its very generic nature. Indeed, the broad impact of the NLSE was fully confirmed in the following years in many
other physical applications [45]. In a seminal paper, Zakharov and Shabat demonstrated the integrability of the NLSE, which
inspired much research into the rich mathematical properties of this model [46]. Mathematically, the NLSE can be treated
as a conservative (energy preserving) limit of the general complex Ginzburg–Landau equation. Indeed, the versatile nature
of the NLSE reflects very general and simple assumptions made in its derivation [44]. It governs high-frequency nonlinear
wave propagation in a medium with Kerr-type nonlinearity when gain/loss effects do not make essential contributions to
the nonlinear wave dynamics, or when their overall effect is averaged out leading to the pure NLSE.

The proposal of the NLSE in fibre-optics originated from a rather brave (taking into account the level of fibre loss
at the time) theoretical prediction of optical solitons in fibre by Hasegawa and Tappert [47]. In optical fibre the Kerr
nonlinearity counterbalances the effect of dispersive broadening and the optical pulse becomes self-trapped in its own
effective potential. Such a balance between nonlinearity and dispersion is very robust and the soliton pulse preserves
its shape during propagation over very long distances even in the presence of numerous perturbations. Experimental
demonstrations of optical solitons in [48] and soliton-based transmission [49–51] have established optical solitons as a
routine optical engineering technique that can be used in a range of applications (see e.g. [5] and references therein).
The NLSE is one of the very important underlying mathematical models in optics and has important applications in all-
optical signal processing, transmission, pulse compression, pulse shaping, optical data regeneration, frequency conversion,
and the design and operation of a number of nonlinear photonic devices. Many of these applications are based on the
existence of a robustly stable solution of the NLSE—the fundamental soliton. These solutions can be implemented in very
different physical systems ranging from rather different physical platforms such as optical fibre, silicon devices, as well
as many potentially unforeseen applications (surely the ‘‘soliton story’’ is far from being over!). Since an optical soliton
is a stable pulse and can represent an elementary ‘‘bit’’, it has many features that make it attractive for transmission,
storage and processing of digital information. Indeed, practical applications of solitons take advantage of their ‘‘particle-
like’’ nature. An important consequence of this feature is that solitons are robust in the presence of various perturbations
(that could be of different physical nature, e.g. loss, filtering, non-perfect launch conditions an so on) and the perturbed
pulses will eventually regenerate into stable solitons. Linear optical communication and signal processing technologies are
essentially based on the same principles as radio frequency systems. Soliton-based (or general nonlinear) fibre systems
are fundamentally different, because they utilize the inherent nonlinearity of the optical fibre. In what follows we will use
terminology of fibre-optics, however, we would like to reiterate that the generic nature of the basic mathematical models
allows for the presented results to be directly (or with minor modifications) applied to a very broad range of other physical
problems.
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In general, pulse propagation in optical fibre systems may be affected by a combined action of dissipation, amplification,
dispersion and nonlinearity and cannot be described in a simple way. The governing equation to describe the main effects
of such a system is the perturbed NLSE or a version of the GLE

iUZ −
1
2
β2UTT + γ |U|

2U = i G(Z, |U|
2, . . .)× U, (1)

where U represents the slowly varying electromagnetic field envelope, T represents retarded time in the rest frame of the
pulse, and Z is the propagation distance along the fibre. Here β2 is the second order group velocity dispersion coefficient
(in units of [Time]2 × [Length]

−1) and γ = 2πn2/(λ0Aeff) is the nonlinear coefficient (in units of [Power]−1
× [Length]

−1)
where n2 is the nonlinear refractive index, λ0 is the carrier wavelength, and Aeff is the effective fibre area. The right hand
side of Eq. (1) introduces dissipation to the pure NLSE with some arbitrary function G, which depends on the physical
application. From the mathematical point of view there are two key possibilities for solutions to Eq. (1). When the average
dissipative effects can be separated out, the system is effectively conservative (Hamiltonian) and described by the NLSE.
However, when the dissipative effects cannot be separated or averaged out and solitons are formed as a result of interplay
and balance between dissipative and conservative processes, the dynamics is described by the GLE. The later solitons are
often called dissipative solitons or autosolitons to stress that their parameters are uniquely determined by the system, in
contrast to conservative solitons that often present a family of solutions with free parameters. Indeed, these two types of
soliton solutions occur in similar systems for optical pulse propagation in fibre based transmission and laser systems.

A key component in classifying the different limits and potential solutions can be based on the length scales in Eq. (1). A
typical system can be normalized by scales that are natural to the pulse, such as the typical pulse width T0 and peak power
P0. The local dispersion length LD = T 2

0 /|β2| in an optical fibre is defined as the distance in which linear dispersion causes
the pulse to broaden to twice its initial value. Another important length that is particularly important in dispersionmanaged
systems is the so-called residual dispersion length L⟨D⟩ = T 2

0 /|⟨β2⟩|, where ⟨β2⟩ is the average dispersion of the system. Yet
another important length scale is the so-called nonlinear length LNL = 1/(γ P0), and is the distance inwhich a pulse achieves
a nonlinear phase rotation of π at themaximum of the pulse. Finally, in a systemwhere dissipative elements exist, there are
intrinsic amplification distances such as the amplification period LA in transmission systems or the round trip cavity length
LR = cTR, where TR is the round trip time in the laser resonator. Taking into consideration all the mentioned length scales,
one can classify all possible solutions. Indeed, in this review we try to emphasis the length scales as they give a natural
description to the overall pulse dynamics for solutions that arise. To highlight the scaling of the physical model, it is typical
to introduce the non-dimensional parameters t = T/T0, |u|2 = |U|

2/P0 and z = Z/L, where T0, P0 and L is the characteristic
time, power and propagation length of the system, respectively. Using these definitions we obtain

iuz +
s
2
dutt + ϵ|u|2u = i g(z, |u|2, . . .)× u, (2)

where s = −sign(β2) = ±1 for the so-called anomalous (s = +1) and normal (s = −1) dispersion, d = L/LD, ϵ = L/LNL
and g = LG. In the following we describe certain solutions that occur for particular limits of Eq. (2).

1.1. Key analytical solutions of the conservative NLSE

When the characteristic length is equal to both the dispersion and nonlinear lengths (L = LD = LNL → ϵ = d = 1),
special symmetries occur in the conservative NLSE (Eq. (2) with g = 0) and lead to a wide variety of analytical solutions.
Here we review some of the different types of solutions for this particular case. First, following a comprehensive analysis by
Kuznetsov and Spector in [52], we overview standing-wave solutions that propagate along the z-directionwithout changing
their shape. Themost general mathematical form (that also provides a systematic description of all particular solutions) can
be presented through the Weierstrass functions ℘, ζ and σ

u(z, t) = F(t) e−iskz/2, F(t) =
√
s
σ(t + iω′

+ a)
σ (t + iω′)σ (a)

e−ζ (a)t−aζ (ω′), (3)

where the functions σ and ζ are related to the Weierstrass function ℘(x) as

℘(x|ω,ω′) =
1
x2

+


m,n

m2+n2≠0


1

(x − 2mω − 2nω′)2
−

1
(2mω + 2nω′)2


= −

dζ (x)
dx

, ζ (x) =
d log σ(x)

dx
. (4)

Although this presentation seems to be quite complicatedmathematically, it can be efficiently used in numerical simulations
and for the construction of a number of particular solutions exploiting knownproperties of elliptic functions [53]. The double
periodic Weierstrass function℘(x) defined in the complex plane x has two periods: 2ω is the period along the real axis (the
period of |F(t)|2 = −s[℘(t + iω′) − ℘(a)]) and 2ω′ is the period along the imaginary axis. The solution depends on the
parameter a that is defined through ℘(a) = −

k
3 . The restrictions on the parameter a are imposed by the requirement of

real k and are different for different signs of s. The symmetry properties of℘(x) = ℘∗(x∗) = ℘(−x) and periodicity of℘(x)
define two intervals (0, iω′) and (ω, ω+ iω′) (and all periodic continuations) where℘(x) takes real values. Themost general
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solution given by Eq. (3) is quasi-periodic (in t) and presents a nonlinear Bloch-wave function with the quasi-momentum
q = i[ζ (a)− a ζ (ω)

ω
]:

F(t) = Uq(t) eiqt , (5)

where Uq(t) is a periodic function with the period 2ω. The following limiting cases lead to purely periodic (in t) solutions:

(1) s = 1, a = ω, F(t) = ν dn(νt);
(2) s = 1, a = ω + iω′, F(t) = s ν cn(νt);
(3) s = −1, a = iω′, F(t) = s ν sn(νt).

Here dn, cn and sn are the Jacobi elliptical functions, ν2 = e1 − e3, s2 =
e2−e3
e1−e3

, s′2 =
e1−e2
e1−e3

. The parameters e1 > e2 > e3
are defined as: e1 = ℘(ω), e2 = ℘(ω+ iω′), e3 = ℘(iω′). Another important limit of the general solution is whenω′

→ ∞,
giving a plane wave solution: u = λ exp(iλ2z). Further, the general solution Eq. (3) presents a lattice of solitons [54] since:

|F(t)|2 = −
sk
3

+
ζ (iπ/λ)
iπ/λ

+

+∞
−∞

2λ2

cosh2 λ(t − 2nω)
. (6)

In the limit of a large lattice period ω ≫ ω′, Eq. (6) gives single soliton solutions that are different for normal (s = −1)
and anomalous (s = 1) dispersions. In the case of anomalous dispersion, the general solution in this limit is given by the
fundamental soliton: u(z, t) = λ exp(iλ2z/2)/ cosh(λt) (see Fig. 1(a)). In the case of normal dispersion the general solution
in this limit is given by a grey-soliton: u(z, t) = λ(


1 − µ2+iµ tanh[µλ(t−λ


1 − µ2z)]) exp(iλ2z), corresponding to the

power dependence: |u(z, t)|2 = λ2(1−µ2/ cosh2
[µλ(t−λ


1 − µ2z)]). Note that in the limitµ = 1 this solution diverges

into the so-called dark soliton solution u(z, t) = λ tanh[λt] exp(iλ2z) [55–57]. It is possible to obtain more complex
solutions by transformations of these basic solutions using both conventional symmetries of the conservative NLSE and
very specific symmetries linked to its integrability [58–61].

In addition to stationary solutions to the conservative NLSE, there also exist more complex solutions with nontrivial
dynamics of power (intensity) along the z-direction. This is directly relevant to the main topic of this review—management
of the field evolution (along the z) in nonlinear systems. Indeed, periodicity in z can be observed even without any periodic
management of the system parameters. Knowledge of such internal resonances might be used for efficient excitation of
specific nonlinear modes of the system. There are a variety of analytical non-stationary (in z) solutions of the NLS equation
that can be found by a various methods. Indeed, this vastness of solutions is a direct result of the integrability of the NLS
equation [46]. A popular and relatively compact periodic (breathing) 2-soliton solution was presented in [62] for s = 1

u2(z, t) =
4[cosh(3t)+ 3 cosh(t) exp(i4z)]
cosh(4t)+ 4 cosh(2t)+ 3 cos(4z)

eiz/2, (7)

As seen in Fig. 1(b), this solution is a periodic breather with period π/2. The power (intensity) of a general periodic (in z)
N-soliton solution can be presented in the following compact form:

|uN(z, t)|2 = 2
∂2

∂t2
[log det(I + CC∗)], (8)

where C = [cij] is an N × N matrix defined using ci = e2iλ
2
i z+νi as follows: cij =

√
cic∗j

λi−λ
∗
j
ei(λi−λ

∗
j )t , where the λi and

νi are arbitrary complex numbers that satisfy the obvious constraints that prevent singularities in the above expression.
Applications for practical devices which use such periodic solutions with breathing dynamics are as of yet not well explored
apart from the use of the N-soliton solution in optical signal compression. Under certain conditions in specially designed
media the N-soliton solution might play an important role in super-continuum generation [63,64] where nonlinearity
dominates dispersion creating a natural pre-condition for multi-soliton generation.

In comparison to previously described solutions to the conservative NLSE, there exist even more exotic solutions with
non-zero boundary conditions e.g. |u|2 → λ2. One of the most important examples are periodic (in z) solutions (s = 1)

u(z, t) = λ

1 − 2ν

ν cos(Ωz)+ i
√
1 + ν2 sin(Ωz)

√
1 + ν2 cosh(2λνt)− cos(Ωz)


exp(iλ2z), (9)

whereΩ = 2ν
√
1 + ν2 determines the period of oscillation (in z) of the localized bump (dip) in the temporal distribution

of the power. We will call these solutions ‘‘Kuznetsov breathers’’, to pay credit to E. A. Kuznetsov who first discovered such
non-stationary solutions of the NLS equation [65] (see also later publications [66,67]). Interesting solutions with nontrivial
dynamics in z can be derived from the Kuznetsov breathers. For example, letting ν = iµ gives the so-called Akhmediev
breather solution [68,69]

u(z, t) = λ
 (2µ2

− 1) cosh(bz)+ ib sinh(bz)+

1 − µ2 cos(2λµt)

1 − µ2 cos(2λµt)− cosh(bz)


exp(iλ2z), (10)
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a b

Fig. 1. (a) Fundamental soliton solution and (b) 2-soliton solution for the conservative NLSE (2) with g = 0 and s = d = 1. Note that (a) represents a
stationary solution and (b) represents a periodic breathing solution. This is highlighted in the insets which show the evolution of the peak power.

where b = 2µ

1 − µ2. Although these solutions are called breathers, it is a bit misleading as these solutions oscillate in

time t , not in propagation distance z. It is difficult to change nomenclature when it is already accepted by some part of
a community, but here we would like to provide a natural name for such solutions since they are closely associated with
the so-called ‘‘instanton’’ [22,70–72], rather than a breather. Another interesting limit of the Kuznetsov breather (9) occurs
when ν → 0 giving the so-called Peregrine soliton [73]

u(z, t) = λ

1 −

4 + 8iz
1 + 4t2λ2 + 4z2


exp(iλ2z). (11)

Like the Akhmediev breather (instanton), this solution is localized in z and it would be more appropriate to call it an
instanton. This solution, as well as other breather and instanton solutions has recently received a lot of attention in the
theory of freak wave (rare waves of high amplitudes) formation in physical systems that can be modelled by the NLSE with
s = 1 [74–76]. An initial perturbation (lump) into the uniform field (continuous wave) may develop into a breather or
instanton when an effective area over the perturbation exceeds some critical value [75]. The Peregrine instanton can be
treated as a temporally localized nonlinear structure with only one oscillation in z (a one-time-breather), thus capturing the
key feature of freak waves in that they appear out of nowhere and a disappear without a trace. It was recently demonstrated
that the development of a freak wave pattern in the NLSE is most probably linked with the Peregrine instanton with the
peak amplitude close to three times the background level [75]. Further, it has been experimentally demonstrated that in a
nonlinear optical fibre system the generation of femtosecond pulses with strong temporal and spatial localization might be
linked to the Peregrine instanton [76].

Herewe have presented awide range of exact solutions for the particular limit of the conservative NLSEwhen d = ϵ = 1.
Indeed, in this limit more general solutions as well as solutions resulting from the interaction between basic solutions exist.
This wide range of exact analytical solutions and their behaviours represents the deep symmetries and integrability of the
conservative NLSE in this limit. In addition to exact solutions, there are also important approximate solutions to the NLSE. Of
particular interest is in wave-breaking free high-intensity parabolic pulses (s = −1) [77]. By neglecting a linear dispersive
term, it was shown that the pulse form remains parabolic with the addition of a quadratic phase profile. Although the pulse
temporal profile remains parabolic, its amplitude decays monotonically while the pulse duration increases monotonically
with propagation. Thus the pulse is not a breather, but both nonlinearity and dispersion are acting in such a way as to
preserve its overall temporal profile.

1.2. The path average (guiding-centre) solitons in the presence of periodic gain and loss

Fundamental optical solitons in conservative systems experience effects from both anomalous chromatic dispersion as
well as nonlinearity. The dispersive broadening of the pulse propagating in the anomalous dispersion region can be exactly
compensated by the nonlinear phase shift, leading to stable and robust solutions. Indeed, the potential for solitons as optical
bits for optical fibre transmission systems was recognized immediately. However, in such transmission systems the signal
power is attenuated in passive fibre due to inherent fibre loss (see Fig. 2, a), and needs to be compensated using optical
fibre amplifiers. The recovery, though, is not complete because amplified spontaneous emission noise from the amplifier
is added to the signal, degrading the signal-to-noise ratio. Optical amplification can be implemented in a number of ways
using Erbium-doped fibre amplifiers (EDFA), semiconductor optical amplifiers (SOA) or distributed Raman amplification
(DRA) [78–81]. Of fundamental importance to such transmission systems is the stability of the fundamental soliton in
the presence of periodic gain and loss. For moderate pulse durations and peak powers, when the amplifier spacing LA
is considerably shorter than the characteristic dispersion and nonlinear lengths (LD, LNL) a natural separation of scales
highlights that at leading order the pulse evolution between two consecutive amplifiers is governed only by the gain
and loss dynamics (see Fig. 2). These factors cause a change in the peak power, however the profile of the pulse remains
approximately unchanged. It is only at the next order, and for long-scale propagation where dispersion and nonlinearity
effect the pulse.

Mathematically such a system can be described by Eq. (2)where the gain only depends on propagation distance g = g(z).
Herewedescribe the slow (average) dynamics of a fieldu on the propagation scale larger than LA, the so-called path-averaged
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a b

Fig. 2. Typical optical systems where dissipative elements are included along with dispersion compensation. The top panel shows schematically:
(a) consecutive fibre spans and amplifiers (grey triangles); and (b) three round trips with periodic power out-coupling (out facing arrows) from a laser
cavity. The value ⟨P⟩ is the average power, and zn is the length of the nth segment or round trip. (a) Example of a telecommunications system where the
power is attenuated by fibre loss and regenerated by amplification. (b) Example of a laser application where the power is amplified by an active fibre and
part of the signal is output at discrete points.

(guiding-centre) model [50,82,83]. Consider a physically realistic example where the amplifiers are equidistantly spaced by
an interval LA. If treated as a point-like action (e.g. EDFA or SOA), the form of the amplification to compensate the fibre loss
α(z) between two consecutive (k and (k− 1)) amplifiers is a piece-wise constant function with the loss coefficient αk in the
exponent, giving

g(z) = −α(z)+

N
k=1

[exp(αkla)− 1]δ(z − kla). (12)

Here la = LA/L is the normalized amplification period, αk[1/km] = 0.05 ln(10)ᾱk[dB/km] is the loss coefficient, where ᾱk
is the loss characteristic of the fibre given in typical engineering units, the index k accounts for the variances of attenuation
in different fibre spans, and δ is the Dirac delta function, showing the discrete nature of the amplification at N points
along the fibre. In the case where there is negligibly small variances in the fibre loss from span to span αk = α, and
g(z) is periodic with period la. When the gain g only depends on z, it is possible to make the following transformation
a(z, t) = u(z, t) exp(

 z
0 g(z ′)dz ′

− ⟨g⟩z) into Eq. (2), where the average gain level is given by ⟨g⟩ =
 la
0 g(z)dz/la.

The evolution of the transformed signal envelope a(z, t) is then given by the normalized NLSE with a periodic nonlinear
coefficient

i
∂a
∂z

+
s
2
∂2a
∂t2

+ c(z)|a|2a = 0, (13)

where the periodic function c(z) = exp[2
 z
0 g(z ′)dz ′

− 2⟨g⟩z], and we have let, similar to the previously discussed
limit for analytic solutions to the conservative NLSE, L = LNL = LD. This transformation allows for c(z) to describe the
power oscillations between c(0) = c(la) = 1 and c(la − ϵ) = exp[−2αla] (ϵ ≪ 1) due to fibre loss and amplifier
gain, which is accounted through the transformation of the pulse power at the locations of the optical amplifiers. Being
periodic, the nonlinear coefficient c(z) can be presented through a Fourier series c(z) =


∞

m=−∞
cm exp[i2πmz/la],

where the Fourier coefficients cm are easily found as cm = (1 − exp[−2αla])/(αla + i2πm). The function c(z) then can
be further split into constant and oscillating parts: c(z) = ⟨c(z)⟩ + c̃(z) where ⟨c(z)⟩ = (1 − exp[−2αla])/(αla) and
c̃(z) =


m≠0 cm exp[i2πmz/la] with ⟨c̃(z)⟩ = 0. Following [6,82], the function a(z, t) can be divided into a slowly varying

portion as(z, t) (the guiding centre soliton) and a rapidly varying portion ar(z, t) where ⟨ar(z)⟩ =
 la
0 ar(z ′)dz ′/la = 0. It

can be shown that the rapidly varying portion ar(z, t) can be expanded in powers of la ≪ 1 [84]. Substituting a(z, t) =

as(z, t)+ a0r (z, t)+ laa1r (z, t)+ O(l2a) into Eq. (13) and averaging over the amplification period, we obtain at leading order
the path average propagation model which is the re-normalized NLSE [50,82–84]

i
∂as
∂z

+
s
2
∂2as
∂t2

+ ⟨c⟩|as|2as = 0. (14)

The next term in the expansion at O(la), first found by Kodama and Hasegawa (see e.g. [82,84,85]) gives the leading order
rapidly varying portion

a0r (z, t) = i
 1
2α

+
la
2

− z −
la exp(−2αz)

1 − exp(−2αla)


|as|2as. (15)

Here the evolution of a0r (z, t) is for the interval from z = 0 to z = la, then repeated due to periodicity. If the initial
conditions for a soliton pulse satisfy the condition a0r (kla, t) = 0 (k = 1, 2, . . .), there will be reduced oscillations caused
by the difference of the field a(z, t) from the average, slow varying components as(z, t). Indeed, suppression of the rapidly
oscillating portion of the pulse becomes an important issue when the amplification period is approximately equal or close
to the characteristic nonlinear or dispersion length (la ∼ 1).
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Traditional soliton propagation can be affected by various effects such as noise perturbations or pulse-to-pulse
interactions, and in many practical situations that rely on stable soliton parameters some form of soliton control is
necessary [86]. Noise impacts on solitons can be transferred into statistical variations of soliton parameters including
timing (Gordon–Haus–Elgin) jitter [87–90], phase (Gordon–Mollenauer) jitter [5], and other deviations. Integrability of the
path-averaged model makes it possible to use well-developed mathematical techniques to analyse the effects of numerous
practical perturbations and boundary conditions thatmight be especially important for soliton lasers. Indeed, guiding centre
soliton theory can provide essential insight into the known side-band generation of Fabry–Perot or ring soliton lasers, which
can be mathematically modelled with Eq. (1) with gain (12). Due to the periodic gain and loss the path average soliton
can develop side-bands in its spectral profile which can lead to instabilities. Here we provide a simple intuitive physical
explanation of such an instability. The NLSE fundamental soliton u(z, t) = λ exp(iλ2z/2)/ cosh(λt) has a wavenumber
(propagation constant) ksol = λ2/2, while linear waves have a dispersion relation klin = −ω2/2 (ω being the frequency
variable). The periodic variation of the gain and loss produces dispersive perturbations with wavenumber kperiodic = 2π/la.
The phase matching condition necessary for providing efficient generation of dispersive waves is kperiodic = ksol − klin,
leading to the resonance frequency ωres =


4π/la − λ2. Assuming a slightly perturbed soliton solution to the NLSE

λ ∼ 1, the resonance frequency ωres ≫ 1 for la ≪ 1. Since the spectral density of the fundamental soliton solution is
I(ω) = |E(ω)|2 = π2/(4 cosh2

[πω/(2λ)]), we see in this limit that I(ωres) ≪ 1 so that the resonance condition is satisfied
at frequencies where the soliton spectral density is small. In this case the path-average soliton theory works well and the
generation of radiative linear waves is suppressed. Increasing la to 4π/λ2 leads to strong phase matching where the soliton
spectral density is high and a large fraction of the soliton energy will be leaked away into dispersive waves. This effect is
seen in the generation of spectral side bands, also known as Kelly side-bands [91] that are routinely observed in the spectra
of soliton lasers. In the physical units LA is bounded above by 8Zsol ∝ T 2

sol ∝ 1/Psol, where Tsol and Psol are soliton width
and peak power, respectively. This relation restricts the possible pulse outputs from a soliton laser since for a certain cavity
length it imposes a lower bound pulse duration before instabilities arise.

1.3. Basic solutions of the GLE

In the previous sections we reviewed important solutions to the conservative NLSE as well as a physical situation with
dissipation, however the particular scalings involved allowed for an averaging procedure where the slow dynamics can be
described by the conservative NLSE, giving rise to guiding centre soliton solutions. In general, a physical system can have
a wide variety of linear and nonlinear dissipative elements. In many situations an averaged model based on the GLE can
describe both qualitative and quantitative properties of the system. The normalized general GLE we present here is given by

iuz +
s
2
dutt + ϵ|u|2u = i [gu + νutt + F(|u|2, c1, c2, . . .)|u|2u], (16)

where all normalizations are as in Eq. (2), andwe see that theGLE differs from the conservativeNLSE since the right hand side
contains distributed dissipative terms. Specifically, the term gu represents linear gain/loss, the term νutt represents spectral
filtering, or so-called gain dispersion, and the term F(|u|2, c1, c2, . . .)|u|2u represents nonlinear gain/loss. The function F is
left general here, and depends only on the intensity of the field as well as constant parameters.

When F(x) = c1, Eq. (16) is the cubic GLE (CGLE) which has an important class of solutions that are localized wave-
packets with a non-trivial time dependence in the phase. In the optics literature these solutions are called ‘‘chirped solitons’’
u(z, t) = η exp[iqz]/[cosh(t/τ)]1+iC , where η, τ , C and q are completely determined by the parameters s, d, g , ν, and c1 in
Eq. (16). This is an important characteristic of CGLE solutions which differs from conservative NLSE soliton solutions. For
the conservative NLSE, families of solutions exist as long as certain relations between the pulse parameters are satisfied.
For solutions to the CGLE, the pulse parameters are completely determined by the equation parameters. The chirped soliton
solution was first found by Hocking and Stewartson [92] and then re-derived in the different physical context by Pereira
and Stenflo [93]. An important property of these solutions is the nontrivial phase across such pulse solutions, allowing
for more complex pulse-like solutions to be found in both the anomalous (s = 1) and normal (s = −1) dispersion
regimes. We will see in the following sections that a non-trivial phase is an important characteristic of dispersion-managed
solitons. Another solution of the CGLE is described by the Nozaki–Bekki hole solution [94] u(z, t) = (ã tanh[k(t − z/V )] +

b̃) exp[i ln[cosh(k(t − z)/V )]/k + iψ̃ + ic̃z], where again the parameters of the solution are completely determined by the
equation parameters. This solution has an evident link with a grey-soliton of the conservative NLSE.

An extension of the CGLE is when the function F(x) = c1 + c2x, giving an additional quintic gain/loss term, resulting in
the so-called cubic–quintic GLE (CQGLE). The use of a quintic loss term (c2 < 0) is often used as a stabilization mechanism
to prevent pulse collapse (where the pulse develops a singularity at a finite distance z) in the CGLE when c1 > 0. Note
however that a stable soliton can also exist under some conditions due to the phase effects without need for an additional
stabilizing quintic term in the CGLE [95,96]. As expected, the added quintic term introduces a complexity that restricts
the number of analytic solutions that can be found for the CQGLE. One stationary solution to the CQGLE that has recently
receivedmuch attention in mode-locked fibre lasers operating in the all-normal dispersion regime is a generalization of the
Hocking and Stewartson solution (s = −1): u(z, t) = η

√
1/(cosh(t/τ)+ B) × exp[−iC(ln(cosh(t/τ) + B)) + iqz] [97,

106]. This solution has co-dimension one, meaning that the solution parameters cannot be expressed entirely in terms of
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the equation parameters, leading to additional assumptions on the equation parameters. No solutions where the solution
parameters are completely expressed as a function of the equation parameters have been found to the CQGLE. However,
there is an interesting class of approximate solutions found recently with particular relevance to highly chirped pulse
oscillators [98–102]. Due to the difficulty in finding analytical solutions to the CQGLE, there has been extensive numerical
studies performed over the past two decades, resulting in solitary wave solutions such as stationary, pulsating, chaotic, and
exploding solitons [36,103–105]. Further, in addition to these solitary wave solutions there also exist coherent structures of
different types such as fronts and domain boundaries, to name a few (see e.g. [10,35,36,106] and references therein).

Finally we mention an interesting asymptotic solution to Eq. (16) where F(x) = ν = 0, s = −1, and g > 0. Linearly
chirped parabolic solutions of the form u(z, t) =


P(z)(1 − t2/τ 2(z)) × exp[i[C(z)t2 + q(z)]] exist and act as global

attractors regardless of the initial conditions. In a similar analysis as that used in [77], the pulse parameters can be shown
to evolve self-similarly, with the pulse amplitude and duration increasing exponentially with propagation. Such solutions,
so-called ‘‘similaritons’’, have received much attention in applications such as optical processing as well as mode-locked
lasers.

2. Dispersion-managed solitons: introduction

2.1. Basics of dispersion management in optical communications and laser applications

Nonlinear distributed systemswith periodic variations of one or several key parameters present a very important branch
of nonlinear science with a number of practical applications in solid state physics, optics, plasma physics, hydrodynamics,
wave physics, and other fields. The impact of nonlinear effects on wave propagation or modifications of the nonlinear wave
properties by a medium with periodically varying parameters are two important fundamental problems that have been
actively studied in the past decades. In particular, the control of dispersion is feasible in many physical systems. Here we
will focus on dispersion-management in optics, specifically on fibre-optics, where dispersion control has achieved a great
level of sophistication.

A light pulse is an electromagnetic wave-packet containing a continuum of frequency components. These spectral
components travel at different group velocities leading to a spreading of the pulse energy over time as it propagates through
the dispersive medium. A characteristic of this effect is quantified by the fibre group velocity dispersion (GVD), which is
measured either by the GVD coefficient β2 [ps2/km] (picoseconds squared per kilometre) or D [ps/nm/km] (picosecond per
kilometre per nanometre). The dispersion parameter β2 is related to D by β2 = −λ20D/(2πcl), where λ0 is the central
wavelength of the signal and cl is the speed of light. Roughly speaking, in a optical fibre with dispersion D ps/nm/km,
a pulse with a bandwidth of 1 nm will spread in time by D ps over 1 km. Depending on the central wavelength of the
optical field travelling in the fibre, dispersion can be positive (anomalous) D > 0 (β2 < 0), where high frequencies travel
faster than lower frequencies, or negative (normal) D < 0 (β2 > 0), where low frequencies propagate faster than high
frequencies. The dispersion of standard transmission single mode fibre (SMF) is positive (normal) for wavelengths shorter
than 1300 nm and negative (anomalous) for wavelengths longer than 1300 nm. At the important wavelength 1550 nm,
where losses in the fibre are minimized, the dispersion β2 ∼ −20 ps2/km. For low signal powers (linear regime) at this
wavelength, a 10 ps pulse will spread ∼50 ps, or 5 times its original pulse duration, over 125 km. Further, a 1 ps pulse
will undergo 100 times the dispersive spreading as a 10 ps pulse, showing that dispersive broadening becomes increasingly
important for shorter pulse propagation. Dispersive broadening has major implications for a variety of applications that
use optical fibre, one of which is optical communication systems and the growing demand for its capacity. Increasing the
per-channel rates of optical communication systems imposes the use of shorter time slots allocated for each transmitted
symbol and, consequently, shorter optical carrier pulses. For instance, in fibre-optic systems operating at the channel
rates of 10, 40, 100 and 160 Gbit/s the corresponding temporal interval between neighbouring carrier pulses is 100,
25, 10 and 6.25 ps, respectively. The width of a carrier pulse has to be shorter than this, typically by factor of two or
more.

In the linear (low power) propagation regime, compensation of the dispersive pulse broadening can be achieved by
using a medium with the opposite sign of dispersion producing the re-compression of the dispersed pulse. Of importance
is to nullify (minimize) the total accumulated chromatic dispersion, and the order in which the transmission fibre and
compensating devices used is irrelevant. Namely, linear compensation can be done before transmission (pre-compensation),
after transmission (post-compensation), in-line or using any combination of those approaches providing the same overall
dispersion. The idea to use a specially designed compensating fibre to overcome the dispersion of single-mode fibre has
been proposed for transmission in 1980 [107]. The basic dispersion compensation system consists of a transmission fibre
(e.g. SMF) and dispersion equalizer fibre with opposite-signed dispersion (e.g. dispersion compensating fibre (DCF)) [107].
The dispersion compensation technique has been used successfully both in long-haul communication systems and in
existing terrestrial optical links, most of which are based on standard telecommunication fibre with large dispersion at
1550 nm [5–7]. Although these systems were inspired by ideas from linear propagation, there were some indications
that the overall accumulated response (transmission function) of the optical fibre medium was nonlinear at the level of
powers used in fibre communications. For example, in a linear communication channel the improvement of the signal-to-
noise ratio, a crucial characteristic directly relevant to a quality of transmitted signal, can simply be achieved by increasing
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the signal power while keeping the noise at the same level. However, in a typical nonlinear fibre communication system
the bit-error rate (BER) measured in the optical fibre channel initially improves with growing signal power, reaches a
minimum corresponding to the best system performance, then is degraded at higher signal power levels due to nonlinear
impairments.

Nonlinearity in optical fibres arises from an instantaneous increase in the refractive index by an amount proportional
to the optical power (Kerr effect). The modulation of the optical power leads to the corresponding modulation of the
refractive index which in turn leads to a change in the phase of the propagating signal. Nonlinearity affects different
signal spectral components, delaying the high-frequency spectral components relative the low-frequency components.
When considering nonlinearity in such dispersive systems, a non-trivial interplay between dispersion and nonlinearity
determines specific properties of optical signal evolution in the fibre link. Distinct effects occur in the dispersion managed
nonlinear regime including intra-channel and inter-channel pulse interactions [108–112], cross-talks [113], four-wave
mixing [5,114–117], and stabilization and control by nonlinear gain [118,119]. Indeed, using particular arrangements of
the dispersion compensation in the nonlinear system, or dispersion management, it is possible to suppress many of these.
There are two principal approaches (that often converge) to overcome fibre transmission impairments: in the first (that
can be called ‘‘linear’’) both the chromatic dispersion and nonlinearity are treated as detrimental factors, while in the
second the nonlinear and dispersive effects might be partially counterbalanced cancelling or suppressing each other (such
systems can be called ‘‘nonlinear’’). In principle, detrimental nonlinear effects in the ‘‘linear’’ systems can be used under
proper arrangement to improve transmission characteristics of optical communication systems. We will use here the term
dispersion management when considering nonlinear systems, in contrast to dispersion compensation that is applied to linear
systems or linear (low power) operational regimes.

In this review we will focus on dispersion management in optical fibre based systems in telecommunications and
laser applications. To give an idea of the breathing nature of pulse solutions in dispersion managed systems, we show
a typical example of dispersion management from a communications and laser applications in Fig. 3. Indeed, dispersion
management has been crucial for understanding systems in both applications. In recent history of communications systems
the role of dispersion and its application has highlighted many rather dramatic twists in the importance of different
physical phenomena in optical fibres with a corresponding impact on technologies. First, fibre dispersion was treated
as a purely detrimental effect and the development of dispersion-shifted fibre, where a dispersion value close to zero
near 1550 nm was proposed. However, later it was found that transmission in fibres with small dispersion suffer from
nonlinear four-wave mixing that is dramatically enhanced due to suitable phase matching conditions at small dispersion.
Next the proposal of dispersion management with optical fibres with high local dispersion but low net-dispersion was
implemented. Recently developments in linear coherent transmission offers a new possibility to compensate dispersion
electronically at the receiver, allowing for uncompensated transmission over thousands of kilometres. However, such large
dispersive broadening in such systems can lead to the overlapping of a large number of optical bits and create additional
irregularities [120]. Further, improvement of the signal-to-noise ratiowill inevitably introduce nonlinearity in such systems.
We anticipate that future analysis of nonlinear effects in coherent transmission could lead to a better way to manage
dispersion. Indeed, development towards new solutions in such communications systems is needed since in the next decade
the total capacity of the current fibre transmission systems will be saturated by the ever-increasing amount of Internet
applications and data flow. In ultra-short fibre lasers a similar history has highlighted the important role of dispersion
management in these inherently dissipative, periodic systems. The first soliton fibre lasers have been constructed entirely
of fibre with anomalous group-velocity dispersion to generate fundamental solitons of the NLSE [121]. However, similar to
guiding solitons, the very nature of solitons in such periodic systems restricts the parameter regimes possible from such
lasers. One of the most effective ways to circumvent the instabilities and limitations imposed by soliton laser operation
is to construct fibre lasers with segments of both anomalous and normal GVD, so the cavity consists of a dispersion map
[122,123]. Since the pulse solutions (often called ‘‘stretched pulses’’ in the context of laser applications) are compressed and
broadened per cavity round trip, such lasers produce pulses where the average pulse duration is increasedwhile the average
peak power is decreased when compared with a laser that produces the same energy pulses with uniform dispersion. This
has the overall effect of reducing the nonlinear effects and their associated instabilities in the anomalous dispersion fibre.
The breathing evolution also disrupts the phase-matching to dispersive waves that occurs in the generation of side-bands.
Current mode-locked fibre lasers consist of a cavity without any anomalous dispersion fibre, but rely on other methods for
dispersion compensation such as spectral filtering.

Fig. 3 shows two physical examples of the pulse dynamics in dispersionmanaged optical systems. Clearly these solutions,
so-called DM solitons, are different than classical optical solitons (solitons of the NLSE with uniform dispersion) which
rely on the continuous balance between the effects of linear dispersive pulse broadening and nonlinearity. Optical pulses
propagating in a dispersion-managed system experience a periodic change of their key parameters such as pulse width,
power and the phase parameter (chirp), following the periodic variations of the dispersion. The change in the sign of
dispersion causes the DM solitons to temporally broaden and re-compress or ‘‘breathe’’ as they propagate. Moreover, the
use of periodic distributed Raman amplification in fibre lines makes it possible to control periodic variations of the signal
power—the technique is known as nonlinearity management [112,124]. In general, the properties of DM solitons are quite
different than conventional NLSE solitons and one of the goals of this paper is to overview the physics and mathematics of
DM solitons in the context of transmission and ultra-short fibre lasers extensively studied in the past decades. The key ideas
of dispersion management and the dynamics of DM solitons that we plan to discuss in this review is:
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Fig. 3. Typical power evolution in optical systems where dissipative elements are included along with dispersion compensation. (a) Example from a
transmission line in optical communications. (b) Example from a mode-locked fibre laser. SMF — single-mode fibre; DCF — dispersion-compensated fibre;
EDFA — erbium-doped fibre amplifier; EDF — erbium doped fibre; SESAM — semi-conductor saturable absorber mirror.

• How low net dispersion (also accumulated or average dispersion) of the periodic cell allows one to control effects that
are dependent on the overall dispersion of the system.

• How high local dispersion in each section of the dispersion map allows for the control of effects that depend on the local
value of dispersion. For instance, phase matching for the efficiency of four-wave-mixing, or dispersive pulse broadening
that reduces peak power and, respectively, nonlinear effects.

• In laser oscillators, the generation and management of broadened low peak power pulses may be combined with the
extraction of (or compression to) short-duration, high peak power of pulses with comparable energy content.

• The shape and key pulse characteristics such as peak power, width and chirp are not constant during propagation within
the periodic cell (e.g. cavity), but experience large oscillations leading to ‘‘breathing-like’’ soliton dynamics.
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• Dispersion management can be used to increase the energy of the stable breathing pulse compared to the NLSE soliton
with the same pulse width at the same average dispersion.

• With dispersion management stable pulses can propagate with any sign of net-dispersion and even at the zero path-
average dispersion.

2.2. DM soliton characterization and visualization

There are two main propagation scales in typical DM soliton systems: (i) the ‘‘fast’’ scale corresponds to the DM soliton
dynamicswhich occur over one dispersionmap period; and (ii) the ‘‘slow’’ scale corresponds to propagation distanceswhich
are much larger than the dispersion map period. Often the fast dynamics can be captured by obtaining evolution equations
on key pulse characteristics such as pulse width, peak power, energy, chirp parameter and bandwidth. The particle-like
properties of solitons make it possible to derive under some reasonable assumptions a closed system of coupled ordinary
differential equations (ODES) that well approximate the key features of soliton dynamics. This important simplification
is a direct consequence of the soliton being a wave-packet that can be well-approximated by a finite number of degrees
of freedom. Instead of the analysis of partial differential equations that govern the field evolution, one can use a finite
set of ODEs to understand the intra-map dynamics. Both the variational method and the method of moments have been
used to derive such ODEs for nonlinear Schrödinger-type equations. The variational approach [125] relies on the ability
to restate the NLSE in terms of a variational problem in which the Lagrangian is to be minimized for a particular ansatz
function. It was first used for NLSE-type equations by Anderson in 1983 [126] and has since been extensively used tomodel a
variety of perturbed NLSE systems (see e.g. [127–130] and references within). Themethod ofmoments (or rootmean square
momentum method), first used in nonlinear optics as early as 1971 [131], quantifies certain pulse characteristics such as
pulse duration and peak power in terms of integral (over time) quantities. The governing partial differential equation can
be algebraically manipulated resulting in a set of ODEs describing the evolution (in z) of the integral quantities [132]. It is
interesting that although both the variational method and method of moments (or RMS momentum method) have been
used to accurately describe GLE-based models, to our knowledge a formal mathematical analysis comparing the methods
has not been performed outside of a few specific examples.

Here we will focus on work that has been done regarding certain integral quantities called the root-mean-square (RMS)
characteristics which has had success describing, among others, pulse characteristics in fibres [133,134]. To describe the key
particle-like characteristics of the pulse field u(z, t)we consider the evolution of the following integral quantities

TRMS(z) =


t2|u(z, t)|2dt
|u(z, t)|2dt

1/2
(17a)

PRMS(z) =


|u(z, t)|4dt
|u(z, t)|2dt

(17b)

CRMS(z) = MRMS(z)TRMS(z) =
i
4


t[u(z, t)u∗

t (z, t)− u∗(z, t)ut(z, t)]dt
|u(z, t)|2dt

(17c)

ΩRMS(z) =


|ut(z, t)|2dt
|u(z, t)|2dt

1/2
, (17d)

which describe the RMS pulse duration TRMS , pulse power PRMS , chirp parameter CRMS ≡ MRMSTRMS and bandwidth ΩRMS .
These integral pulse characteristics can be expressed through the corresponding local pulse parameters by considering

u(z, t) =


P(z) f


z,

t
T (z)


exp


i
M(z)
T (z)

t2

, (18)

with the parabolic (in time t) phase and a power distribution given by function f (z, t). The links between RMS integral
quantities and local pulse characteristics are given by

TRMS(z) = T (z)


x2|f (z, x)|2dx
|f (z, x)|2dx

1/2
= T (z)⟨x2⟩f (19a)

PRMS(z) = P(z)


|f (z, x)|4dx
|f (z, x)|2dx

= P(z)⟨|f |2⟩f (19b)

CRMS(z) = M(z)T (z)⟨x2⟩f (19c)

Ω2
RMS(z) =

1
T 2(z)


|fx(z, x)|2dx
|f (z, x)|2dx

+ 4M2(z)⟨x2⟩f . (19d)
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Fig. 4. The slow evolution of the RMS parameters for a typical piecewise constant dispersion map.

In Eq. (19) the integrals depend on z due to the structural function f (z, t/T (z)). When the propagation is ideally self-similar
f (z, t/T (z)) = f (t/T (z)), the integrals (19) do not depend on z. In this case the RMS and local pulse parameters evolve in
exactly the same way and are described effectively by the same evolution equations. However, when there is a difference
between the RMS and local quantities then it is due to the change in the structural function f (z, t). Indeed, this comparison
can be made to describe and quantify slight deviations from true self-similar propagation regimes.

Since the RMS parameters depend on propagation distance it is important to visualize them in the appropriate way.
Fig. 4 illustrates how such parameters evolve in a dispersionmanaged system over one piece-wise constant dispersionmap.
The evolution of the parameters illuminates that the DM soliton stretch and compress twice per cavity round trip, reach a
minimum duration in the middle of each segment, and acquire both signs of chirp, typical of conservative DM solitons. The
same information can be visualized in the phase plane of the RMS parameters. Fig. 5(a) shows the phase plane dynamics for
a conservative DM soliton as shown in Fig. 4. Here we see the ‘‘crescent’’ shaped phase portrait that is typical of DM solitons,
with each curve in the crescent corresponding to a section of anomalous or normal dispersion [135]. In the following section
wewill show how the evolution of the RMS integral quantities (17) can be presented as a system of ODEs and in some limits
solved analytically. This simple and transparent method has been used extensively in DM systems and is especially useful
in applied problems where massive multi-parametric optimization modelling is required.

RMS quantities are also important to classify the phase shifts caused by nonlinearity and dispersion per map period.
These phase shifts can be quantified by

φNL(L) =

 L

0
γ PRMSdz, φD(L, t) =

 L

0
β2Ω

2
RMSdz, (20)

where φNL (φD) are the accumulated nonlinear (dispersive) phase shifts in a fibre of length L. There are two quantities that
are related to the accumulated phase shifts that are commonly used to classify the nonlinearity or dispersive properties of
pulse propagation in optical fibre. First, the maximum nonlinear phase shift φmax

NL = Max(γ PRMS) quantifies the variation of
the phase across the pulse. If excessive, it can influence the spectral and temporal profiles of a pulse and lead to nonlinear
instabilities and pulse break-up or fission. Second, the maximal dispersive phase shift is commonly given by a quantity
known as the ‘‘map strength’’. For a k-step piecewise constant dispersion map with GVD coefficients β(k)2 and length L(k) for
the kth link, the map strength is given by

S =


k

|β
(k)
2 |L(k)

k
L(k)

× Max (Ω2
RMS), (21)

where Max(Ω2
RMS) is the maximum square of the bandwidth in the dispersion map. This definition is an extension of the

commonly usedmap strength definitionwhereMax (Ω2
RMS) =


Min (T 2

RMS)
−1. Aswewill see, since theDMsoliton dynamics

relies on the interaction between the peak power and pulse bandwidth, the map strength has an upper bound in its value
due to nonlinear instabilities which occur for φmax

NL ∼ 2π .
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Fig. 5. Visualization of dispersion managed soliton dynamics. (a) Phase plane dynamics showing the evolution of pulse parameters over one dispersion
map period for a conservative DM system. (b) Poincaré map showing the stroboscopic long-scale evolution of the pulse parameters at one particular
point (shown here in the middle of the anomalous segment) in the dispersion map over many map periods. The examples shown here correspond the
conservative case in (a), and a dissipative DM solution whose initial condition is the same as the DM soliton considered in (a). Note the dissipative terms
attract the solution to a different point in the phase space.

In addition to the analysis of the fast dynamics in dispersionmanaged systems, the slow evolutionmay be described using
a variety ofmathematical approaches, including, amongothers, Hamiltonian averaging in the spectral domain, the expansion
of the solutions in the basis of Gauss–Hermite functions, averaging based on using a Lie-transformation, and multiple-scale
averaging. In this review we do not aim to present all of these important techniques already comprehensively discussed
in the literature. However, we will use only some of these various methods that in our view are the most natural to the
considered problems and can be presented in a relatively simple and clear way while describing the main physical features
of the slow DM soliton dynamics. Such slow dynamics can be visualized at one particular point in the dispersion map,
giving a ‘‘stroboscopic’’ evolution, or viewing the solution in terms of a Poincaré map in the periodic system. Fig. 5(b) shows
the stroboscopic evolution of the RMS quantities in the conservative case shown in Fig. 5(a) as well as an example where
dissipative elements are involved. Here the quantities are shown at a particular point in the map, and for the conservative
DM case the initial conditions satisfies the conditions for exact periodic evolution, thus the point in themap stays stationary.
However, for the casewhen dissipative terms are included the flow spirals to a sink point, representing the periodic solution.
The flow to a point in the phase space is not always the case, and it is possible to have DM soliton evolution that is not
perfectly periodic, which would be represented in the absence of a sink point in such a stroboscopic visualization.

3. Dispersion-managed solitons in Hamiltonian systems

3.1. Introduction and historical perspective

In Section 3 we will overview DM solitons in Hamiltonian systems by considering the rather general model of optical
signal propagation in a system with periodic dispersion management and periodic amplification. Similar to the system
considered for guiding centre solitons in Section 1.2, the governing equation for such a dispersion managed system is
modelled by the normalized NLSE

i
∂a
∂z

+ d(z)
∂2a
∂ t2

+ c(z)|a|2a = 0. (22)

To reiterate what was presented in Section 1.2, the field transformation and normalizations used in Eq. (22) are

a(z, t) = u(z, t)× exp
 z

0
g(z ′)dz ′

− ⟨g⟩z


(23a)

g(z) = −α(z)+

N
k=1

[exp(αkLa/L)− 1]δ(z − kLa/L), (23b)

d(z) = d̃(z)+ ⟨d⟩ = −
(β̃2(z)+ ⟨β2⟩)L

2T 2
0

=
λ20(D̃(z)+ ⟨D⟩)L

4πclT 2
0

, (23c)

c(z) = c̃(z)+ ⟨c⟩ = γ (z)P0 L exp

2
 z

0
g(z ′)dz ′

− 2⟨g⟩z

, (23d)

where time, distance, and power have been normalized by T0, L, and P0 respectively and the normalized dispersion
d(z) = d̃(z) + ⟨d⟩ represents a sum of a periodically varying high local dispersion (⟨d̃(z)⟩ = 0) and a constant residual
(average) dispersion (⟨d⟩ ≪ d̃). The variation in nonlinearity c(z) is due to different fibreswith potentially different intrinsic
parameters (such as effective mode area) as well as a periodic (with period LA/L) contribution due to the power decay from
fibre loss as well as lumped amplification. Eq. (22) possesses a conserved quantity E =


|a(z, t)|2dt that is the energy

of the system. Optical pulse dynamics in dispersion-managed transmission systems is determined by the combined action
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of fibre loss, periodic amplification, self-phase modulation and chromatic dispersion. It should be pointed out that these
effects are not additive and pulse evolution critically depends on the order in which dispersion compensation is realized.
Strong interference of the effects of nonlinearity and varying dispersion leads to a rich variety of possible configurations for
dispersion management.

As discussed in Section 1, the various length scales in the model equation (22) determine different operation regimes. In
addition to the nonlinear length LNL, amplification length LA, and local dispersion length LD, the inclusion of a dispersionmap
adds two new length scales, that of the residual dispersion length L⟨D⟩ = T 2

0 /(2|⟨β2⟩|) as well as the period of the dispersion
map LDM . Consideration of these length scales is the key to understanding the many limits available for pulse solutions to
Eq. (22). Some of these limits include
• Lossless (LA = 0) and effectively lossless (LA ≪ LDM ) systems.
• Typical terrestrial system implementation for T0 ∼ 10’s of ps (LDM = LA).
• Short-scale management (LDM ≪ LA).
• Strong dispersion management (LD ≪ L⟨D⟩, LNL).
• Weak dispersion management (LDM ≪ LD, L⟨D⟩, LNL).

In the following sections we highlight many aspects of dispersion management. Before we get into the details, it is
important to understand the historical perspective of why dispersion management became a relevant subject. Soliton
transmission had been theoretically proposed, however some limitations in practical communications systems were soon
discovered. In a transmission system, it is important to be able to predict the arrival time of the optical bit as well as
distinguish it from other radiation. In soliton transmission systems amplifiers introduce amplified spontaneous emission
noise which is added to the signal. The noisemodulates the soliton frequency randomly, which leads to random timing jitter
through the GVD of the fibre [87–90]. The magnitude of the so-called Gordon–Haus–Elgin timing jitter (or variance of the
fluctuation of arrival time of a pulse) is proportional to the GVD of the fibre for pulses of the samewidth. Thus for a particular
pulse width, to reduce the timing jitter one needs have the GVD of the fibre close to zero. In addition to reducing the timing
jitter, it is also important to be able to distinguish the optical signal from the noise added by the amplifiers. This ability is
quantified by the so-called signal-to-noise ratio [7]. The soliton area theorem states the peak power is proportional to the
GVD resulting in an increased signal-to-noise ratio for larger values of GVD for a particular pulse width. Thus by tuning the
GVD you can minimize one detrimental aspect for transmission, but only at the expense of maximizing another, imposing a
fundamental limit to soliton transmission systems. A natural idea to circumvent these issues was to allow the transmission
line to be constructed from alternated fibres with anomalous or normal dispersion. Thus the transmission system can have
a low path-averaged chromatic dispersion, but a high local one, thereby suppressing the Gordon–Haus–Elgin timing jitter as
well as four-wavemixing simultaneously, but still having high signal-to-noise ratios. In [114] it was proposed to incorporate
a section of dispersion compensating fibre into the standard periodic soliton transmission line before each amplifier. This
technique was successful as it reduces the power required, compared to an uncompensated (constant dispersion) soliton
system, and increases both the maximum transmission distance and the range of pulse widths over which operation is
possible [114]. In the first related experimental work [115] dispersion management was shown to lead to a significant
reduction of the Gordon–Haus–Elgin timing jitter. In should be pointed out that around the same time as these ideas were
developing in transmission systems, similar ideas in ring lasers were also being utilized in the form of stretched pulse
generation [136]. In Refs. [137,138], the pulse propagating in such a dispersion-managed transmission systemwas identified
as a new information carrier—a stable periodic breather with features very different from that of the conventional soliton.

Fig. 6 shows an example of the evolution of a traditional DM soliton over one map period from numerically solving
Eq. (22) for a lossless system (c(z) = 1) with a piece-wise constant dispersion map

d(z) =

d + ⟨d⟩, 0 < z < 0.25
−d + ⟨d⟩, 0.5 < z < 0.75,
d + ⟨d⟩, 0.75 < z < 1,

(24)

where the dispersion depth d = 5, path average dispersion ⟨d⟩ = 0.15, and the propagation length L = LDM . We see that
the DM soliton undergoes self-similar-like compression and broadening. In the logarithmic scale it is seen that at z = 0 and
z = 0.5 (themiddle of each segment) there ismaximum compression and there exists dips corresponding to points at which
the soliton power |a(z, t)|2 approaches zero (and consequently, the logarithm of the power tends to minus infinity) [139].
These oscillations around the main peak present an inherent part of the DM soliton. The DM soliton remains localized
and stable during evolution while acquiring an additional phase term after each dispersion map period. As the DM soliton
propagates from the centre of the anomalous dispersion segment (z = 0), it temporally broadens and then re-compresses
until it reaches the centre of the normal dispersion segment (z = 0.5), whereupon it begins to broaden again, thereby
breathing, as seen in Fig. 6. Numerical simulations and experiments revealed the following main features of the DM soliton
which make it quite distinct from conventional solitons
• In strongly dispersion managed systems, the pulse width can experience large oscillations during the compensation

period leading to ‘‘breathing-like’’ soliton dynamics. This differs substantially from the path-averaged (guiding-centre)
soliton propagation in systems with constant or weakly varying dispersion and from that of the traditional fundamental
soliton [46]. Although there is breathing dynamics, it is possible to observe extremely stable propagation in fibre links
with strong dispersion management.
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Fig. 6. Breathing dynamics of a DM soliton propagating over one dispersion map period.

• Throughout most of the dispersion compensation period, the DM soliton has a nontrivial phase across it, characterized
by the chirp parameter [137,140]. The chirp can reduce the chromatic dispersion penalty as well as suppress pulse to
pulse interaction to improve the transmission capacity in systems implementing dispersion management [140]. The
initial chirp of the pulse launched into the transmission line was shown to be essential in stable propagation [117,140–
143]

• The asymptotic shape of the pulse is not always a hyperbolic secant shape as it is for the NLSE soliton, but varies with an
increase of the map strength (21) from a hyperbolic secant shape to a Gaussian shape and to a flatter waveform.

• The pulse shapewithin the dispersionmap varies from amonotonically decaying profile to a distributionwith oscillatory
tails.

• The time–bandwidth product varies with an increase of themap strength (21) from 0.32 corresponding to the hyperbolic
secant NLSE soliton to 0.44 corresponding to the Gaussian pulse and increases further with an increase of the map
strength.

• The energy of the stable breathing pulse is well above that of the NLSE soliton with the same pulse width and of the
corresponding average dispersion [138]. This energy enhancement leads to an increase of the signal-to-noise ratio with
substantial improvement of transmission system performance [115].

• The DM soliton can propagate at both zero and normal path-average dispersion, in contrast to the fundamental soliton
that propagates stably only in the anomalous dispersion region [144]. This feature allows the transmission of a finite
energy pulse close to zero net-dispersion, suppressing timing jitter.

• The central part of the DM pulse is self-similar, but the far-field oscillating (and exponentially decaying) tails are not.

Because of the various length scales and parameters in dispersion-managed systems, it is important to both use efficient
numerical techniques as well as obtain analytical knowledge to both optimize and characterize the system [109,128,145–
147]. As we have seen in Section 1, there is a rich basis of mathematical findings with conventional solitons. A natural
question is whether such mathematical insight and techniques can be used with DM solitons, since the same NLSE is used
to model propagation, only with a slight modification that the dispersion coefficient is dependent on propagation distance.
However, as we have just discussed, all the listed features show that there is a distinct difference between DM solitons
and conventional solitons of the NLSE. Indeed, the variation of dispersion with propagation distance violates many of the
symmetries present in the conservative NLSE. As a particular consequence of this, a model describing the path-averaged
(slow) evolution of the breathing DM pulse should differ from that which governs the path-averaged dynamics of the
fundamental soliton. In many limits significant analytical insight into the nature of DM solitons and their dynamics can
be obtained. For instance, in the effectively lossless limit LA ≪ LDM , the effects of periodic amplification and dispersion
compensation can be separated [141]. In this case the signal dynamics can be averaged over the amplification period and
an averaged propagation equation is described by the lossless limit (c(z) = constant). In the case of weak dispersion
management a Lie-transform technique has been applied to describe properties of the DM soliton [148]. For strong
dispersionmanaged systems, the fast scale pulse dynamicswere separated from the slow scale pulse dynamics [137], leading
to the application of various averaging or multiple scale methods [137,149]. Other pursuits considered the DM soliton as a
nonlinear Bloch wave function or, in other terms, as a nonlinear eigenfunction of Eq. (22) with the period LDM that exists in
the case of small nonlinearity [150,151]. In the following subsections wewill discuss some of most important aspects of DM
solitons in Hamiltonian systems that are described by Eq. (22).

3.2. Linear solutions

In the case of strong dispersion management the dispersion map period (or local dispersion length) is much smaller
than both the nonlinear and residual dispersion length (LDM , LD ≪ LNL, L⟨D⟩). In this limit the effects of nonlinearity and
the residual dispersion are small over one map period and the main factors that affect the pulse evolution during the single
period are chromatic dispersion, loss, and amplification. The propagation regime is then quasi-linear and, thus, it is worth to
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recall the well known exact solution of the linear problem. This will not only provide the right framework for analysis when
small nonlinearity and residual dispersion effects are taken into account, but also provides good physical insight into the
DM solitons and their relation to localized structures in periodic mediums. When neglecting the nonlinear term in Eq. (22)
(note that this also includes neglecting the gain/loss dynamics) there exists the solution

a(z, t) =


+∞

−∞

â (0, ω) exp[iωt + iω2R(z)] dω, R(z) =

 z

0
d(z ′) dz ′, (25)

where â (0, ω) is the Fourier transform of the initial pulse. To give a specific example, for an initial Gaussian pulse a(0, t) =

N exp(−t2/2), the rapid oscillations of the pulse power and width over the compensation cell from z = 0 to z = LDM are
given by

a(z, t) = |a(z, t)| eiΘ(z,t), where |a(z, t)|2 =
N2

τ(z)
e
−

t2

τ2(z) , Θ(z, t) =
C(z) t2

τ 2(z)
− Φ(z), (26)

where τ 2(z) = 1 + 4R2(z), C(z) = R(z) andΦ(z) = 0.5 arctan[2R(z)]. The spectral evolution is given by

â(z, ω) = |aω(z, ω)|eiΘω(z,ω), where |aω(z, ω)|2 = N2e−ω2
, Θω(z, ω) = Φ(z)− R(z)× ω2. (27)

When the dispersion d(z) is exactly compensated (R = 0) the linear pulse recovers its initial power, width and chirp
periodically. In a system with strong dispersion management and low nonlinearity, at leading order the short scale (on
the order of the dispersion map period) pulse dynamics of a DM soliton is approximated by the linear solution (26). Thus
we can obtain important insight by recognizing the main features of the solution (26) that we expect will survive, at least in
the weakly nonlinear propagation regime. From Eq. (27), we see that the spectral solution to the linear equation is modified
only in spectral phase due to dispersion, but the spectral bandwidth does not vary. As will be discussed in Section 3.4, this
observation suggests a decomposition in the spectral domain of the rapid (quasi-linear) oscillations of the phase and slow
(path-averaged) evolution of the DM soliton for the weakly nonlinear case [129,137,152–155]. Further, we see from Eq. (26)
that the dispersion managed pulse to the linear equation has a quadratic (in time) nontrivial phase (linear chirp) and also
has a self-similar structure, i.e. the product of the pulse peak power and duration is constant. These basic features should
be retained when including small nonlinearity and residual dispersion, at least in the central, energy containing part of the
pulse. This gives an alternative way to describe the DM soliton that leads to significant physical insight of the DM soliton.
Specifically, let us assume that the field is given by a function of the form

u(z, t) =
N

√
T (z)

f (z, x) exp

i
M(z)
T (z)

t2

, (28)

where x = t/T (z), and f , T , and M are real functions. Inserting (28) into Eq. (22) we find that Tz = 4d(z)M(z) and the
evolution of the structural function f is given by

i
∂ f
∂z

+
d(z)
T 2

∂2f
∂x2

−


MzTx2 −

Nc(z)
T

f 2


f = 0. (29)

We see that if Mz ≠ 0 there exists an effective parabolic trapping potential, and in the linear limit (c(z) = 0) Eq. (29) is
analogouswith the harmonic oscillator in quantummechanics. In theweakly nonlinear casewe can exploit this by assuming
that the pulse can be presented in the complete basis of the chirped Gauss–Hermite functions

a(z, t) =
N

√
τ(z)

∞
n=0

an
2nn!

√
π

exp

−

t2

2τ 2(z)
+ i C(z)

t2

τ 2(z)
− i(1 + 2n)Φ(z)


Hn

 t
τ(z)


, (30)

which are the eigenfunctions to the harmonic oscillator Schrödinger operator. Here τ(z), C(z) and Φ(z) are the same as
introduced in (26). The functionHn is the nth-order Hermite polynomial and the coefficients an are determined by the initial
distribution

an =
π1/4

N
√
2nn!π


∞

−∞

a(0, t)e−t2/2Hn(t)dt. (31)

Note that the initial condition used to derive (26) is the zero-mode of this expansion. For the linear case (c(z) = 0) any
arbitrary combination (i.e. with arbitrary an) of the Gauss–Hermite modes presents a periodic solution. These modes do not
interact or mix, and the pulse will propagate without distortion. Further, the initial amplitude does not depend in any way
on the initial pulse width. In the next subsection we will show that when nonlinearity is included the initial condition is
critical for exact periodic pulse evolution.
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Fig. 7. Typical pulse duration andbandwidth for periodicDMsoliton evolution (solid). Hypothetical evolutionwhen it is assumed that CFP in the anomalous
GVD segment is moved to the right of the centre of the anomalous GVD segment.

3.3. Initial conditions and chirp-free points for periodic DM soliton evolution

In contrast to the linear case, when nonlinearity is introduced exact periodic propagation will not occur unless a certain
relation between the initial pulse amplitude and pulsewidth is satisfied. If this condition is not satisfied, the nonlinearitywill
redistribute the energy between different Gauss–Hermite modes of the DM soliton. Often the higher-order modes become
an inherent part of the nonlinear solution. This can be understood by noticing that in Eq. (29) nonlinearity modifies the
parabolic potential, and the shape of the nonlinear wave is an eigenfunction of the Schrödinger operator with this perturbed
periodic potential. An important consequence is that if an initial Gaussian pulse that is not the true DM solution is input into
the dispersion managed system, radiation is shed and causes long scale oscillations around some steady state value of the
pulse parameters [156]. Such dispersive radiation is an additional source of noise and can degrade systemperformance. Thus
to obtain exact periodic pulse evolution it is necessary to pre-condition the initial pulse to have a certain peak power, pulse
duration, phase, and shape for the particular system of interest. Typically the pulse power and duration can be controlled
using various optical elements such as amplifiers. Further, it is possible to manipulate the nontrivial phase across the pulse
through either some phase modulation or by propagating the pulse in a dispersive medium. The time derivative of the
nontrivial phase is defined as the chirp, or instantaneous frequency. Similar to the linear solution (30), DM solitons typically
have a quadratic nontrivial phase profile, or linear chirp in the energy-containing core of the pulse. The magnitude of the
nontrivial phase across the pulse is quantified by the chirp parameter, which is defined as the coefficient in front of the
quadratic term in the phase (C(z) = M(z)/T (z) in Eq. (28)). Pulse pre-chirping by an external modulator or additional
fibre propagation can substantially reduce the chromatic dispersion transmission effects relative to the non-pre-chirped
case [140].

One of the key characteristics of DM solitons is that the chirp parameter oscillates between positive and negative values.
Points of interest for this evolution are so-called chirp-free points (CFPs), where the chirp parameter is zero and the pulse
duration and bandwidth achieve an extremum value. Initial studies of DM solitons showed that systems with a periodic
dispersion map consisting of two sections of opposite sign dispersion (each segment having arbitrary lengths) required the
CFPs to be at themid-points in each section. This observation highlighted the importance of nonlinearity in the system, since
in the linear case the CFP can be anywhere along the dispersion map, and exact periodic evolution requires only perfect
dispersion compensation per dispersion map period. A simple intuitive explanation can be understood by observing the
pulse duration and bandwidth evolution of a DM soliton per map period in a ‘‘lossless’’ system. To give a specific illustrative
example, Fig. 7 shows the DM soliton evolution for a symmetric dispersion map where the lengths of each segment are
the same and the CFP is in the middle of each dispersion segment. For the pulse duration, if we assume that the CFP in
the anomalous GVD segment is to the right of the anomalous GVD segment centre, the CFP in the normal GVD segment is
constrained tomove to the left of the normal GVD segment centre to preserve periodic boundary conditions. However, when
considering the bandwidth, making the same assumption of the CFP in the anomalous GVD segment imposes that the CFP in
the normal GVD segment moves to the right of the normal GVD segment centre to maintain periodic boundary conditions.
This leads to a contradiction showing that the CFP must be at the middle of each segment. Indeed, since the pulse duration
for DM solitons acts like a even function and that for the bandwidth acts as an odd function, the CFPs are restricted to be in
the middle of each dispersion segment for such lossless systems with a symmetric dispersion map. Note that in the linear
case this argument does not hold since the bandwidth is a constant value, and thus an even function.

This intuitive argument can be proven rigorously by symmetry arguments on the governing Eq. (22) in the case of
lossless or effective lossless limits (c(z) = 1). The DM soliton solution is given by the nonlinear Bloch wave-function
a(z, t) = F(z, t, k) exp(i k z)with a periodic function F(z + L, t, k) = F(z, t, k)which is governed by

i
∂F
∂z

− k F + d(z)
∂2F
∂ t2

+ |F |
2F = 0. (32)
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a b

c d

Fig. 8. Stroboscopic (taken at the middle of the anomalous GVD segment) evolution of (a) peak power and (b) RMS pulse width launched either at the
CFP in the middle of the anomalous GVD fibre (red) or slightly from the CFP (green). Stroboscopic (taken at the middle of the anomalous GVD segment)
evolution in the (c) power, chirp (d) width, chirp phase planes. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

For simplicity, we neglect a certain degeneracy which occurs for strong dispersion maps with zero or normal average
dispersion for which two stable periodic solutions can exist with the same pulse energy [157]. Neglecting such degeneracy,
the wave-number k uniquely determines the DM soliton solution of Eq. (32) and it can be shown that CFPs are located at the
points of symmetry of the function d(z). Specifically, if F(z, t, k) is a solution of Eq. (32) then F∗(−z, t, k) is also a solution
providing that the periodic dispersion map obeys the symmetry condition d(z) = d(−z). Since k uniquely determines the
DM soliton, F(z, t, k) = F∗(−z, t, k) (note constant phase factors can be neglected due to the gauge invariance of Eq. (32)).
Thus at the origin of any symmetrical dispersion map Im F(0, t, k) = 0, which shows that the DM soliton will have no
chirp at the points of symmetry of the dispersion map. For the specific dispersion map consisting of two pieces of optical
fibre, such CFPs are always in the middle of the fibre spans. The uniqueness of the solution plays a crucial role in the proof
presented here and does not apply to the case ofmulti-stability, when two ormore stable solutions exist so that it is possible
that F∗(−z, t, k) ≠ F(z, t, k). Indeed, there are special dispersion maps for which symmetry breaking occurs, in particular
when the dispersion is small near the boundary [157].

As mentioned previously, pre-processing for the input signal into a particular dispersion managed system is typically
essential to obtain the exact periodic DM soliton. Typically the peak power and pulse duration can be manipulated easily,
howevermodulating the pulse phase and shape can be complicated and often involves expensive optical elements, adding to
the cost of the system. Many pulse sources (such as a Ti:Sapphire mode-locked laser) generate Gaussian-type pulses which
are transform limited, e.g. they do not have a nontrivial phase across the pulse. For practical dispersion managed systems it
is important to achieve DM soliton pulse evolution from a wide variety of unchirped input pulse forms. Here we highlight
that the locations of CFPs can be exploited to reduce long scale oscillations that are caused by dispersive radiation being
shed due to any small deviations of the input pulse from the true periodic waveform. Fig. 8 considers Eq. (22) with a two
step dispersion map (24) with d = 2.5 and ⟨d⟩ = 0.075 and c(z) = 1 (lossless case). From our symmetry analysis, we
know that the CFP for this system is at the middle of each fibre segment at z = 0 and z = 0.5. The initial condition is
an unchirped Gaussian pulse with pulse duration 0.5. The peak power of the initial condition is found by finding periodic
solutions to certain evolution equations governing the key pulse parameters (more details on how this is done will be given
in Section 3.5). Fig. 8(a), (b) shows the stroboscopic evolution (taken at the middle of the anomalous GVD segment) of the
pulse peak power and RMS pulse width over 500 map periods. The red lines are for the scenario where the initial pulse is
launched at the CFP in the anomalous GVD fibre and the green lines are for the scenario where the initial pulse is launched at
a point +0.01 units from this point. Long scale oscillations and reduced periodicity is observed when the initial pulse is not
launched at the CFP. Fig. 8(c), (d) shows the stroboscopic (taken in the middle of the anomalous GVD segment) evolution in
the phase plane, and highlights the increased variation of the pulse parameters when the launch point is not at the CFP. Even
in the case where the initial pulse is launched at the CFP there is still some small variations in the pulse parameters, due to
the initial pulse shape being Gaussian and is different from the shape of the true DM soliton. Indeed, if the input pulse was
the true DM soliton therewould be only a point in the phase space, highlighting exact periodic evolution. Note that although
we have only considered a lossless system, it has been shown that launching an unchirped pulse at a CFP reduces long scale
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oscillations of the pulse parameter for various transmission systems, away from the lossless limit (LDM ∼ LA) [140,143,157,
158].

Although less studied, the analysis of CFPs in dispersion managed mode-locked fibre lasers also has many important
implications. For example, CFPs are the optimal locations to place the output coupler since typically this is associated with
the shortest pulse durations and the highest available peak power. Thus it could alleviate any post processing from the laser
output. In fibre lasers composed of segments of fibres with opposite dispersion, the chirp free points hold the key to optimal
out-coupling of the generated DM solitons or dissipative DM solitons. This will be further discussed in the following sections
on practical applications of DM soliton theory in lasers.

3.4. Weak dispersion management

The overall impact of the periodic variation of the parameters in Eq. (22) strongly depends on the interplay between
different physical effects. In the limit of weak dispersion management, it is natural to assume that the governing dynamics
would be similar to that governing conventional solitons of the NLSE. Physically a weakly dispersionmanaged system exists
if the length of the dispersionmap LDM is much shorter than both the nonlinear length LNL and the residual dispersion length
L⟨D⟩. In this limit, we can normalize Eq. (22) by L = LNL and obtain

i
∂a
∂z

+ d


z
ϵ


∂2a
∂t2

+ |a|2a = 0, (33)

where the small parameter ϵ = LDM/LNL ≪ 1 and d(z/ϵ) = d(z/ϵ+ 1). Here we have assumed a lossless model (g(z) = 0),
however it is possible to perform a standard transformation to obtain the same governing equation (33) when the gain
balances the loss in each dispersion map [159]. Utilizing the smallness of the parameter ϵ, we let [159,160]

a(t, z) = V + ϵv1 + ϵ2v2 + O(ϵ3), (34)

where V is the average of a with respect to z over the dispersion map period, so that the expansion terms vk (k = 1, 2, . . .)
represent the fast oscillating part of the solution (similar to guiding-centre theory) satisfying ⟨vk⟩ξ =

 1
0 vk dξ = 0, where

ξ = z/ϵ. Taking advantage of the different inherent length scales, it is possible to use a multiple scale expansion [161]
where we assume that the oscillating parts vk can be expressed through the average V and the ‘‘fast’’ variable ξ , while the
evolution of V is described by ‘‘slow’’ variables zk = ϵkz, (k = 0, 1, 2, . . . ) so that

∂V
∂z

=
∂V
∂z0

+ ϵ
∂V
∂z1

+ ϵ2
∂V
∂z2

+ · · · . (35)

Inserting Eqs. (34)–(35) into (33) gives various terms that can be grouped in powers of ϵ. In order to avoid secular terms at
leading order (ϵ0)

i
∂V
∂z0

+ ⟨d⟩
∂2V
∂t2

+ |V |
2V = 0 (36)

and

v1 = −
i
2
[µ1(ξ)− ⟨µ1⟩ξ ]

∂2V
∂t2

. (37)

Here ⟨d⟩ = ⟨d⟩ξ is the average GVD coefficient, and the fast oscillations around the slowly varying field V are proportional
toµ1(ξ) = −2

 ξ
0 [d(s)−⟨d⟩]ds. Calculating the next two orders gives expressions for v2, v3, dV/dz1 = 0, and dV/dz2 [159].

Substituting the derivatives of dV/dz0 from (36) and dV/dz2 into Eq. (35) gives the averaged evolution equation for V

iVz + ⟨d⟩Vtt + |V |
2V = ϵ2M


V 2V ∗

tttt + 6VVtV ∗

ttt + 2(|V |
2)tVttt + 5V |Vtt |

2

+ 7V 2
t V

∗

tt + 10|Vt |
2Vtt +

5
2
V 2
ttV

∗


+ O(ϵ3), (38)

where M = [⟨µ2
1⟩ − ⟨µ1⟩

2
]/2 is the variance of µ1. The form of the solutions to v1 and v2 suggests the application of a

near-identity transformation where we define a modified field

q = V + ϵ2M


1
4
Vtttt −

1
2 ⟨d⟩


Vt(|V |

2)t + V (VV ∗

t )t


+ O(ϵ3). (39)

Substituting this into Eq. (38) gives the evolution equation

i
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+ ⟨d⟩
∂2q
∂t2
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
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2
q
∂2

∂t2
(|q|4)


+ O(ϵ3). (40)
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This key result shows that a rapidly varying periodic dispersion can be transformed into a NLS equation with perturbations.
However, this approximation is no longer valid when ⟨d⟩ → 0 since the perturbations become significant in this limit.
The fact that rapidly varying dispersion can be shown to be equivalent to perturbations to the NLSE has also been shown
in other contexts. Specifically, guiding centre solitons were described using Lie averaging [160] and guiding centre pulse
dynamics for systems with mean zero dispersion were described using a near identity transformation and stationary phase
asymptotics [162].

To make a connection with the conservative soliton of the NLSE, let the normalized path average dispersion ⟨d⟩ = 1/2.
Using a regular perturbation expansion in Eq. (40), we find

q(z, t) = eiz/2

sech(t)+

4
3
ϵ2M[2 cosh−1(t)− cosh−3(t)− cosh−5(t)] + O(ϵ3)


. (41)

Transforming q(z, t) back to a(z, t) using (39) and (34) gives a(z, t) = P(z, t) exp(iφ(z, t)), where

φ(z, t) =
z
2

−
ϵ

2


µ1(ξ)− ⟨µ1⟩ξ

 
1 − 2 cosh−2(t)


+ O(ϵ2) (42a)

P(z, t) = cosh−1(t) ×


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1
3
ϵ2M


8 + 8 cosh−2(t)− 19 cosh−4(t)


+ ϵ2


1
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µ1(ξ)− ⟨µ1⟩ξ

2
−

µ2(ξ)− ⟨µ2⟩ξ


[4 cosh−2(t)− 5 cosh−4(t)] + O(ϵ3)


. (42b)

We see thatweak dispersionmanagement adjusts theNLSE soliton phase (power) by factors proportional to ϵ (ϵ2) [159,160].
The analytic approximation for the weakly dispersion managed soliton can be used to understand a variety of different

aspects of its dynamics. For example, Eq. (42b) shows that the pulse energy
∞

−∞

|a|2 dt = 2

1 +

32
15
ϵ2M + · · ·


, (43)

is enhanced due to weak dispersion management. Considering a particular lossless systemwith a two-step dispersion map,
early numerical studies on DM solitons discovered an empirical expression for the energy enhancement factor [138,141].
For small map strengths the energy of the DM soliton was shown to increase by a term proportional to the square of the
map strength. This expression was found to be in excellent agreement with Eq. (43) up to a map strength S ∼ 3 [159,163].
In addition to energy enhancement, the approximate solution (42) can also be used to find the CFPs of a dispersionmanaged
system. Using (42) in (17) gives the RMS chirp parameter

CRMS = −
2
π2
ϵ

µ1(ξ)− ⟨µ1⟩ξ


T 2
RMS, (44)

showing that the CFPs exist at points ξ = ξ0 where µ1(ξ0) = ⟨µ1⟩ξ . In a transmission system consisting of a two-
step dispersion map with one amplifier per map period, this condition leads to an analytic expression for the distance
between the amplifier and each CFP [143,159,164]. Surprisingly, by choosing the ratio between the two dispersion segment
lengths properly, the CFP can be independent of the GVD coefficients of the fibre segments [143,159]. These ‘‘magic’’
dispersion segment lengths correspond to a special condition and only depend on the loss coefficient. The observation
that special dispersion maps exist having GVD-independent optimal launch points (CFPs) is of crucial importance for WDM
soliton transmission systems. Since typically there is a dispersion slope for different transmission channels, each channel
has different dispersion characteristics and therefore launched pulses need to be pre-chirped accordingly. However, the
existence of these ‘‘magic’’ dispersion maps implies that the pre-conditioning of the launch pulse is insensitive to GVD and
thus the same pulse can be input in each channel in the dispersion-managed WDM system.

In general, the asymptotic solution (42) obtained by themultiple-scale analysis and their predictions such as pulse energy
enhancement and chirp-free points can be validated with numerical simulations. The solution is formally valid when the
dispersion-map period is much shorter than the nonlinear length, however the analytic predictions often give a reasonable
comparison to numerical simulations away from this limit. The asymptotic results are useful for providing valuable insights
into DM solitons themselves as well as optimizing dispersion-managed soliton systems.

3.5. Fast DM soliton dynamics (over one period)

A DM soliton is made primarily from twomain components including a self-similar core and a dispersive pedestal. Fig. 6
highlights these two components, illustrating both the self-similar compression and broadening of the core of the pulse in
the normal scale along with a logarithmic scale representation illustrating the dynamics of the pulse tails. It is clear that
there exist time values where the pulse power goes to zero (logarithm goes to minus infinity) at propagation distances
z = 0 and z = 0.5. These dips, first discovered in [144], occur in the non-self-similar pulse tails and are an inherent
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a b

Fig. 9. Solution curves found fromsolving the TMequations (50). (a) Lines of constantmap strength (right to left) S = 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 14, 16.
(b) Lines of constant average dispersion (right to left) ⟨d⟩ = −0.02,−0.01, 0.0, 0.02, 0.05, 0.1, 0.2, 0.3.

part of the DM soliton. In this section we focus on the ‘‘fast’’ self-similar dynamics of the core of the DM soliton over one
dispersion map period. Indeed, since the energy contained in the pulse tails is typically small relative to the energy of the
main core, the evolution of the central part of the DM soliton is typically the most important aspect for system optimization
and understanding [109,128,145–147].

An advantage of using a phase and/or amplitudemodulated optical carrier pulse of a certain shape for the transmission of
information (as compared to non-return-to-zero formats where a carrier waveform effectively depends on the information
content it carries) is that it can be described by few distinct pulse parameters. Indeed, the particle-like behaviour of the
solitary wave signal allows for the use of well developed mathematical methods to understand features of such optical
signals and to predict the effects that occur due to practical boundary conditions as well as deviations of real fibre properties
from an idealmodel. Asmentioned in Section 2.2, we can exploit the particle-like nature of DM solitons and describe the fast
dynamics of the energy containing core by obtaining evolution equations on key pulse characteristics such as pulse width,
peak power, energy, chirp parameter and bandwidth. In this section we present a version of this approach based on both
integral pulse characteristics (17) and RMS local pulse characteristics (19) [134,165,166].

3.5.1. Reduced model: TM system
To describe the propagation dynamics of the main energy containing core, we consider the evolution of the integrated

quantities defined in Eq. (17). Manipulating the governing equation (22) it can be shown that

dTRMS

dz
= 4d(z)MRMS(z), (45a)

dCRMS

dz
=

d
dz
(TRMS MRMS) = d(z)Ω2

RMS −
c(z)
4

PRMS, (45b)

dPRMS

dz
= 2d(z)WRMS (45c)

d(Ω2
RMS)

dz
= c(z)WRMS, (45d)

where WRMS = −


|a|4[Arg(a)]ttdt/


|a|2dt . Although Eq. (45) is general and no assumptions have been made, it lacks
closure and thus cannot be solved without some additional assumptions. Observing that the chirp of the typical DM soliton
shows a linear behaviour in the region where most of the energy in concentrated, it is possible to make the assumption that
Arg(a) = MRMS/TRMS × t2, givingWRMS = −2MRMSPRMS/TRMS [167]. Although the assumption that the chirp is linear is only
an approximation, it is important to notice that the phase dependence in the integral for WRMS is multiplied by |a|4, which
is a fast decaying function. Therefore, the contribution in the integral pulse characteristics due to deviations from a linear
chirp is negligible in many practical situations with a highly localized pulse. InsertingWRMS into Eq. (45) we obtain a closed
set of the so-called ‘‘TM equations’’ [129,165,166,168])

dTRMS

dz
= 4d(z)MRMS(z), (46a)

dMRMS

dz
=

d(z)C2

T 3
RMS

−
c(z) C1

T 2
RMS

, (46b)

where the constants are given by the invariant quantities 4C1 = PRMS(z) TRMS(z) = PRMS(0) TRMS(0) and C2 = [Ω2
RMS(z) −

4M2
RMS(z)]T

2
RMS(z) = [Ω2

RMS(0) − 4M2
RMS(0)]T

2
RMS(0). The TM system (46) can be solved numerically for a variety of
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different dispersion maps as well as amplifier distributions. Formally, periodic solutions are necessary (T (LDM) = T (0)
and M(LDM) = M(0)) for each value of the parameter C1 (related to pulse energy in dimensionless units). Fig. 9 shows
solution curves found by solving for the variables T (z) and C(z), where T (z) = TRMS and C(z) = MRMS/(2TRMS) in Eq. (46)
for a lossless system (c(z) = 1) and two step dispersion map

d(z) =

d + ⟨d⟩, 0 < z < 0.25
−d + ⟨d⟩, 0.5 < z < 0.75
d + ⟨d⟩, 0.75 < z < 1.

(47)

The initial condition was taken so that the initial pulse has a zero chirp (MRMS = 0) and the bandwidth and duration such
that C2 = 1. The initial power was adjusted through the parameter C1 until a periodic solution was found. The solution
curves are characterized by the average dispersion ⟨d⟩ andmap strength S = 2d/[min(TFWHM)]

2, where TFWHM is the FWHM
pulse duration. The peak power is normalized by a factor N2

norm = [min(TFWHM)]
2/(3.11d) so that the normalized power

gives the pulse peak power at the CFP in the anomalous GVD fibre segment in fractions of the power of the fundamental
soliton of the same FWHM [169]. We see a somewhat surprising property of DM solitons that is distinct from conservative
solitons of the NLSE. Above a certain critical map strength there is a region that allows for stable propagation at zero or
normal average dispersion [170–172]. This property can be understood by integrating Eq. (45) over one period giving

⟨d(z)Ω2
RMS(z)⟩ =

1
4
⟨c(z) PRMS(z)⟩. (48)

When d(z) and c(z) are constant this leads to the expression for the RMS power of the conventional soliton, and it is required
that d > 0. When both d(z) and c(z) are periodic functions (or c is constant as in the lossless model) one can see that the
requirement d > 0 for the existence of conventional solitons is replaced by a condition ⟨d(z)Ω2

RMS⟩ > 0, which, because of
the breathing nature of the bandwidth, can be satisfied even when the average dispersion is zero or negative. We also note
here that in the case when d (> 0) is constant and c(z) is allowed to vary periodically in Eq. (48) we obtain the guiding-
centre (path averaged) enhancement factor [5,6]. The curves shown in Fig. 9 were first found via a variational method and
compared to full numerical simulation [169]. The numerical simulations showed good agreement however the maximum
map strength was shown to be restricted to ∼13, in contrast to what was found from the reduced TM or variational system.
Regardless, the reducedmodels do an excellent job in capturing the solution curves, highlighting not only the ability for DM
solitons to exist at average zero or normal dispersion, but also predicting two solutions for the same energy in the normal
dispersion regime [169,171], as well as the reduced peak power variation over a range of average anomalous dispersion
values for strong map strengths [169]. For more general dispersion and amplification schemes, the TM equations can also
be used for determining the CFPs in various systems (see e.g. [140,173]), making them ideal for optimization purposes.

In addition to obtaining the TM equations through RMS quantities (17) it is also possible to obtain them through local
pulse characteristics defined by (19). Inspired by the linear solution, if we assume the solution has a specific form [166]

u(z, t) = N
f (x, z)
√
T (z)

exp

i
M(z)
T (z)

t2

, (49)

where x = t/T (z), it is possible to separate the self-similar dynamics from the structural form of the pulse. Here the
parameter N scales out the pulse power by imposing a normalization condition on the structural function f so that

|f |2 dx = 1. Inserting (49) into Eq. (22), and defining the relations (see, e.g., [174])

dT
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= 4d(z)M (50a)
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where the parameter p is a constant, gives the governing equation
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
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T


|f |2f + px2f


= 0. (51)

The choice of defining the TM equations (50) is arbitrary, but it is encouraged by the TM equations found in Eq. (46) from the
RMS integral quantities. Indeed, the system Eq. (50) is exactly the same as an approximate system (46) and the functions
T and M are related to TRMS and MRMS through Eq. (19) [167,174]. With the TM equations found using the RMS integral
quantities, we assumed a linear chirp to obtain a closed set of equations. For the system (50), there is an assumption based
on the arbitrary value of p, which accounts for the strength of the nonlinearity in the chirp parameter evolution.When p = 0
system (50) describes linear pulse evolution and Eq. (51) is the evolution equation of a quantum harmonic oscillator with
an additional nonlinear term. For an initial Gaussian pulse, the nonlinearity mixes different modes of the linear oscillator,
inducing transitions from the ground state (which corresponds to a Gaussian-shaped pulse) to other modes. The constant
p in system Eq. (50) can be adjusted to minimize the rate of transitions from the ground state to other modes or, in other
words, to make the approximation of the DM soliton solution of the NLSE as close as possible to the ground state of the
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linear operator. A difference with the local description (50)–(51) from the RMS description (46) is that the evolution of the
structural shape of the DM soliton is allowed to evolve and is governed by Eq. (51). Indeed, in some of the early works on
DM solitons it was shown that the pulse shape can vary in structure depending on the map strength parameter [138].

3.5.2. One-period solutions of the TM equations
As mentioned in the previous section, the TM equations (50) can describe the fast dynamics of the DM soliton and be a

powerful tool in the optimization of dispersionmanaged systems. In addition to solving them numerically, it is also possible
to highlight the nature of the fast DM soliton dynamics by investigating the TM equations (50) analytically as well. It is
instructive to find the solutions to Eq. (50) in the linear limit (p = 0). Introducing a newvariable R(z) so that d(z) = dR(z)/dz
with boundary conditions R(0) = 0, T0 = T (0),M0 = M(0)we obtain

T 2(z) =
1 + 4


M0T0 + R(z)Ω2

0

2
Ω2

0
(52a)

M(z) =
M0T0 + R(z)Ω2

0

T (z)
, (52b)

where Ω2
0 = T−2

0 + 4M2
0 . Because it is required that the dispersion is completely compensated in the linear system for

periodic evolution (R(z∗) = 0), we see that T (0) = T (z∗) and M(0) = M(z∗). As a matter of fact, the solutions (52) have
already been discussedwhen considering the analytical solution (26) of the linear Schrödinger equation. These solutions give
a good approximation to the fast dynamics in the strong dispersion management limit when the pulse width and chirp are
mostly determined by the high local dispersion over onemap period. In this limit, it was shown that the solution parameters
are close to (52), and the parameters of the linear solution can be viewed as adiabatic invariants of the systemwhich slowly
vary due to the small effect of nonlinearity and residual dispersion [175].

For certain dispersion maps it is also possible to solve Eq. (50) analytically. Here we will focus our results on a two-step
map

d(z) = d1 > 0, c(z) = c1 0 < z < L1
d(z) = d2 < 0, c(z) = c2 L1 < z < LDM .

(53)

Using simple scaling transformations, it is possible to set d1 = 1, d2 = −1 and LDM = 1 [176]. Themap is then characterized
by three parameters: the nonlinear coefficients of the two fibre segments σ1,2 = pc1,2N2 and the average dispersion
⟨d⟩ = 2L1 − 1. Here, for the sake of clarity, but without loss of generality, we only consider the case of ‘‘equally nonlinear’’
fibres, that is, |σ1| = |σ2| = c. Consider the trajectory of a one-period solution of (50) in the (T ,M) plane. Since CFPs exist
at the centre of the dispersion segments, we have

L+(T ∗, M∗) = L1/2, L−(T ∗, M∗) = (1 − L1)/2, (54)

where the point (T ∗, M∗) is the parameter values at the point in the phase plane corresponding to z = L1, and L+ (L−) is
the length of the anomalous (normal) fibre that takes the solution from the CFP to the point (T ∗, M∗). Using symmetry, the
distance function can be found analytically to be [150,177]

L± =
1
2V


TM ∓

c
√
8V

cosh−1


T ± c/(2V )

c2/(4V 2)+ 1/(2V )


, (55)

where V (z) = 2M2
+ 0.5/T 2

∓ c/T . Although it is not so easy to visualize the analytic solutions, Eqs. (54)–(55) provide a
straightforward way of finding the single-period solutions of the TM system numerically and similar plots such as Fig. 9 can
be achieved. The analytic solution can also be used to obtain the power enhancement factor of DM solitons in certain limits.
Specifically, consider the lossless case (c(z) = ϵ) and two step dispersion map (47). In the strong dispersion managed limit
when nonlinearity and residual dispersion are small and the leading order dynamics is governed by the high local dispersion
over one map period (⟨d⟩, ϵ ≪ d), perturbation theory can be used to find the energy enhancement [150]

N2
=

⟨d⟩/T1

2/

1 + y2 − y−1 ln


y +


1 + y2

 , y = d/(2T 2
1 ), (56)

where T1 is the DM soliton width in the middle of the anomalous GVD fibre. For a fixed average dispersion, certain map
depths d = dc ∼ 6.64T 2

1 will cause the denominator in Eq. (56) to be zero and the first order perturbation theory used to
obtain this result fails. However, for values d ≪ dc , and when the local dispersion is the main effect and the optical pulse
behaves almost linearly, the energy enhancement agrees with numerical simulations [150].
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Fig. 10. Solution branches to the TM equations (50) for a lossless system (c(z) = 1) with a two-step dispersion map (47). (a) Dependence of minimum T
on the energy parameter σ = pN2/d. Thin lines correspond to one-period solutions for various average dispersions and thick/dashed lines correspond to
multiple-period solutions with ⟨d⟩ = 0.1. (b) Dependence of normalized power N2

norm on the map strength. Both one-period andmultiple-period branches
are shown for average dispersion values ⟨d⟩ = 0.1, 0,−0.03. Normalizations and map strength are the same as in Fig. 9.

3.5.3. Multiple-period solutions of the TM equations
In addition to one-period solutions to the TM equations (50), there is also a class of multiple-period solutions that satisfy

the periodic boundary conditions over a multiple number of dispersion maps [176]. We will refer to the index n so that
single period solutions (or standard DM solitons) have n = 1 and multiple-period (or long-period) solutions have n > 1. To
compare the characteristics ofmultiple-period solutions to their one-period DM soliton counterparts, we highlight solutions
to the TM equations (50) in the same lossless (c(z) = 1) system with a two-step dispersion map (47) as was used in Fig. 9.
Fig. 10(a) illustrates the energy dependence of theminimumpulse duration Tmin = min(T (z))per dispersionmapperiod. For
one-period DM solitons, Tmin tends to a finite value as σ → 0 in the case of zero ⟨d⟩, and tends to infinity when ⟨d⟩ > 0. For
negative ⟨d⟩ the energy dependence of Tmin has two branches. The energy dependence of Tmin for multiple-period solutions
with n = 10, n = 6 and n = 4 at ⟨d⟩ = 0.1 is also shown in Fig. 10(a) for the samemap parameters. We see that at the same
energy the minimum pulse duration for multiple-period DM solitons can be almost two times less than the minimum pulse
duration for one-period DM solitons. Fig. 10(b) extends Fig. 9(b) to show the dependence of the normalized peak power
on the map strength for multiple-period solutions. The multiple periodic lines branch off the lines corresponding to the
simple periodic solutions. This plot demonstrates that the peak power of multiple-period solitons can be about 3 times less
compared to power of conventional DM solitons at the same map strength.

Although we have discussed multiple-period DM solitons in the context of solutions of the TM equations (50), full
numerical simulations of Eq. (22) have confirmed such solutions [176]. The multiple-period solutions found have smaller
energies compared to single-period traditional DM solitons. Such multi-period DM solitons can be of interest as carrier
pulses in high-speed optical communications employing differential phase-shift-keying formats. Indeed, these multiple-
period solutions present an important step in the convergence of the DM soliton concept and the widely used quasi-linear
transmission regime. Namely, multiple-period DM solitons have less energy and can experience larger broadening during
propagation and, therefore,muchmore closelymimic quasi-linear propagation regimes compared to traditionalDMsolitons.

3.6. Path-average theory of the DM soliton

The previously discussed TM equations are appropriate to describe the fast dynamics of the DM soliton. Although these
equations are important in describing the pulse characteristics, it does not describe the long scale dynamics or shape of
the DM soliton. In general, numerical simulations of Eq. (22) for a particular dispersion managed system can highlight
these long scale dynamics. However, in the limit when nonlinearity and residual dispersion are small compared to the high
local dispersion, insightful analytics can be performed on the governing equation (22). Specifically, since the nonlinearity
and residual dispersion are perturbations, it is possible to use a variety of averaging or perturbation methods to develop a
path-averaged description of DM solitons. The dynamics of the DM soliton then can be considered on the fast scale which
accounts for the rapid oscillations of the phase, pulse duration and peak power over one dispersionmap period, aswell as the
slow scale dynamics which describe the accumulation of small deviations from the periodic oscillations over many periods
(nonlinear/residual dispersion length). In the following sections we highlight two methods that give particular physical
insight into the description of the DM soliton and its fast and slow dynamics.

3.6.1. Gabitov–Turitsyn path-average equation
In this section we consider the strongly dispersion managed limit of Eq. (22), where we set c(z) = ϵc(z) to emphasis

the smallness of the nonlinear coefficient and ⟨d⟩ ≪ |d(z)|. Since we expect the strong local dispersion to determine the
leading order linear dynamics, we apply the so-called Floquet–Lyapunov transformation to Eq. (22) [137,178]

â(z, ω) = φ̂(z, ω) e−iω2R0(z),
dR0(z)
dz

= d(z)− ⟨d⟩, (57)
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where a(z, ω) is the Fourier transform of a(z, t) =

a(z, ω) exp[−iωt] dω. Taking the Fourier transform of Eq. (22) and

using the new variables (57) gives

i
∂φ̂

∂z
= ⟨d⟩ω2 φ̂ − ϵ


Gω123 δ(ω + ω1 − ω2 − ω3) φ̂

∗

1 φ̂2 φ̂3 dω1dω2dω3, (58)

where φ̂i = φ̂(z, ωi), Gω123(z) = c(z) exp{i∆ΩR0(z)}with∆Ω = ω2
+ω2

1 −ω2
2 −ω2

3 , and δ is the Dirac delta function. The
function Gω123 depends on the specific combination of the frequencies given by the resonance surface∆Ω . Both the Fourier
and the Floquet–Lyapunov transform (57) are canonical and the transformed Hamiltonian H is

H = ⟨d⟩

ω2

|φ̂|
2dω − ϵ


Gω123
2

δ(ω + ω1 − ω2 − ω3)φ̂
∗φ̂∗

1 φ̂2φ̂3dωdω1dω2dω3. (59)

Eq. (58) is an evolution equation where the right-hand side of the equation is small, allowing us to apply Hamiltonian
averaging [178]. Using the change of variables

φ̂ = ϕ̂ + ϵ


Vω123δ(ω + ω1 − ω2 − ω3)ϕ̂

∗

1 ϕ̂2ϕ̂3dω1dω2dω3, (60a)

Vω123(z) = i
 z

0
[Gω123(τ )− Tω123]dτ + i Vω123(0) (60b)

Tω123 = ⟨Gω123⟩ =

 LDM

0
c(z) exp{i∆ΩR0(z)}dz (60c)

so that ⟨Vω123⟩ = 0, we find that at the leading order in ϵ, a path-averaged equation has the form [137]

i
∂ϕ̂

∂z
= ⟨d⟩ω2 ϕ̂ − ϵ


Tω123 δ(ω + ω1 − ω2 − ω3) ϕ̂

∗

1 ϕ̂2 ϕ̂3 dω1dω2dω3. (61)

Eq. (61), first derived in 1996 [137], is the basicmodel of the DM soliton theory in the limit of strong dispersionmanagement
and can describe many interesting properties of DM solitons [149,178–180]. It has a corresponding averaged Hamiltonian

⟨H⟩ = ⟨d⟩

ω2
ϕ̂2 dω − ϵ


Tω123
2
δ(ω + ω1 − ω2 − ω3)ϕ̂

∗ϕ̂∗

1 ϕ̂2ϕ̂3dωdω1dω2dω3, (62)

and can be exploited in a regular way to calculate next order corrections to the averaged model. From Eq. (60c) it is easy to
see that thematrix element Tω123 = T1ω23 = Tω132 = T ∗

23ω1. Eq. (61) possesses the remarkable property that on the resonant
surfaceω+ω1 −ω2 −ω3 = 0 both thematrix element Tω123 and its derivative over∆Ω are regular. This observation allows
us to make the following quasi-identical-like transformation [178]

ϕ̂ = q̂ −
ϵ

⟨d⟩


T0 − Tω123
∆Ω

q̂∗

1 q̂2 q̂3 δ(ω + ω1 − ω2 − ω3) dω1dω2dω3, (63)

where T0 = T (0) and the variable part of the matrix element Tω123 is now removed. If the kernel function in Eq. (63) is small
compared to q̂

|S(∆Ω)| =

T0 − Tω123(∆Ω)
∆Ω

 ≪ 1, (64)

then the averaged model can be reduced to the NLSE. However, in general this is not the case and explains why the typical
solution of Eq. (61) has a form different from a hyperbolic secant shape [149].

To see how the general mathematical analysis can be used in practical settings, let us consider a few examples. First
we analyse a transmission system typical for transoceanic transmission with a two-step dispersionmapwith the dispersion
compensation period LDM = 2M×LA km,where LA is the amplification distance. The fibre has anomalous GVD d(z) = d+⟨d⟩
for the firstM amplifiers (0 < z < LDM/2) and normal GVD d(z) = −d+⟨d⟩ for the secondM amplifiers (LDM/2 < z < LDM ).
Let us normalize the system by the dispersion map period so that LDM = 1. The mean-free function R0(z) in Eq. (57) is
R0(z) = d z − d /4 if 0 < z < 1/2 and R0(z) = −d[z − 1/2] + d /4 if 1/2 < z < 1. After some calculations, it can be found
that the kernel of the function Tω123 = T (∆Ω) in Eq. (60c) is

T (X) =
G − 1
G lnG

sin(X M)
M

1
(1 + [2X/lnG]2)


cos(X)
sin(X)

+
2 X
lnG

G + 1
G − 1


, (65)

where X = ∆ΩLAd/(2LDM) = ∆Ωd/(4M) and the gain G = exp[2α LA] (α is a fibre loss). It is interesting to look at
some particular limits in this general formula. First, if d = 0 (uniform dispersion along the system) we reproduce the
result of Mollenauer et al. [50,82,83] where T (∆Ω) = (G − 1)/(G lnG) and because T is a constant, the path-averaged
model is just the integrable NLSE. Another interesting limit is the ‘‘lossless’’ model (α = 0) [138] where T (∆Ω) =
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sin[∆Ω d/4 ]/[∆Ω d/4]. For higher values of M ≫ 1, it can be shown that the function T (∆Ω) in Eq. (65) approaches the
product of T (∆Ω) predicted by the ‘‘lossless’’ model and the path-averaged factor (G − 1)/(G lnG). Indeed, this confirms
the fact that periodic amplification (power budgeting) and dispersion compensation can be treated separately in long-haul
transoceanic optical communication systems where amplification distance is typically much shorter than the dispersion
compensation period.

Next we consider the opposite limit, or so-called short-scale management regime where LDM ≪ LA. It is of interest for
some applications to find stable propagation regimes with the signals having short pulse durations with low power. Such
pulses were found to exist with short-scale dispersion management and supported pulses that could have low enough
energy to provide for stable ultra-high-bit-rate transmission [181], thus making such a limit practical. Indeed, optical
fibres with LDM ≪ LA have been manufactured [182]. Consider this limit with a two-step dispersion map with dispersion
compensation period LDM = LA/m (or 1/m in the normalized units). The normalized dispersion d(z) = d + ⟨d⟩ if
k/m < z < (k + 0.5)/m and d(z) = −d + ⟨d⟩ if (k + 0.5)/m < z < (k + 1)/m, where k = 0, 1, 2, . . . ,m − 1. In
this example the mean-free function R0(z) in Eq. (57) is R0(z) = d(z − k/m) − d/(4m) if k/m < z < (k + 0.5)/m and
R(z) = −d[z − k/m − 1/(2m)] + d/(4m) if (k + 0.5)/m < z < (k + 1)/m. After some calculations, it can be shown that
the matrix element Tω123 in Eq. (60c) is

T (Y ) =
G − 1
G lnG

1
1 + ( 4mY

lnG )
2


exp(−iY )+

4mY
lnG


sin(Y )

G1/(2m)
+ 1

G1/(2m) − 1
+ i cos(Y )

G1/(2m)
− 1

G1/(2m) + 1


, (66)

where Y = d∆Ω/(4m). To give an idea as to how far from the conservative soliton solution we are in this particular limit,
we can estimate the matrix element of the quasi-identical transformation

|S(∆Ω)| ≤

 1

0

c(z)[exp(i∆ΩR(z))− 1]
∆Ω

dz
 ≤

 1

0
|c(z)R(z)|dz ≤ max(R)⟨c⟩ =

⟨c⟩ d
4m

. (67)

For fixed parameters, increasing the integerm reduces thismatrix element and thus the path-averagedmodel (61) governing
DM soliton propagation converges to the integrable NLS equation. We can gain intuitive insight as to why this is by
considering Eq. (66). Increasingm (with other parameters fixed) under a fixed characteristic bandwidth of the signal makes
an insignificant oscillatory contribution to the kernel. This means that if T (Y ) is concentrated in some region ∆Y , then for
large m the corresponding region in d∆Ω will be larger than for small m. For the pulses with the same spectral width this
will mean that T is much flatter for largem and, as amatter of fact, for largem, T can be better approximated by a value T (0).
As a result, the NLSE model works rather well in this limit and the solution (of the path averaged model!) should be close
to a hyperbolic secant soliton solution of the NLSE. In contrast to the lossless model, the evolution of the soliton parameters
over one period is highly asymmetric due to the gain and loss. Rapid variations of the pulse width, peak power and chirp
are accompanied by the exponential decay of the power due to loss. Nevertheless, numerical simulations have revealed that
there exists a true periodic solution that reproduces itself at the end of the compensation cell (in this case, at the end of the
amplification period). Note that though it is known that DM solitons have a hyperbolic secant shape for lossless systems in
the weak dispersion management limit [137,138,144,163], this particular signal shape is not obvious for such a short-scale
management schemewhere there is gain and loss as well as different periods of amplification and dispersion compensation.

Although we have shed insight into the average dynamics via the Gabitov–Turitsyn path average equations, it is
important to note that various averaging methods have been used to obtain slightly different aspects of DM solitons. These
include, among others, additional Hamiltonian averaging procedures [178–180], Lie-transform [183], and multiple-scale
expansion [149].

3.6.2. DM soliton expansion in the basis of the chirped Gauss–Hermite functions
Anarbitrary input pulse propagating down the dispersion-managed system typically evolves into an asymptotic structure

that presents a self-similar rapidly oscillating main peak and a non-self-similar dispersive pedestal [144,152]. As pointed
out in Section 3.2, there is an interesting analogy between a DM soliton and the nonlinear macroscopic quantum oscillator.
The basic idea is that the periodic variations of the phase (that occur due to periodic oscillations of the dispersion)
create an effective parabolic trapping potential. Without nonlinearity any propagating wave is a direct combination of the
eigenfunctions of such a quantum oscillator potential—the Gauss–Hermite functions. When nonlinearity comes into play,
the energy is redistributed between differentmodes. It is then quite natural to describe the path average evolution of the DM
soliton as some combination of chirped Gauss–Hermite functions. To separate the rapid self-similar dynamics that occurs
due to large variations of the local dispersion let us apply the following self-similar transformation to Eq. (22) [142]

a(z, t) =
N ei

M(z)
T (z) t

2

√
T (z)

n=∞
n=0

Bn(z)fn
 t
T (z)


eiλnR(z). (68)

The rapid oscillations of pulse width and chirp are accounted by periodic functions T (z), M(z), and the phase term R(z)
where dR/dz = d(z)/T 2(z)− ⟨d/T 2

⟩. The periodic functions T andM satisfy the TM equations (50) and in the leading order
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keep the self-similar structure of the DM pulse. The slow evolution is given by the summation of functions fn(x), which are
the orthogonal normalized Gauss–Hermite functions

fn(x) =
1

2nn!
√
π

exp


−
x2

2


Hn(x) (69)

which satisfy

d2fn
dx2

− x2fn = λnfn, λn = −1 − 2n. (70)

Here Hn(x) is the nth-order Hermite polynomial and coefficients Bn are given by the ordinary scalar product in L2 with fm.
Inserting this expansion into Eq. (22) and after scalar multiplication with fm we obtain

i
dBn

dz
+


d
T 2


λnBn + β(z)


m=0

e2i(n−m)R(z)Sn,mBm + β(z)

m,l,k

e2i(n+k−m−l)R(z)BmBlB∗

kVm,l,k,n = 0, (71)

where β(z) = c(z)N2/T 2 and

Sn,m = ⟨fm|x2fn⟩ =


+∞

−∞

fm(x)x2fn(x)dx, (72a)

Vn,m,l,k = ⟨fm|fnflfk⟩ =


+∞

−∞

fn(x)fm(x)fl(x)fk(x)dx. (72b)

Since integrals of the form

xne−αx2 can be calculated analytically, it is possible to determine any Sn,m and Vn,m,l,k.

In contrast to Eq. (22), Eq. (71) can be averaged directly because the large variations of the dispersion are moved to
the phase factor proportional to R(z). Although averaging can be performed either using Lie-transform technique [150] or
Hamiltonian averaging [175], we can gain important insight on the zero-order term directly. Let us split Bn into slow (Un)
and fast (ηn) varying parts Bn = Un + ηn + · · · (dηn/dz ≫ ηn) and assume that the rapidly varying part is small compared
with slow varying one ηn ≪ Un. Averaging over one period in the leading order then gives for Un

i
dUn

dz
+


d
T 2


λnUn +


m=0

⟨β(z)e2i(n−m)R(z)
⟩Sn,mUm +


m,l,k

⟨β(z)e2i(n+k−l−m)R(z)
⟩UmUlU∗

k Vn,m,l,k = 0. (73)

Considering a solution in the form Un = Fn exp(ikz), with Fn a constant, we obtain the expansion of the DM soliton in terms
of chirped Gauss–Hermite functions. The shape of any DM soliton can be found from a solution of algebraic equations

− kFn +


d
T 2


λnFn +


m=0

⟨β(z)e2i(n−m)R(z)
⟩Sn,mFm +


m,l,k

⟨β(z)e2i(n+k−l−m)R(z)
⟩FmFlF∗

k Vn,m,l,k = 0. (74)

Note that although this nonlinear eigenvalue problem looks complicated, this is a set of algebraic equations that are much
easier to solve compared to finding the DM soliton from original PDE (22). Rapid convergence, which is natural for localized
pulse solutions means that the solution should be represented well by a limited number of terms in the expansion. This
approach is a rigorous way to describe a family of DM soliton for an arbitrary dispersion map.

To give a specific example, Fig. 11 presents a comparison of the path-average model with direct numerical simulations
for an example of a lossless system with two step dispersion map (the same as in Fig. 6). The spectral power (logarithmic
scale) of the true DM soliton (solid line), taken at the boundary between the two fibres is compared with the (0 + 4)
(dashed–dotted line) and five mode (dotted line) approximations in the expansion using the chirped Gauss–Hermite
functions. For comparison, we have also shown the solution of the path-averaged Eq. (61) (dashed line). The inset shows
the dynamics over one period of the first nontrivial coefficients in the Gauss–Hermite expansion of the DM soliton. It is
seen that both path-average models give quite good approximations of the true DM soliton. Even the two-mode (0 + 4)
approximation describes the central part very well.

The expansion in the basis of the chirped Gauss–Hermite functions presents an analytical approximation of the DM
soliton describing both the Gaussian core and the oscillating tails, and has been used to describe various properties of the
DM soliton [130,142,155,184]. It is powerful in that this method can describe the oscillatory tails and give an estimate as
to how accurately the RMS momentum description can be. Further, it can be used in numerical modelling as it reduces the
overall dynamics to a system of algebraic equations governing the slow evolution.
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Fig. 11. Spectral power of DM soliton in logarithmic scale: true DM soliton (solid line), solution of path-average Eq. (61) (dashed line), two-mode
(dashed–dotted line) and five-mode (dotted line) approximations using a Gauss–Hermite expansion [130]. Inset: dynamics of the first nonzero coefficients
in the expansion over one map period.

3.7. Short-scale dispersion management

As previously discussed, a DM soliton has an enhanced power with respect to the fundamental soliton, increasing the
signal-to-noise ratio, reducing Gordon–Haus–Elgin jitter, and improving the overall transmission performance. However,
this advantage can be a serious drawback for transmission with high bit rates of 40 Gbits/s and more per channel. Data
transmission with such high bit rates requires denser pulse packing, leading to shorter soliton pulse durations. Since the
energy E ∼ P × T of the DM soliton increases with decreasing pulse duration T (see Fig. 10(a)), the peak power P can
become too high to be realized in practice in such high bit rate transmission schemes. Therefore, in designing high-bit-
rate soliton-based transmission systems one must keep the soliton power high enough to exploit the advantages of DM
soliton propagation but low enough to meet the telecommunication standards for signal power as well as avoid nonlinear
interactions between neighbouring pulses.

Traditional dispersionmanagement for long-haul transmission assumes that the dispersion compensation period ismuch
longer than the amplification distance (LA ≪ LDM ). It is possible to achieve the opposite limit, where LDM ≪ LA by splicing
a number of fibre pieces or by building in the periodic change of the dispersion in a continuous manner in producing the
fibre. Indeed, existing technologies make it possible to manufacture fibre with the continuous alternation of positive and
negative dispersion sections of less than 10 kmwithout any splicing [182]. Aswas shown in Section 3.6.1 (Eq. (67)), in the so-
called short-scale management regime the pulse shape is close to hyperbolic secant shape. Fig. 12 shows an example of the
resulting pulse parameter evolution from numerical simulation of the governing equation (22) for a short-scale dispersion
mapwhere the amplification distance is LA = 40 kmand the dispersion compensation length is LDM = 4 km. Rapid variations
of the pulse width, peak power and chirp are accompanied by the exponential decay of the power due to loss. Nevertheless,
there exists a true periodic solution that reproduces itself at the end of the compensation cell (in this case, at the end of the
amplification period). The DM soliton indeed is of hyperbolic secant shape and propagates without radiation [181].

An important feature of the DM solitons in systems with short-scale dispersion management is their reduced power.
In contrast to the enhanced power DM soliton that occurs in the most of studied dispersion-managed systems [138], the
DM soliton investigated here has a reduced power compared with a conventional path-averaged soliton of the same width
propagating in a system with the same average dispersion [181]. It is important here to compare the DM soliton power not
with the fundamental soliton in a lossless fibre, but with the path-average soliton in a systemwith uniform dispersion (with
the same amplification distance and average dispersion as the system considered here). This reduction in power can lead to
the necessary regime in high-speed transmission where the carrier pulse duration must be short enough but the power low
enough for practical systems. Indeed, the technique of short-scale or dense dispersion-managed soliton transmission has
been successfully achieved at both 80 and 160 Gb/s through numerical simulations [185,186]. An improvement on such a
dense dispersion-managed systemwas proposedwhere an average dispersion decreasing densely dispersion-managed fibre
line was used to substantially improve the performance of high-speed optical transmission systems [187]. Dense dispersion
managed systems have been experimentally implemented at very high channel rates [188].

3.8. Other examples of dispersion management

In the past sections we have overviewedmany properties of dispersionmanagementmainly with a focus on DM solitons.
In this section we want to discuss some other methods of dispersion management used to generate other forms of coherent
structures in nonlinear fibre based systems. Dispersion management and tailoring can be used in a similar manner in a
variety of materials e.g. in silicon waveguides [189]. The quintessential example is conventional solitons in real systems. As
discussed in Section 1, a conventional soliton is a stationary pulse created by the balance between anomalous dispersion
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Fig. 12. Evolution of the DM soliton (a) peak power, (b) FWHM pulse duration, and (c) chirp parameter along one section of the transmission systemwith
short-scale dispersion map (shown in (d)). The average dispersion value is ⟨D⟩ = 0.1 ps/(nm × km), nonlinear parameter is γ = 2.43 1/(W km) and fibre
loss is α = 0.21 dB/km. The amplification distance is 40 km and the dispersion compensation length is 4 km.

and nonlinearity. In real transmissions and laser systems where the losses are compensated for by lumped amplification,
energy of the soliton varies along the propagation distance. The soliton power decreases exponentially as it propagates
down the fibre and experiences large nonlinearity just after amplification and reduced nonlinearity in the last part of each
amplifier span or cavity round trip. For such systems, some form of dispersionmanagement with an exponentially decaying
dispersion is necessary to keep the balance between dispersion and nonlinearity to maintain true static conventional
solitons [190–193]. Similar effects can be achieved by a concatenation in series of constant-dispersion fibres (with piecewise
decreasing dispersion) to approximate a fibre having exponentially decreasing dispersion.

In addition to conventional soliton propagation in real systems, it is possible to obtain parabolic pulse propagation
in fibre-based systems with normal dispersion. High-power parabolic pulse inputs were shown to keep their shape and
propagate in a passive fibre [77]. In an amplifying medium operating at normal dispersion (such as a EDFA, Yb-doped fibre,
or passive fibres with distributed Raman amplification), parabolic shaped pulses that are linearly chirped were shown to
be the global attractors to the system, regardless of the initial condition [194–196]. Indeed, parabolic pulse solutions, or
similaritons, were shown to be asymptotic solutions to the NLSE with normal dispersion and constant linear gain [194].
Although these optical pulses are beneficial for high-power amplification and lasers, the active medium can limit the
available range of such pulses. There are a number of physical and technical applications (e.g. telecom signal processing)
that require a specific parabolic pulse with linear chirp but where noise is to be minimized and high signal power is
not necessarily required. A simple alternative method for the generation of such optical signals is through dispersion
management in a passive fibre, by means of a dispersion-decreasing fibre (DDF) [197]. To understand the physics behind
such a process, it is insightful to look at the governing equation (22) with d(z) = −|d|p(z) and c(z) = c , where p(z)
is a normalized positive, decreasing function (p(0) = 1) and c is a constant. Using the following change of variables
ζ (z) =

 z
0 p(z) dz, q(ζ , t) = a(z, t)/

√
p(ζ ) Eq. (22) is transformed into the NLSE with constant coefficients and effective

gain

i
∂q
∂ζ

− |d|
∂2q
∂t2

+ c|q|2q = −
i
2
pζ
p
q.

The right hand side shows the connection of the governing NLS equation with a decreasing dispersion (pζ < 0) and
amplification. Indeed, when pζ /p = −Γ0 is constant, exact asymptotic solutions are known [194]. This corresponds to
p(ζ ) = exp[−Γ0ζ ], so that the dispersion is an exact hyperbolic profile p(z) = 1/(1 + Γ0z). Assuming a hyperbolic
dispersion profile the new variables can be found explicitly as ζ (z) = ln(1 + Γ0z)/Γ0, q(ζ , t) = a(z, t)

√
1 + Γ0z =

a(z, t) exp(Γ0ζ/2), with fibre length in the new variables to be ζ (L) = ln(1 + Γ0L)/Γ0. In the case of lossless DDF,
mathematically, indeed, these two problems are the same: the initial pulse evolves into a parabolic pulse when L → ∞.
To physically generate a DDF it is possible to use a tapered fibre with an appropriately varying core diameter. The zero
dispersion point depends on the fibre diameter and changes during the pulling process. Smaller absolute values of dispersion
correspond to the larger core diameters (in the normal dispersion region). Therefore, for the purposes of parabolic pulse
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generation, light should be launched into the taper from the narrow edge. Input and output diameters of the fibre can be
tailored to achieve the desirable dispersion curve (i.e. hyperbolic profile). Typically, a difference of diameters is smaller
than 10 µm (with the dispersion-shifted fibre diameter of about 120 µm) and higher-order dispersion terms and fibre
nonlinearity with a good accuracy can be considered to be constants along the fibre for the fixed wavelength. The effects of
higher-order dispersion and fibre loss imposes certain constraints on using tapered fibre for parabolic pulse generation. It
has been demonstrated that though parabolic pulse generation in DDF is similar to the case of active fibre, the impact of TOD
is critical for the DDF case and it is mandatory either to apply a scheme with a very accurately designed taper fibre length
or to use a dispersion flattened DDF [198].

Above we have considered dispersion management with optical carrier pulses that are so-called ‘‘bright’’ solitons, which
decay to zero as |t| → ∞. Dispersion management can also be applied to another type of solitons, so-called dark solitons
where the soliton is a CWwave with a dip in the constant power distribution (see [56,57,199–202] and references therein).
The DMdark soliton in a fibre laser has similarities bothwith CWoperation (far from the dip in power) and pulsed operation
(in the power dip), and investigations of their properties in transmission systems have beenmade [203–206]. In recent work
a dark DM soliton was reported as the attracting state in a dispersion managed erbium-doped fibre laser operating with a
net-normal GVD [207]. It was shown that dispersion management could not only reduce the pump power threshold for the
dark soliton formation in a fibre laser, but also stabilize the single dark soliton evolution in the cavity. It was also found that
the formation of the DM dark soliton has lower pump threshold as compared with a similar dark soliton formation in an
all-normal dispersion fibre laser. In general, dark solitons in dispersion managed fibre lasers can be quite stable and less
sensitive to environmental perturbations [207].

In addition to tailoring the dispersion to obtain coherent structures, other aspects of dispersion management have been
investigated. Dispersion management of parabolic pulses [208], and dispersion control in highly nonlinear fibres [209–213]
have recently been explored. The use of a cascade of nonlinear optical fibres was used to drive a soliton system to an exact
(regular) Cantor set fractals. Dispersionmanagement was used to produce the fission of picosecond solitons in a fibre with a
sinusoidal variation of the core diameter along the longitudinal direction of propagation [214]. The fission of high-intensity
solitons caused by both the variation of the fibre dispersion and stimulated Raman scattering was demonstrated. Dispersion
management can be used in such systems to control the number of output pulses and their frequencies even under the
strong effect of the Raman scattering. The nonreciprocal effects and pulse compression due to the longitudinal oscillations
of the fibre dispersion were experimentally demonstrated [215,216].

Finally, wemention a few studies involving the randomnature of dispersion. The effect of randomdispersion is important
as short-range correlated uniform noisy fluctuations in the dispersion coefficient is inherent in many types of optical
fibres [217–221]. Such random fluctuations broaden and eventually destroy initially ultra-short pulses. However, under
the constraint that the integral of the random component of the dispersion coefficient is set to zero (pinned) periodically
or quasi-periodically along the fibre, the dynamics of the pulse propagation changes dramatically [218]. For the case that
randomness is present in addition to constant positive dispersion, the pinning restriction significantly reduces average pulse
broadening. In periodic managed systems with some random deviations in the periodicity of the dispersion, the DM soliton
can lose stability over certain parameter regimes [222].

3.9. Mathematical studies of dispersion-managed systems

So far in this review we have focused mainly on some of the key physical aspects of DM solitons. Over the years there
has been extensive mathematical research on DM solitons and their dynamics. For completeness of presentation we briefly
list some of the mathematical studies of the dispersion-managed systems without going into specific details that can be
found in the papers listed in this section. Despite numerous physical and engineering papers, it is surprising that there are
only few rigorous mathematical results concerning the existence and smoothness of DM soliton solutions. Existence and
smoothness of weak solutions of the Gabitov–Turitsyn equation (61) had first been rigorously studied in [223] in the case of
positive average dispersion and in the case of zero average dispersion in [224]. Interesting mathematical results concerning
the existence and fine properties of DM solitons such as the exponential decay in both the time and frequency domains have
been studied in [225–230]. Perturbation theory for DM solitons has been developed in [231,232]. A number of mathematical
problems related to DM solitons dynamics have been considered [162,219,220,233–252]. The stability of DM solitons has
been analysed within both a Gaussian variational approximation and an integral evolution model [253]. In the case of the
normal average dispersion regime there are two DM soliton solutions having different pulse durations and energies at a
fixed propagation constant. It was rigorously shown that the DM soliton with shorter pulse width (and a larger energy) is
unstable while the other DM soliton solution with a smaller energy (and longer pulse width) is stable, but hits a resonance
with excitations of the dispersion map [253]. In addition to DM solitons themselves, statistical properties of DM solitons in
the presence of additive noise have been studied in a number of publications (see e.g. [254–266] and references therein).

4. Dispersion-managed solitons in dissipative systems

As discussed in the previous section, the dispersion-managed pulse is a stable periodic breather with features very
different from that of the conventional soliton. In practical real world applications, signal transformation along the fibre line
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is not only caused by varying chromatic dispersion and nonlinearity, but also by dissipation and amplification. As examples,
we refer back to Fig. 3 which shows two examples where dissipative elements occur periodically in the optical system.
In long-haul lightwave communication systems the utilization of periodically installed in-line erbium-doped fibre optical
amplifiers compensates the carrier signal attenuation in the transmission fibre. Similarly, mode-locked fibre lasers employ
rare-earth doped fibre segments to provide the necessary gain to compensate the energy loss fromoutput coupling and other
nonlinear dissipative elements that promote self-starting pulse formation from initial amplitude fluctuations. In general,
analytical progress becomes increasingly difficult when the dissipative terms have a nonlinear nature. However, there are
some important limiting cases where the pulse dynamics can be described. In this section, we will describe dispersion
management in dissipative systems where, in contrast to Section 3 the dissipative terms may be more complicated than
Eq. (23b). First, we will review dissipative solitons and parabolic solutions in the context of an averaged Ginzburg–Landau
equation. Then we will describe dispersion-management in the presence of distributed energy perturbations, and develop
a description of dissipative DM solitons. We will then discuss dissipative dispersion-managed solitons where the discrete
nature of the dissipative elements is maintained. Finally, we will discuss the intra-map pulse dynamics of such solutions.

4.1. Distributed Ginzburg–Landau equation and solutions

The complex Ginzburg–Landau equation (CGLE) was originally proposed as a phenomenological approach in the context
of phase transitions [30], and is arguably one of themost-studied nonlinearmodels in the physics community. It describes on
a qualitative, and often quantitative level a vast variety of physical phenomena, fromnonlinearwaves to second-order phase
transitions, superconductivity, superfluidity, Bose–Einstein condensation, liquid crystals and strings in field theory [35].
It arises, in particular, as a first-approximation ‘‘envelope’’ (or ‘‘amplitude’’) equation that governs the non-equilibrium
dynamics of nonlinear systems in the presence of gain/loss, depending on the specifics of the physical problem. For optical
systems, the CGLE has been used to describe phenomena such as optical pulse transmission and, in particular, to model
mode-locked lasers, where there exist both linear and nonlinear dissipative elements in the system [36,98,267–271].

4.1.1. Dissipative soliton solutions
In general, a pulse will change by some amount 1U as it goes through each optical element in the periodic system.

Significant mathematical insight can be obtained from averaged models when all discrete optical elements can be included
in a fully distributed way. Of critical importance to this approach is that in such a system the maximum nonlinear phase
shift φmax

NL a pulse accumulates over one period in the optical system is less than ∼2π . In such a limit an average equation
can be obtained in the form of a complex Ginzburg–Landau equation (CGLE). The most well-known example in this context
was developed by Hermann Haus and is referred to as the ‘‘master equation’’ of passive mode-locking [267] (in dimensional
units)

iUz −
1
2
β2Utt + γ |U|

2U = i


(g − Γ )U +

1
Ω2

g
Utt + δ|U|

2U


. (75)

On the left hand side of Eq. (75) the dispersion and nonlinear coefficients are the average values of these parameters in the
optical system. The parameter g − Γ [dB/m] is the average constant gain/loss of the cavity,Ωg [THz] is related to the width
of a parabolic (in the frequency domain) filtering action, and δ (>0) [1/(Wm)] is the nonlinear gain coefficient determining
the strength of the saturable absorber action. Although the nonlinear cubic dissipation term is qualitative and simplifies
the details of the particular nonlinear gain/loss element in the optical system, it provides a model that can be explored
analytically. Specifically, exact stationary solutions exist to Eq. (75) of the form

U(z, t) =
√
P sech (t/τ)1+iC

× eiφz (76)

where the parameter P, τ , C and φ are all real constants measuring the peak power, pulse duration, chirp parameter, and
phase, respectively. Using the solution (76) in Eq. (75) we obtain the set of nonlinear algebraic equations

φτ 20Ω
2
g −


D(1 − C2)+ 2C

 τ 20
τ 2

= 0, D(2 − C2)+ 3γ̄
τ

τ0
− 3C = 0 (77a)
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 τ 20
τ 2

= 0, (2 − C2)+ 3DC − 3δ̄
τ

τ0
= 0, (77b)

where the nondimensional parameters D = β2Ω
2
g /2, γ̄ = γΩ2

g Eτ0/6, and δ̄ = δΩ2
g Eτ0/6 have been defined and τ0 and

E = 2Pτ are the characteristic pulse duration and energy, respectively. Figs. 13–14 show the solution parameters for a wide
range of parameters. The bandwidth is found from the relation B = τ0 arcosh(cosh(πC) + 2)/(π2τ) [272–274]. Fig. 13
shows the solution of (77) for a circumstance where the pulse energy E, filter widthΩg , and nonlinear gain coefficient δ are
fixed, and the GVD parameter β2 and nonlinear coefficient γ are varied. When the nonlinearity parameter γ̄ ≠ 0, there
is a zero-chirp solution in the anomalous dispersion regime when Dδ̄ + γ̄ = 0 (black line). Typically the shortest pulse
durations with the smallest chirp occur in the anomalous dispersion regime and these solutions are close to fundamental
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Fig. 13. Solution to the system (77) for (a) duration τ/τ0 , (b) chirp parameter C , (c) bandwidth B, and (d) gain parameter (g − Γ )Ω2
g τ

2
0 with δ̄ = 0.5.

solitons, which rely mainly on the balance between dispersion and self-phasemodulation while the dissipative terms play a
secondary role. In contrast to the NLSE, the master mode-lockingmodel permits bright soliton solutions of the form Eq. (76)
at zero and normal dispersion (D ≥ 0). Pulse solutions in the normal dispersion regime have larger pulse durations and
chirp parameters. The bandwidth B is maximized for slightly positive dispersion, with the maximum increasing for larger
values of the nonlinear coefficient γ̄ . The linear gain coefficient g − Γ determines whether the background noise will grow
or decay. From Fig. 13(d) we see that this growth rate is typically smaller in the anomalous GVD regime, and increases
drastically around D = 0 for large values of the nonlinear coefficient. To investigate the role of gain dispersion, Fig. 14
shows the solution to (77) for a circumstancewhere the GVD coefficient is set to zero (D = 0), the parameterΩgτ0 and pulse
energy E are fixed, and γΩg and δΩg are varied. The boxes marked ‘‘I’’ and ‘‘II’’ correspond to regions of strong and weak
gain filtering, respectively. When there is strong filtering (the gain bandwidth is narrow) the pulse duration is broad and
the chirp parameter increases for lower values of δ̄. When there is weak spectral filtering, the pulses have a short duration
and are slightly chirped. For all solutions the pulse bandwidth mostly depends on the nonlinear parameter γ̄ , with broader
bandwidths for larger values of γ̄ , and the gain coefficient decreases for higher values of the nonlinear gain coefficient δ̄.
Fig. 15 shows examples of typical temporal and spectral power profiles of solution (76) for both anomalous and normal
dispersion. For highly chirped pulses typical in the normal dispersion regime, the spectral power is squared off with steep
edges. Such solutions were experimentally realized in a solid-state laser system with net normal dispersion [275].

In addition to the existence of pulse solutions (76), it is also important to understand their stability. Fig. 13(d) and 14(d)
shows the gain parameterwhichmust be negative if the pulse is to be stable against buildup of low amplitude noise between
pulses. Indeed, it is possible to obtain negative net gain for various parameters. Themathematical conditions for the net gain
to be negative were found in [267], however this analysis did not characterize the stability of the pulse itself. Using soliton
perturbation theory techniques and neglecting the filtering and nonlinear gain/loss terms, solutions (76) to Eq. (75) were
shown to be unstable in the anomalous dispersion regime (β2 < 0) when g − Γ > 0 [276]. An extension of this work
included the addition of a saturable gain

g = g(z) =
G0

1 + E(z)/Esat
. (78)

The saturable gain model (78) assumes that the gain response of the medium Tg is slow when compared to the time
between successive pulses TR. This is a reasonable assumption since for typical amplifiers Tg ∼ microseconds, where TR ∼

nanoseconds for many optical systems such as mode-locked fibre laser resonators. In such a limit the gain saturates due
to the total energy E(z) =


∞

−∞
|U(z, t)|2dt in the amplifying medium. The energy saturation parameter Esat = P (g)s × TR,

measured in nanojoules, is determined by the saturation power of the gainmedium P (g)s and the repetition rate of the optical
system TR. The parameter G0, measured in dB/m, is the small signal gain parameter. Including this saturation gain model
allowed for the stabilization of the pulse solution (76) in the anomalous dispersion regime (β2 < 0) for a small regime of
parameter space [277].
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Fig. 14. Solution to the system (77) for (a) duration τ/τ0 , (b) chirp parameter C , (c) bandwidth B, and (d) gain parameter (g − Γ )Ω2
g τ

2
0 with D = 0.

a b

Fig. 15. Hyperbolic secant solutions (76) for P = 1, τ = 1, C = 0 (solid black) and C = 5 (solid grey) in both the (a) temporal and (b) spectral domains.
The dashed profiles are examples of highly chirped solutions to the CQGLE [97–101].

Although the master model developed by Haus highlights important qualities about pulse solutions of the form (76),
the range of parameters where stable solutions exist is highly restricted. To increase the range of stable solutions, a quintic
loss term is often added to the right hand side of Eq. (75), giving the so-called cubic–quintic GLE (CQGLE). Although the
quintic term saturates the nonlinear gain and allows for a broader parameter space where solutions are stable, chirped
hyperbolic secant solutions (76) are no longer exact solutions. However, the general trends shown in Figs. 13–14 remain
consistent with steady state pulse solutions to the CQGLE. Specifically, pulses in the anomalous dispersion regime have low
chirp values and tend to be short, whereas pulses in the normal dispersion regime have a large chirp and tend to be broad.
The CQGLE has been extensively studied numerically over the past two decades and interesting behaviour has been found
describing, for example, stationary solutions, pulsating solitons, chaotic solitons, soliton explosions and soliton interactions
[36,103–105,278].

Recent progress in ultra-fast lasers has produced high-energy, highly chirped pulses in chirped-pulse oscillators and all-
normal dispersion lasers [279,280]. These highly chirped pulses have features that cannot be predicted by the cubic GLE
and its solutions (76). Specifically, the spectral power profile of the pulse solutions is distinctly different in shape from
those predicted by the solution (76). Modifications of the flat-top spectrum predicted by (76) include a parabolic-top with
squared off sides or high fringes on the edge of the spectra with a dip in the middle (see Fig. 15). A generalization of the
Hocking and Stewartson solution to the CQGLEU(z, t) =

√
P/(cosh(t/τ)+ B)×exp[−iC(ln(cosh(t/τ)+B))+ iϕz] has the

ability to reproduce such spectral profiles depending on the parameter −1 < B < ∞ [97]. This solution has co-dimension
one, meaning that the solution parameters cannot be expressed entirely in terms of the equation parameters leading to
additional assumptions on the equation parameters. However, it has been successful in qualitatively predicting various
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modes of operation of all-normal dispersion mode-locked fibre lasers, such as flat top pulses, giant chirp solutions, and the
onset of multi-pulsing. It was also used to characterize the intra-cavity dynamics and the role of spectral filtering in such
optical systems [281]. Recently these solutions have been employed with the CQGLE to extend the so-called soliton area
theorem. In contrast to the typical soliton area theorem which states that the energy is inversely proportional to the pulse
duration, for a particular set of parameter values the modified area theorem predicts that the pulse energy varies linearly
with pulse duration [282]. In another approach, approximate solutions to the CQGLE have been found which exhibit some
qualitative features of the experimentally realized pulses [98–100,102]. These solutions allow for relevant regions in the
parameter space to be mapped out, and the approximate solutions have been extended for the more general case when the
cubic–quintic dissipative terms are replaced with a Lorentzian function [101].

4.1.2. Similariton solutions
High power optical pulseswith a parabolic intensity profile and a linear frequency chirp propagatewithout typical wave-

breaking instabilities in a passive optical fibre operating in the normal dispersion regime [77]. This insight encouraged the
study of ultrashort pulse propagation in a normal dispersion optical fibre amplifier which can be described by Eq. (75)
with β2 > 0,Ωg → ∞ and δ = 0. Remarkably, regardless of the initial input pulse, the pulse naturally evolves towards a
parabolic pulse profilewith a quadratic phase if g−Γ > 0 and retains this structure even as it is continued to be amplified to
high powers [194]. Fig. 16(a) shows the typical pulse evolution and highlights the pulse evolution of a initial Gaussian shape.
The inset shows the final parabolic pulse and the linear chirp profile (derivative of the phase) across it. Indeed, regardless
of the initial pulse shape these chirped parabolic pulses act as the global attractor to the system in the asymptotic limit.
Assuming a self-similar parabolic solution of the form

U(z, t) =

Pp(z)


1 −

t2

τ 2p (z)


× eiCp(z)t

2
(79)

into Eq. (75) (Ωg → ∞ and δ = 0) and letting 1/τ 2 ≪ C2 in the asymptotic limit gives

dPp
dz

= 2β2PC + 2(g − Γ )P,
dτp
dz

= −2β2τC,
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= 2β2C2

− γ
P
τ 2
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These equations have analytical solutions

Pp(z) = A2
0 e

4(g−Γ ) z/3, τp(z) =
3
√
γ β2/2

g − Γ
A0 e2(g−Γ ) z/3, Cp(z) = −

g − Γ

3β2
, (81)

where A0 = [2(g − Γ )Ein/
√
γ β2/2]1/3/2 and Ein is the input pulse energy. From Eq. (81), the bandwidth can be calculated

to be ωp =
√
2γ /(5β2) A0 exp[2(g − Γ )z/3]. In the presence of gain (g − Γ > 0), the peak power, pulse duration

and bandwidth increase exponentially and only depend on the amplifier parameters and input pulse energy. Further, the
chirp parameter approaches a constant value that is proportional to the gain coefficient and inversely proportional to
the GVD coefficient. The asymptotic nature of this solution is reflected in the fact that the pulse characteristics approach
Eq. (81) regardless of the initial pulse shape. Fig. 16(b) highlights the attractive nature of the asymptotic parabolic pulse
solution. Shown is the phase space representation with the phase variables given by the ratio of the RMS pulse duration and
bandwidth (see Eq. (17)) to their asymptotic values τp and ωp respectively. The results are obtained from solving Eq. (75)
with initial Gaussian pulses of the form u(0, t) =


Ein/[

√
πτp(0)] exp[−t2/(2τ 2p (0))] (Ein = 100 pJ) with FWHM pulse

durations varying over the range 150 fs to 1 ps in a 5 metre amplifier. It is clear that although different input pulses follow
different evolution trajectories, they are all attracted to the asymptotic similariton solution (the point (1, 1) in the phase
plane) with sufficient propagation distance. The important fact that these solutions act as global attractors to the system
allows for them to be used in a variety of optical systems ranging from laser applications to signal processing.

4.2. Dispersion management with distributed dissipative elements

Distributed models such as the master equation and CQGLE describe the average dynamics of an optical system which
physically contains lumped elements. In some systems it is remarkable howwell these equations describe the overall physics
under certain conditions. However, to incorporatemore realistic pulse dynamics in the overall optical system it is important
to include physical effects whose influence depends on propagation distance within the optical system. Here we consider
pulse evolution in such optical systems with a dispersion map with the dissipative terms averaged over the whole optical
system, resulting in the normalized governing equation

iuz + d(z)utt + ϵ|u|2u = i

(g(z)− l0)u + νg(z)utt +

l0
ps

F(|u|2/ps)|u|2u

, (82)
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a b

Fig. 16. (a) Solution from Eq. (75) with initial Gaussian pulse of energy 100 pJ and FWHM pulse duration 500 fs over 5 m of propagation. The parameters
are β2 = 0.025 ps2/m, γ = 0.005 1/(W m), g = 0.95 1/m, Γ = δ = 0, and Ωf → ∞. Inset: power and chirp profiles after 5 m propagation distance.
(b) Phase portrait with normalized RMS pulse duration and bandwidth phase variables from similar numerical simulations as in (a), but with varying initial
FWHM pulse durations ranging from 150 fs to 1 ps.

with a saturable gain

g(z) =
g0

1 + E(z)/es
. (83)

Here all normalizations are as in Eq. (2), with the length L = LDM being the length of the dispersion map. Without loss of
generality and for continuity with Section 3, we consider mainly the symmetric map

d(z) =

d + ⟨d⟩, 0 < z < 0.25
−d + ⟨d⟩, 0.5 < z < 0.75,
d + ⟨d⟩, 0.75 < z < 1.

(84)

The additional normalized dissipative parameters g0 = LG, es = Esat/(P0T0), l0 = LΓ , ν = 1/(Ω2
g T

2
0 ), and ps = Ps/P0 are

the normalized small-signal gain coefficient, saturation energy, unsaturated loss coefficient, gain bandwidth parameter, and
saturation power, respectively. Here G (in 1/metre) is the linear gain from amplification, Γ (in 1/metre) is the distributed
losses, Esat (in picojoules) is the saturation energy of the gainmedium,Ωg (in THz) is related to the amplification bandwidth,
and Ps (inW) is the saturation power for the nonlinear gain/loss element such as a saturable absorber. The nonlinear gain/loss
element is characterized by the general function F , which in certain limits gives different Ginzburg–Landau type equations.
For example, if F is constant, then Eq. (82) has the form of the cubic GLE, where if F is linear it is the CQGLE.

The dissipative terms in Eq. (82) play an important role in the scalings considered and are responsible for major
differences between solutions to Eq. (82) and conservative DM solitons considered in Section 3. Conservative DM solitons
experience no gain or loss and must be launched with the appropriate energy and chirp corresponding to the particular
dispersion map. In contrast, when dissipation is included as in Eq. (82) the dissipative terms will select the appropriate
pulse evolution such that the total gain and losses experienced by the pulse will approximately balance. This continuous
energy balance is a direct consequence of the proposed distributed model and is distinctly different than models where the
dissipative terms are represented in a lumped way. From Eq. (82), the evolution of the energy E =


∞

−∞
|u|2dt is given by

1
2
Ez =

 g0
1 + E/es

(1 − νΩ2
RMS)− l0


E +

l0
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
∞

−∞

F(|u|2/ps)|u|4dt, (85)

whereΩ2
RMS is the RMS bandwidth parameter defined in Eq. (17d). It is clear from Eq. (85) that the pulse energy is increased

by the linear gain, while it is reduced by linear loss and gain filtering. Depending on the form of F(x), the energy is increased
or decreased by the nonlinear dissipative term. Typically the linear gain and losswill balance so that E ∼ es(g0−l0)/l0, giving
a peak power and pulse duration that typically do not satisfy the requirements for periodic breathers in the conservative
DM case. However, exact periodic breathers are still possible due to dissipative effects.

4.2.1. Detailed effects of dissipative terms
Using the same symmetric map (84) as was presented for much of the analysis in Section 3, we highlight how each

dissipative term in Eqs. (82)–(84) will effect the pulse evolution. In the simplest case, when only gain saturation is included
the initial condition is amplified until the pulse energy reaches a constant value of E = es(g0 − l0)/l0, giving a total gain
g(z) − l0 = 0. The dissipation will amplify or attenuate any initial condition so that the pulse energy is attracted towards
this value. Once the energy saturation level has been achieved, the conservative components completely drive the breathing
dynamics. Since the energy level is typically not the same as that required for exactly periodic pulse evolution, the breathing
dynamics is not periodic (Fig. 18(a)) and resembles a conservative DM soliton started from non-ideal initial conditions.
Including a general nonlinear gain element representing, for instance, the action of a saturable absorber in the optical system
can lead to stable periodic breathers for a large range of parameter space. Fig. 17 shows the solution of Eqs. (82)–(84) with
a Lorentzian nonlinear gain function F(x) = 1/(1 + x). The periodic breather stretch and compress twice per cavity round
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Fig. 17. (a) Temporal and (b) spectral evolution of the power per map period once steady state evolution is achieved from the solution to Eqs. (82)–(84)
with d = 5, ⟨d⟩ = 0.15, ϵ = 1, and dissipative parameters g0 =, l0 = 0.7, es = 2, p0 = 10, and ν = 0. The nonlinear gain function is F(x) = 1/(1 + x).
(c) Poincare map taken in the middle of the anomalous dispersion segment. (d) Intra-map evolutions of the RMS pulse duration and chirp parameter once
steady state evolution is reached.
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Fig. 18. Phase plane and Poincare map (insets) taken at the middle of the anomalous GVD segment for the solutions obtained from Eqs. (82)–(84) with
the same parameters as in Fig. 17 but with (a) F(x) = ν = 0 and (b) F(x) = 1/(1 + x) and ν = 0.3. The red (blue) dots on the phase plane correspond to
the middle of the anomalous (normal) GVD segments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

trip, reach a minimum duration in the middle of each segment, and acquire both signs of chirp. Fig. 17(c) shows the RMS
characteristics in a Poincare map at the specific point in the middle of the anomalous GVD segment (z = 0). Clearly the
intra-map pulse dynamics is attracted to a periodic breather, represented by the attracting node in the phase plane. Indeed,
the nonlinear gain is a key element to obtain solutions that are attractors to the system. This is due to the fact that the
nonlinear gain element increases the energy of the pulse, effectively decreasing the saturated gain g(z) (see Eq. (83)). Once
the gain level has been saturated, the overall linear gain g(z) − l0 < 0. In contrast to conservative DM solitons as well
as solutions where only gain saturation is included, the dispersive radiation is attenuated making the evolution exactly
periodic.

If spectral filtering is included (ν ≠ 0), then additional losses will occur when the pulse bandwidth approaches the
gain bandwidth (see Eq. (85)). When F(x) = 0, this loss mechanism is compensated by the linear gain g(z) − l0 > 0. In
this case the dispersive radiation is amplified, eventually degrading the pulse. When nonlinear gain is included (F(x) ≠ 0),
stable periodic breather solutions exist over a wide range of parameter space. As before, the periodic breather stretches
and compresses twice per cavity round trip, however the minimum pulse duration is not necessarily in the middle of each
segment due to the phase modulation induced by gain filtering. It is interesting that strong gain filtering in a symmetric
dispersionmap can have a similar effect as a non-symmetric dispersionmap since it moves the zero-chirp points away from
the middle of each fibre segment. Fig. 18(b) illustrates the phase plane and Poincare map dynamics for simulations of Eqs.
(82)–(84) with strong gain filtering. Clearly the symmetry in the phase plane is lost due to the action of the gain filtering.
In general the pulse energy can be increased by increasing the small signal gain g0 or saturation energy es. This results in
increased peak power, shorter pulse duration as well as larger spectral breathing ratios. As these parameters are increased,
the pulse will eventually break up due to nonlinear instabilities when φmax

NL ∼ 2π in the anomalous GVD segment. This puts
a restriction on both peak power and pulse energies available.
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Fig. 19. (a) Temporal and (b) spectral evolution of the power per map period once steady state evolution is achieved from the solution to Eqs. (82)–(84).
Here equation parameters are the same as in Fig. 17, but with large net-normal dispersion d̄ = −0.25 and gain filtering parameter ν = 0.1. (c) Poincare
map taken in the middle of the anomalous dispersion segment. (d) Intra-map evolutions of the RMS pulse duration and chirp parameter once steady state
evolution is achieved.

4.2.2. Positively chirped DM solitons
We have so far investigated dissipative DM soliton solutions for a particular dispersion map with net-anomalous

dispersion. Similar to conservative DM solitons, these solutions exist for dispersionmapswith different dispersion depths in
the net-anomalous, zero, and small net-normal dispersion regime. As discussed in Section 3, conservative DM solitons do not
exist for dispersion maps with large net-normal dispersion. However, the addition of dissipative elements allows for highly
chirped pulses with distinctly different pulse evolution to exist at larger net-normal dispersions. These solutions mainly
rely on linear processes, with the dispersive pulse frequency chirp being the dominating effect driving the evolution. As an
example, consider the previously considered dispersion map (84) with d = 5, but now with large net-normal dispersion
⟨d⟩ = −0.25. Fig. 19 illustrates the pulse evolution once it has settled to its steady state. The pulse dynamics is distinctly
different than conventional DM solitons. Here the temporal pulse profile goes between a parabolic and Lorentzian shape
while the pulse power spectrum is nearly parabolic. The fact that the pulse spectrum changes very little highlights the fact
that linear processes dominate over nonlinearity. The pulses are attracting solutions (Fig. 19(c)) and in each map period
the pulse stretch and compress once, have minimum duration at the beginning of the normal dispersion segment, and are
positively chirped throughout the dispersion map (Fig. 19(d)).

Analytical insight of the pulse evolution once it is in its steady state (when the dissipative terms are small) can be
obtained for these solutions by doing an amplitude/phase decomposition on the left hand side of Eq. (82) of the form
u(z, t) =

√
P(z, t)× exp[iφ(z, t)] giving

Pz = −2d(z)[Pφt ]t (86a)

φz = d(z)


∂2t

√
P

√
P

− φ2
t


+ ϵP. (86b)

In the limit where the square of the chirp φ2
t is much greater than the other terms in Eq. (86b), there are exact solutions of

the form

P(z, t) =
a(z)

1 + t/τ(z)
, φ(z, t) = C(z)

t2

τ 2(z)
, (87)

where the peak power, pulse duration and chirp parameter are given by (for the case of the piece-wise constant dispersion
map (84))

a(z) =
a0τ 20

8d(z)C0z + τ 20
, τ (z) =

1
τ0
(8d(z)C0z + τ 20 ) C(z) =

C0

τ0
× τ(z). (88)

Here a0, τ0 and C0 (< 0) are the initial values of the pulse parameters at the beginning of each map period. Note that the
pulse power has a Lorentzian shape (in time) and the chirp is linear. Further, the peak power has a 1/z dependence while
the pulse duration and chirp parameter are linear, with the slope being determined by the product d(z) × C0. Note that if
1 ≪ τ , the Lorentzian power profile can be expanded and approximated by a quasi-parabolic profile.
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4.2.3. Extended TM equations with distributed dissipative terms
Similar to the conservative case, it is useful to understand the RMS pulse characteristics (17) when investigating the

solutions of Eqs. (82)–(84). Taking into consideration the dissipative terms on the right hand side of Eq. (82) andmaking the
same assumption about the phase profile of the pulse (= MRMS/TRMS × t2 = CRMS/T 2

RMS × t2), we obtain

dTRMS

dz
= 4d(z)

CRMS

TRMS
−

νg
T 2
RMS


−1 − T 2

RMSΩ
2
RMS + I1


+

l0
psTRMS


I2 − T 2

RMS I3


(89a)

dCRMS

dz
= d(z)Ω2

RMS −
ϵ

4
PRMS + νg


I4 + 2CRMSΩ

2
RMS


+

l0
ps


I5 − 2CRMS I3


(89b)

PRMS

dz
= −4d(z)

CRMSPRMS

T 2
RMS

+ 2(g − l0)PRMS + 2νg

I6 +Ω2

RMSPRMS


+

2l0
ps


2I7 − PI3


(89c)

dΩ2
RMS

dz
= −2ϵ

CRMSPRMS

T 2
RMS

+ 2νg

Ω4

RMS − I8


−
l0
ps


I9 +Ω2

RMS I3

. (89d)

where I1 =

t2|ut |

2dt/E, I2 =

t2|u|4F(|u|2/ps)dt/E, I3 =


|u|4F(|u|2/ps)dt/E, I4 = i


t(uttu∗

t − u∗
ttut)dt/(2E),

I5 = i

t|u|2F(|u|2/ps)(uu∗

t − u∗ut)dt/(2E), I6 =


|u|2(uu∗
tt + u∗utt)dt/E, I7 =


F(|u|2/ps)|u|6dt/E, I8 =


|utt |

2dt/E,
I9 =


F(|u|2/ps)|u|2(u∗

ttu+uttu∗)dt/E. The dissipative terms introduce newmomenta and thus a closed systemof equations
is not possible. Alternatively, we can reduce the system of equations (89) to describe the key pulse parameters by assuming
a specific structural form of the pulse. Although this will introduce an additional approximation since, in addition to a
quadratic phase profile across the pulsewe are assuming a power profile aswell, all RMS integrals can be explicitly computed
resulting in a closed system of ordinary equations. For example, if we assume a chirped-Gaussian pulse of the form

P(z) exp

−

t2

2 τ(z)2
(1 − iC(z))+ iϕ(z)


, (90)

it is easy to compute from Eq. (17) the RMS pulse characteristics TRMS = τ/
√
2, CRMS = C/4, PRMS = P/

√
2, and

Ω2
RMS = (1 + C2)/(2τ 2) as well as the moments I1 through I9. Substituting these values into Eq. (89) gives

τz = 2d(z)
C
τ

− νg
1
τ
(C2

− 1)+
l0

√
πps

Pτ Q1(P/ps) (91a)

Cz = [2d(z)− 2νgC]
1 + C2

τ 2
−

ϵ
√
2
P +

2l0
√
πps

CP Q1(P/ps) (91b)

Pz = −2d(z)
CP
τ 2

+ 2(g − l0)P − 2νg
P
τ 2

+
2l0

√
πps

P2 Q2(P/ps), (91c)

where g = g(P, τ ) = g0/(1+Pτ
√
π/es),Q1(x) =


F(xe−s2)e−2s2(2s2−1) ds andQ2(x) =


F(xe−s2)e−2s2(2

√
2 e−s2

−1) ds.
The nonlinear gain termsQ1 andQ2 depend on the particular form of F(x) aswell on the ratio of the power P to the saturation
power ps. For the case of the cubic GLE where F(x) = 1, Q1 = −

√
π/2/2 and Q2 = 2

√
2π/3 −

√
π/2, whereas for the

cubic–quintic GLEwhere F(x) = 1−x,Q1 = −
√
π/2/2+(2

√
π/27)x andQ2 = 2

√
2π/3−

√
π/2−(2

√
π/2−

√
π/3)x. For

a nonlinear gain of a saturable type F(x) = 1/(1 + x), Q1 and Q2 can be computed numerically (Fig. 20) and are monotonic
functions that asymptotically go to zero for large P/ps. It is interesting that Eq. (91c) is the same as that obtained using
the variational method with the same Gaussian ansatz (90). Indeed, both the RMS momentum method and the variational
method has been used extensively to study nonlinear pulse dynamics in nonlinear optical systems, and in particular
dispersion managed solitons.

A comparison between the RMS pulse parameters from full numerical simulations of Eqs. (82)–(84) and the reduced
equations (91) is shown in Fig. 21. The peak power P , pulse duration τ and chirp parameter C from the solutions to Eq.
(91) have been converted to their RMS counterparts. The pulse parameter evolution over one map period after steady state
evolution has been achieved is shown in Fig. 21(a). The Poincare map illustrated in Fig. 21(b) is taken at the middle of
the anomalous GVD segment, and shows that the reduced model has an attracting solution to the Poincare map and is in
reasonable agreement with full numerical simulations. If we let the absolute difference ∆ = |QRMS(0) − Q̃RMS(0)|, where
Q (0) (Q̃ (0)) is the RMS pulse parameter found from full numerical simulations (reduced model simulations), we see that
although ∆ < 0.2 for TRMS and CRMS , ∆ ∼ 1 for PRMS (Fig. 24(b) inset). This is due to the variance of the temporal pulse
shape from a Gaussian profile at this point in the Poincare map. Indeed, the value of∆ for PRMS is much less at other points
in the map. Although the reduced model is constrained by the ansatz assumption, it is remarkable how accurately it models
the full equation dynamics. The long-scale RMS pulse characteristics are attracted to a periodic evolution when nonlinear
gain is included, and will have some error depending on the shape of the temporal and spectral power profile. For instance,
for typical DM soliton evolution such as shown in Fig. 17, the reduced system represents the evolution better than for the
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Fig. 20. Nonlinear gain functions (a) Q1 and (b) Q2 in Eq. (91) for the cubic GLE where F(x) = 1 (red), the cubic–quintic GLE where F(x) = 1 − x (blue),
and a saturable GLE where F(x) = 1/(1 + x) (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 21. (a) RMS pulse parameters over onemap period once steady state evolution is achieved and (b) Poincaremap taken at the point in themiddle of the
anomalous GVD segment from direct simulation of Eqs. (82)–(84) (black) compared with that found from the reduced model equations (91) (red). Inset:
the∆ values are shown for the RMS pulse parameters TRMS (blue), PRMS (red), and CRMS (black). All parameters are the same as in Fig. 17. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

positively chirped pulse evolution shown in Fig. 19. This is expected since for typical conservative DM soliton evolution the
temporal and spectral pulse profiles stay close to a Gaussian shape, where for positively chirped pulse evolution they can
be different. However, even in the case of positively chirped pulse evolution the pulse parameters are reasonably described
by the reduced equations with an error of ∼10%. Indeed, the reduced model equations (91) qualitatively describe the key
features of the distributed dispersion managed model, and can be used for the exploration of pulse dynamics in the large
parameter space of Eqs. (82) and (84).

4.3. Dispersion management with discrete dissipative elements

Although the governing equations (82)–(84) can represent the average dynamics of many optical systems, it is often
not capable of fully characterizing the intra-cavity dynamics. This is because the distributed model averages all dissipative
terms so that the gain balances the losses. In practical systems, the dissipative elements may occur at a specific point in the
dispersion map, altering the pulse evolution significantly. Indeed, it is possible to obtain large pulse fluctuations per cavity
round trip and pulse shaping can be dominated by either large phase or amplitudemodulations. Since it is a highly nonlinear
system, the strength and the location of the dissipative elements can have a significant influence on pulse evolution. In such
systems the validity of averaged models such as Eqs. (82)–(84) is in question. In addition to fibre propagation, here we
consider the effects the pulse experiences when some action is induced by discrete dissipative elements. Specifically we
will describe pulse propagation in optical fibre modelled by Eqs. (82)–(84) with F(x) = 0 and where g0 = 0 for a passive
fibre and g0 ≠ 0 for an active fibre. Along with the fibre propagation equations we will include key discrete elements
such as a saturable absorber, output coupler, and spectral filter. Indeed, these elements are used in a variety of different
optical systems ranging from telecommunication to laser applications. These elements can have a complicated interaction
with the optical pulse in which various physical processes need to be considered. Here we will simplify our analysis of such
discrete elements by describing the discrete elements by simple transfer functions, where certain macroscopic parameters
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Fig. 22. (a) Temporal and (b) spectral evolution of the power per map period once steady state evolution is achieved from the solution to Eqs. (82)–(84)
with discrete actions Eq. (92)–(93). Here F(x) = 0, d = 5, ⟨d⟩ = 0.15, ϵ = 1, and dissipative parameters g0 = 0 in the anomalous GVD segment, g0 = 4 in
the normal GVD segment, l0 = 0.1, e0 = 2, ν = 0.05, q0 = 0.5, ps = 3, and R = 0.5. The saturable absorber and output coupler are after the anomalous
GVD segment. (c) Poincare map taken in the middle of the anomalous dispersion segment. (d) Intra-map evolutions of the RMS pulse duration and chirp
parameter once steady state evolution is reached.

determine the overall action. Inmany optical systems it is necessary to have some form of saturable absorber that attenuates
low intensitieswhile passinghigh intensities. This has beenused to ‘‘cleanup’’ high intensity pulses by attenuatingunwanted
noise in communications systems or to initiate pulse formation inmode-locked lasers. In the case of a fast saturable absorber,
the self-amplitude modulation induced on the pulse follows the intensity profile of the pulse itself. In this limit a generic
nonlinear transfer function of the form [33,269]

uf(t) =


1 −

q0
1 + |ui(t)|2/ps


× ui(t), (92)

can be used to describe the action of the saturable absorber. Here ui (uf) is the input (output) field, q0 is the unsaturated loss
due to the absorber, and ps = Psat/P0 is the normalized saturation power. Note that this transfer function effectively pro-
motes high intensitieswhile attenuating lower intensities of the pulse. Often it is necessary to output someof the signal in the
optical system. The discrete action of the output coupler can be approximated by a simple scalar multiplication of the field

uf(t) =
√
R × ui(t). (93)

In this approximationwe are assuming that the output coupler is only an amplitudemodulation and any phasemodulations
are assumed to be small, so that the laser output field would be given by

√
1 − R× ui(z, t). Finally, we consider the discrete

action of a spectral filter Â(ω) on the pulse. Indeed, spectral filtering has been implemented and analysed in dispersion-
managed transmissions systems [283–285]. The pulse form is modified in both amplitude and phase and can be written as

uf(t) =


∞

−∞

ûi(ω)× Â(ω) e−iωtdω, (94)

where û(ω) denotes the Fourier transform of u(t). Including all effects of pulse propagation in passive and active fibres as
well as the discrete elements of the saturable absorber, output coupler, and spectral filter can describe various optical sys-
tems which have a wide variety of pulse solutions and evolutions. As an example, we consider the propagation equations
(82)–(84) (F(x) = 0) along with the discrete elements (92)–(93). Fig. 22 shows an example of the resulting pulse evolution
from numerical simulation consisting of the same symmetric dispersion map as has been considered previously. The piece
of normal GVD fibre is a doped fibre segment providing gain. A saturable absorber and output coupler follow the passive seg-
ment. The final steady state pulse evolution is obtained from any initial field, includingwhite-noise. Thus the pulse evolution
is, in a global sense, the final attracting state. The RMS pulse characteristics evolve in a similar way as to that for typical DM
solitons. However, the RMS peak power is largely attenuated after the discrete elements and changes the zero-chirp point
away from the centre of each fibre segment. This is to be expected since the presence of the discrete elements effectively
breaks the symmetry of the dispersion map. Further, the discrete elements cause the pulse to undergo large changes in its
pulse parameters, however the pulse shape remains of Gaussian form. In this limit an extension of the reduced system of
Eq. (91) can be used. Indeed, this can be especially useful when considering discrete dissipative elements since all system
parameters as well as the geometry of the optical system can lead to a complex multi-parametric problem.



42 S.K. Turitsyn et al. / Physics Reports ( ) –

F1 F2

P/ps P/ps

a b

Fig. 23. (a) Peak power and (b) pulse duration response (96) of the discrete saturable absorber for q0 = 0.3 (black), 0.5 (red), 0.7 (blue) and 0.9 (green).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.3.1. Extended TM equations with discrete dissipative elements
A simplified model can be used by extending Eq. (91) to include the discrete nature of the dissipative elements. This

is possible if each element is assumed not to change the pulse temporal and spectral profile. Using this approximation it is
possible to describe large variations in the pulse characteristics per pass through a discrete element. For the Gaussian ansatz
(90) considered previously, the pulse characteristics in fibre can be described by Eq. (91) (with F(x) = 0) and the transfer
functions can be expressed as jump conditions on the pulse parameters [τi, Ci, Pi] → [τf, Cf, Pf], where the subscript ‘‘i’’
(‘‘f’’) represents input (output) parameter values. To see how the pulse parameters change due to the saturable absorber
transfer function (92), we approximate the function1 −

q0

1 +
Pi
ps
e
−

t2

τ2i

Pi e
−(1−iCi)

t2

2τ2i ∼


Pf e

−(1−iCf)
t2

2τ2f . (95)

Using a linear least squares fitting routine, we numerically find that the parameters can bemapped using the functions [286]

Pf/Pi = F1(q0, Pi/ps), τf/τi = F2(q0, Pi/ps), Cf/Ci = τ 2i /τ
2
f , (96)

where F1 and F2 are shown in Fig. 23. The modulation of Pf is independent of the input pulse duration τi, where the output
pulse duration depends linearly on the input duration. Further, under this approximation the saturable absorber is only an
amplitude modulator and changes the chirp parameter only due to the change in pulse duration. The simple form of the
output coupler (93) translates only to a scalar multiplication of the peak power

Pf = R × Pi. (97)

In general the application of a discrete spectral filter will cause modulation in both the amplitude and phase parameters.
Indeed, it can cause a significant change in the pulse shape depending on the particular shape and characteristics of the
input pulse and filter. To gain insight into the action of the spectral filter on a pulse, we assume a Gaussian profile for the
spectral filter Â(ω) = exp(−ω2/(2Ω2

F )) so that the integral (94) can be calculated analytically for a chirped Gaussian pulse
(90). Taking the Fourier transform of (90), multiplying by Â(ω) and integrating, we obtain a Gaussian pulse with modified
parameters

Pf =


1 + C2

i

a2 + C2
i

× Pi, τf =


a2 + C2

i

a(1 + C2
i )

× τi, Cf =
Ci

a
, Ω2

f =
Ω2

i

a
(98)

whereΩ2
i = (1+ C2

i )/(2τ
2
i ) and a = 1+ 2Ω2

i /Ω
2
F . Note that asΩF → ∞, a → 1 resulting in no modification of the pulse

parameters. If the filter bandwidth is less than or comparable to the pulse bandwidth (1 < a), the action of the spectral filter
will reduce the pulse bandwidth by a factor of 1/

√
a. Further, for highly chirped input pulses where Ci ≫ 1, the action of the

spectral filter also reduces the pulse duration by the same factor. This is a similar action as that of an anomalous dispersion
fibre and the use of spectral filters to compensate dispersion will be used in this context in the next section.

Fig. 24 shows the comparison of the pulse parameters from the full numerical simulation of Eqs. (82)–(84) shown in
Fig. 22 and from solving the reduced system (91) (Q1 = Q2 = 0) and discrete operations (96)–(97). The initial condition for
the reduced model was [τ0, C0, P0] = [3, 0, 0.01]. As with the reduced model with distributed dissipative elements, it is
remarkable how accurately it models the full equation dynamics. It is clear from Fig. 24(a) that similar to conservative DM
solitons, the pulse compress twice per cavity round trip and acquires both signs of chirp. The saturable absorber and output
coupler reduce the peak power of the pulse, however they only slightly perturb the pulse duration and chirp parameter once
the pulse has settled into its stable periodic state. Fig. 24(b) highlights how this is the attracting solution to the Poincaremap
of the reduced system, and it is in agreementwith full numerical simulations. As in the previous section, if we let the absolute
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Fig. 24. (a) RMS pulse parameters over one map period once steady state evolution is achieved and (b) Poincare map taken at the point in the middle
of the anomalous GVD segment from direct simulation of Eqs. (82)–(84) with discrete actions Eq. (92)–(93) (black) compared with that found from the
reduced model equations (91) with discrete transfer functions Eq. (96)–(97) (red). Inset: absolute errors ∆ are shown for the RMS pulse parameters TRMS
(blue), PRMS (red), and CRMS (black). All parameters are the same as in Fig. 22. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

difference∆ = |QRMS(0)− Q̃RMS(0)|, where Q (0) (Q̃ (0)) is the RMS pulse parameter found from full numerical simulations
(reduced model simulations), we see that∆ < 0.12 for all RMS quantities (Fig. 24(b) inset).

There are many optical systems where a Gaussian pulse form in both the temporal and spectral domains is violated.
The reduced model can be used for a wide variety of pulse ansatz, which only varies the coefficients in Eq. (91). However,
it is interesting that the Gaussian ansatz used to obtain the reduced model (91) and (96)–(98) does remarkably well
in characterizing pulse dynamics even when the pulse is not of Gaussian form. The accuracy of the reduced model
in characterizing the pulse evolution allows for one to model such optical systems at a reduced computational price.
Specifically, using the reduced system one has to solve the (3 × 3) system (91) followed by scalar multiplications for the
discrete elements per round trip. In contrast, simulations of the full equations (82)–(84) involve solving an (N × N) system
(N large) after discretization (See Section 6). Thus the reduced model has been used in a variety of contexts and has an
important practical application in exploring the large parameter space in such optical systems.

4.3.2. Dispersion management via discrete spectral filtering of highly chirped pulses
Using optical fibre with alternating signs of dispersion for dispersion management is a standard method that has

been implemented in numerous optical systems. However, the use of anomalous dispersion fibre can generate unwanted
instabilities and limit system performance. For instance, the use of anomalous dispersion fibre limits the peak power of
the pulse due to severe pulse degradation when the maximum nonlinear phase shift φmax

NL ∼ 2π . Such instabilities can
be avoided in the normal dispersion regime. Pulse propagation in the normal dispersion regime in a passive fibre can be
understood from the RMS equation (89) with d(z) < 0 and ignoring all dissipative terms. The linear dynamics governs the
chirp parameter to negative values, causing the peak power to decrease while the pulse duration increases. Nonlinearity
enhances the decrease (to more negative values) in the chirp parameter while increasing the pulse bandwidth. In general,
such pulses will have a potentially large nontrivial phase profile across it while avoiding soliton-like instabilities. Pulse
propagation in normal dispersion optical fibre has been studied extensively and initial high intensity parabolic pulses
were shown to propagate in a self-similar manner without wave-breaking [77]. Indeed, there are many periodic optical
systems such as lasers or telecommunications applications where there is incentive to avoid soliton-like instabilities and
thus anomalous GVD fibre. In these cases pulse propagation in normal GVD fibre is a plausible solution, however some
dispersion compensation is still necessary.

An alternativemethod to achieve dispersion compensation while avoiding nonlinear penalties is the discrete application
of a spectral filter. As mentioned in the previous section, the analytics of a Gaussian filter on a chirped-Gaussian pulse
shows the action of the spectral filter on a highly chirped pulse can significantly reduce the pulse bandwidth and the pulse
duration if the ratio B = Ω2

F /ω
2 < 1. Thus spectral filtering can provide the necessary effective dispersion compensation

for systems that rely on only components with normal GVD. In addition to compensating the pulse duration and bandwidth
the spectral filter can also act as a re-shapingmechanism. Since the temporal and spectral shape of an initial pulse in optical
fibre is an important characteristic that will determine the pulse evolution, it is important to consider how a spectral filter
reshapes certain input pulses. Fig. 25 shows how a highly chirped hyperbolic secant pulse (76) and parabolic pulse (79) is
reshaped after the application of a Gaussian filter Â(ω) = exp(−ω2/(2Ω2

F )) as well as a square shaped filter Â(ω) = 1 for
|ω| <

√
2 log(2)ΩF , Â(ω) = 0 otherwise. For small bandwidth ratios B ≪ 1 the pulse inherits the shape of the filter. This
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Fig. 25. Normalized temporal and spectral power profiles after the application of a spectral filter. The resultant pulse profiles are obtained from Eq. (94)
with a spectral filter of square (red) and Gaussian (blue) shape on initial highly chirped (a, b) hyperbolic secant profile (76) with P = 1, τ = 2, and C = 5
and (c, d) parabolic profile (79) with P = 1, τ = 5, and C = 5. The spectral filter bandwidthΩF = 4 (a, c), 10 (b, d). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 26. (a) Temporal and (b) spectral evolution of the power per map period once steady state evolution is achieved from the solution to Eqs. (82)–(84)
with discrete actions (92) and (94). Here F(x) = 0, d2 = −5, l1 = 0, ϵ = 1, and dissipative parameters g0 = 2.5, l0 = 0, e0 = 600, ν = 0, q0 = 0.8,
ps = 3, andΩF = 0.3. The spectral filter and saturable absorber follow the normal GVD segment. (c) Poincare map taken in the middle of the anomalous
dispersion segment. (d) Intra-map evolutions of the RMS pulse duration and chirp parameter once steady state evolution is reached.

leads to a Gaussian (sinc) temporal power profile for the Gaussian (square) filter (Fig. 25(a), (c)). The mimicry of the filter
shape can occur for much larger bandwidth ratios B for chirped hyperbolic secant pulses than for chirped parabolic pulses
due to the flatness of the spectral profile. Although a Gaussian shaped filter usually preserves a high quality temporal pulse
shape, a square shaped filter can lead to degraded (Fig. 25(b)) or even non pulse-like temporal profiles (Fig. 25(d)) forB ∼ 1.
Fig. 25 illustrates how the reshaping of a pulse by a spectral filter primarily depends on the bandwidth ratio parameter B,
as well as the shape of the input pulse and spectral filter.

Recently the idea of using a spectral filter for dispersion compensation has been utilized on similariton pulses [287]. To
highlight this pulse-shaping mechanism, we look at a series of fibre amplifiers operating at normal dispersion. Following
each fibre amplifier is a spectral filter and a saturable absorber. Fig. 26 shows the solution from Eqs. (82)–(84) with discrete
operations (92) and (94) once the evolution has reached its steady state from segment to segment. The spectral filter was
assumed to have a Gaussian shape Â(ω) = exp[−ω2/(2Ω2

F )]. In the optical fibre the pulse is attracted to its similariton state
with parabolic temporal and spectral profiles. Here the bandwidth ratio B ≪ 1, so the strong spectral filter significantly
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Fig. 27. Pulse RMS quantities energy E, pulse duration TRMS , and chirp parameter CRMS phase plane along with the RMS bandwidth parameter evolution
from the data obtained in (a, c) Fig. 17 and (b, d) (a, c) Fig. 26. The RMS parameters are shown over one map period once steady state evolution is obtained.

reduces the pulse duration and bandwidth [287]. Further, the spectral filter shapes the pulse from a parabolic profile to a
Gaussian. However, because the similariton state is an attractor in the fibre (see Section 4.1.2), the initial shape of the pulse
is not critical. For the parameters used here, the saturable absorber has little influence on pulse propagation and mainly
attenuates dispersive radiation generated in the filtering process. A key feature is that this form of dispersion management
allows for high peak powers (high energies for the same pulse duration) since a spectral filter avoids nonlinear penalties
associated with anomalous dispersion fibre segments.

4.4. Intra-cavity dynamics of dissipative DM solitons

DissipativeDMsolitons can rely ondissipative processes for dispersionmanagement. This canproducedistinctly different
intra-map pulse evolutions when compared to its conservative counterparts. Of critical importance is the evolution and sign
of the chirp parameter, which drives the pulse dynamics. We can see from Eq. (91) that the sign of β2C determines if the
pulse amplitude and duration increases or decreases. Also from Eq. (91) we see that the evolution of the chirp parameter
in optical fibre consists of three important effects: (i) the product of the GVD parameter and the pulse bandwidth; (ii) the
product of the nonlinear coefficient and the pulse power; (iii) the product of the ratio of the pulse bandwidth to the gain
bandwidth and the chirp parameter. It is the interaction of these terms that determine the intra-map evolution of the pulse
parameters. In typical DM soliton pulse evolution, effect (i) (the product of the dispersion and pulse bandwidth) are much
larger than other terms, so the slope of the chirp parameter largely depends only on the GVD coefficient. A dispersionmap is
implemented to compensate the accumulated dispersion and the chirp parameter oscillates between positive and negative
values. The pulse stretches and compresses twice permap period, reachesminimumduration in themiddle of each segment,
and acquires both signs of chirp.

As we have discussed in the previous sections, it is possible not only to compensate dispersion with optical fibre but
with bulk elements aswell. Although it detracts from an all-fibre format, bulk components such as diffraction gratings, prism
pairs, and spectral filters can be used. Often, it is advantageous to use such bulk dispersion compensators to avoid instabilities
caused by the fibre medium. For instance, the inclusion of an anomalous GVD segment for dispersion compensation limits
the peak power of the pulse, since a large pulse bandwidth is required to obtain an oscillatory chirp parameter. Such large
bandwidths leads to spectral pulse splitting and pulse break-up in the temporal domain. However, if only normal dispersion
fibre and the appropriate bulk dispersive compensating elements are used then such limitations will be avoided.

Fig. 26 illustrates how a discrete dispersion compensating element such as a spectral filter can be used. The pulse
evolution for such systems is distinctly different from typical DM soliton evolution since for these systems the sign of the
chirp is always one sign, so the pulse duration and bandwidth increase monotonically in fibre and are compensated at the
discrete point. A comparison of the two types of evolution is illustrated in Fig. 27. The pulse RMS quantities per map period
once steady state evolution has occurred are shown in a relevant phase plane for the simulations considered in Fig. 17
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(Fig. 27(a)) and Fig. 26 (Fig. 27(b)). In Fig. 27(a) the pulse parameters evolve adiabatically since the dispersion compensation
is provided by the optical fibre. Due to the chirp parameter changing sign, the pulse bandwidth decreases in the first half
of the map and increases in the second half (see Fig. 27(c)). Fig. 27(b) shows the non-adiabatic nature of discrete dispersion
compensation. The periodic application of the spectral filter and saturable absorber (once per round trip) actively controls
the pulse parameters. After application of the spectral filter, the phase point is moved to the red diamond. The saturable
absorber moves the phase point to the blue diamond, where then the solution evolves along the flow line shown. The chirp
parameter never changes sign and the pulse bandwidth increases in the optical fibre, only to be compensated by the discrete
action of the spectral filter (see Fig. 27(d)). The geometrical picture presented in the phase planes in Fig. 27 gives a way to
understand the intra-map pulse evolutions and identify the main differences between continuous and discrete dispersion
compensation in such systems.

5. Applications of dispersion management in ultrafast pulsed fibre lasers

As we have seen in this review, dispersion management is a key route for manipulating optical pulses for some desired
output in ultra-fast optics. In particular, dispersion management has been extensively used in optical systems that amplify
short pulses. For example, in 1985 the concept of chirped pulse amplification (CPA) [288] was proposed to allow ultrashort
pulses to be amplified to energy levels previously precluded due to damage threshold in the amplifying medium. A grating
pair disperses the input pulse spectrum and temporally stretches the pulsewhile lowering the peak power,making the pulse
safe for amplification. After amplification, a secondpair of gratings reverses thedispersion of the first pair, and re-compresses
the pulse. CPA is the current state of the art technique for pulse amplification which many high power amplifier and laser
systems utilize. Another important example occurs in mode-locked lasers. Dispersion plays a key role in such pulse sources
as they can generate pulse durations less than 10 fs. Therefore, dispersion management is particularly important in systems
with short optical pulses, e.g. in femtosecond lasers. Femtosecond mode-locked fibre lasers represent a distinctive example
of a practical application of the soliton theories providing a constructive impact on laser science and nonlinear physics.
Typical femtosecond mode-locked fibre lasers comprise of an active fibre acting as an amplifying medium, a dispersion
compensating element (e.g. diffractive grating pairs, passive fibres, etc.) and a saturable absorber element providing pulse
formation from initialwhite-noise and stablemode-locking operation. Femtosecond laser operation is largely determined by
the interplay between dispersion and nonlinearity, and these physical effects can be increasingly important when aiming
to generate femtosecond pulses with high pulse energies. Indeed, for such oscillators that aim to generate high energy
pulses, the pulse undergoes significant temporal and spectral breathing per cavity round trip. The field of high-energy pulse
generation from mode-locked fibre lasers is very active, and much of the current state-of-the-art techniques can be found
in [151,211,289–306].

Since Kerr-lens mode-locking of Ti:Sapphire lasers was discovered in 1991 [307], novel dispersion compensation
methods based on chirped and double chirped mirrors were developed. Currently solid-state mode-locked lasers based
on semi-conductor saturable absorber mirrors (SESAM) technologies can produce ultrashort pulses with pulse durations
that range from nanosecond to a few femtoseconds with average powers reaching up to 10 µJ, depending on the different
laser materials, dispersion, and saturable absorber parameters. Because of their broad output pulse capabilities, ultrafast
solid state lasers continue to be the work horse for short pulse generation, and there have been many reviews written on
the subject [308–310]. To manage the GVD in such lasers, various bulk optical elements have been used, including prism
pairs, grating pairs, dispersion compensating mirrors (DCM) [311], Gires–Tournois interferometer (GTI) mirrors, and slabs.
Commercial gratings, DCMs and GTI mirrors are readily available for femtosecond lasers in the near infrared.

Mode-locked fibre lasers have many practical advantages over solid-state lasers such as superior wave-guide properties,
reduced thermal effects, power scalability, and integrability with other telecom components. In 1984 the concept of pulse
generation using the optical soliton was realized in a laser format to generate pulses from 100 fs to 1 ps depending on the
length of the cavity [121]. In 1992 the first all-fibre ring cavity produced stable soliton pulses [312]. This, and many other
mode-locked fibre lasers that followed, used an operating wavelength of 1.55 µm where an Erbium-doped fibre was used
as an amplifying medium and standard telecom fibres have anomalous dispersion and low loss. Although these lasers were
able to produce stable femtosecond pulses, the output pulse characteristics are restricted by fundamental properties of the
soliton. Similar to guiding centre solitons in optical communications [82,83], a soliton becomes highly unstable due to side-
band instabilities when the period of perturbations approaches 8Z0, where Z0 = T 2

0 /(2|β2|) is the soliton period and T0 is
the pulse duration [91]. Because a mode-locked laser periodically perturbs the pulse at the cavity round-trip length L, the
shortest soliton that can be supported stably must have T 2

0 = |β2|L/4. For a fibre laser composed of standard optical fibre
operating at 1.55 µm (where β2 ∼ −0.02 ps2/m) of length L = 1 m, this restricts the pulse duration to ∼70 fs. If we
require 10 fs pulses from the cavity the length of the fibre should be reduced to L = 2 cm, which is not very practical. This
instability thus imposes a lower limit for the achievable pulse duration with a soliton laser. In addition to this lower bound
for the pulse duration, the pulse energy is bounded above due of the delicate balance between dispersion and nonlinearity
which gives the soliton area theorem Esol = |β2|/(2γ Tsol). Since the pulse duration is typically limited to ∼100 fs due to the
aforementioned side-band instabilities, the pulse energy from such lasers is bounded above by∼0.1 nJ. To eliminate some of
the restrictions on the pulse output when using fibre for the waveguide medium, some form of dispersion management can
be used. Indeed, recently dispersion management has been a key route in obtaining a broad range of pulse characteristics
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frommode-locked fibre lasers. Dispersionmanagement in such lasers can be accomplished by the same bulk optics that was
used in solid-state lasers, however this increases the cost and size of the system as well as introducing alignment issues.
For instance, a typical grating-pair compensator or prism sequence with separation up to 1 metre is required for adequate
control of dispersion in a fibre-based cavity. As discussed in previous sections in this review, the development of dispersion
compensating fibre allowed for all-fibre dispersion management. Dispersion compensation with optical fibre has also been
achieved in lasers by means of chirped fibre Bragg gratings [313–315], photonic crystal fibres [316–318] or solid (hollow)
core photonic bandgap fibres [319,320], however, the practical value of these solutions is still to be evaluated.

In the following sections we highlight some examples where dispersion management has been used to provide non-
soliton pulse evolution in a mode-locked fibre laser. Our modelling will be based on previously described scalar equations
in this review. Specifically, pulse propagation in a rare-earth doped fibre can be modelled with a normalized equation

iUz −
1
2
β2Utt + γ |U|

2U = i

(g(z)− Γ )U +

g(z)
Ω2

g
Utt


, (99)

with the saturating gain

g(z) =


g0/ [1 + E/Es] for active fibre,
0 for passive fibre. (100)

In addition to fibre propagation, the pulse experiences action induced by the discrete elements such as a saturable
absorber, output coupler, and spectral filter in mode-locked fibre lasers. Indeed, it is necessary to have some form of a
saturable absorber (intensity discrimination) to promote pulse generation over continuous wave operation. A variety of
different saturable absorber mechanisms have been achieved and applied in a fibre based system including, among others,
nonlinear polarization rotation [321–325], nonlinear interferometry [326–329], semiconductor saturable absorber (SESAM)
[310,330,331], and carbon nanotubes [332,333]. The saturation of an absorber can be described by [33]

dq(t)
dt

= −
q(t)− q0

τA
−

q(t) |U(t)|2

τAPs
, (101)

where q(t) is the saturable absorber loss coefficient that does not include any nonsaturable losses, |U(t)|2 is the time-
dependent power incident on the absorber, q0 is the modulation depth, Ps is the saturation power and τA is the recovery
time. By solving Eq. (101) we can determine the saturable absorption q(t) as a function of time and the input field. The
output pulse power can then be found from the relation |Uf|

2(t) = [1 − q(t)]|Ui|
2, where Ui (Uf) is the input (output) field.

In the case of a fast saturable absorber, the absorber recovery time τA is much faster than the pulse duration T0 (τA/T0 ≪ 1).
Thus, we can assume that the absorption instantaneously follows the absorption of a certain power |U(t)|2 and Eq. (101)
reduces to

0 = −[q(t)− q0] −
q(t) |U(t)|2

Ps
(102)

giving a transfer function (92). The discrete action of the output coupler can be approximated by a simple scalar
multiplication of the field (93), where we have assumed that any phase modulations caused are small, so that the laser
output field would be given by

√
1 − R × Ui(z, t). Finally, we consider the discrete action of a spectral filter Â(ω) on the

pulse. The pulse form is modified in both amplitude and phase and can be calculated by Eq. (94). Including all effects of
pulse propagation in passive and active fibres as well as the discrete elements of the saturable absorber, output coupler, and
spectral filter allows for stable and robust mode-locking in a variety of experimentally realized configurations. Here we use
this modelling to describe some relevant dispersion managed laser systems and the various intra-cavity pulse evolutions
possible.

5.1. Stretched pulses in mode-locked fibre lasers

To overcome the limitations imposed by soliton mode-locking on the pulse width and energy, one can employ positive
dispersion in the laser cavity. The earliest attemptminimized pulse shaping in optical fibre by using short lengths of positive
dispersion Er3+-doped fibre along with prisms for negative dispersion in a linear cavity [325]. This technique demonstrated
pulse durations of 84 fs with 10 pJ of energy, however the laser was not self-starting. Shortly after this, Tamura et al.
introduced the stretched-pulse technique, where an all-fibre ring cavity is comprised of segments of alternately large
positive and negative dispersion fibre [122]. This technique of dispersion management lead to pulses of 100 fs duration
in the negative dispersion segment, leading to a large amount of spreading. In contrast to soliton propagation, the pulse
width changed by an order of magnitude within the cavity, which served to lower the average peak power when compared
with that of a static transform-limited pulse at the same average dispersion. Aswith conservative DM solitons, the breathing
nature of the intra-cavity pulse effectively reduces the net nonlinear phase shift per pass, allowing for higher energy pulses
with larger bandwidths. Further, the alternating dispersion reduces the phase-matched coupling to resonant sidebands
giving cleaner spectra with less dispersive radiation between pulses.
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Fig. 28. (a) Temporal and (b) spectral evolution of the power over one round trip once steady state evolution is achieved from the solution to Eqs. (99)–(100)
with discrete actions (92) and (93). A doped-fibre with parameters β2 = 0.1 ps2/m, γ = 0.005 1/(W m), g0 = 2.76 1/m (corresponding to 12 dB total
gain), Es = 1 pJ,Ωg = 10 THz, and L = 1 m is followed by an output coupler with R = 0.9 and a saturable absorber with q0 = 0.3 1/m and Ps = 3 W. The
saturable absorber is followed by 5 m of passive fibre with β2 = −0.022 ps2/m and γ = 0.005 1/(W m). (c) Poincare map taken at the beginning of the
normal dispersion segment. (d) Intra-cavity evolutions of the RMS pulse duration and chirp parameter once steady state evolution is reached.

Variations on this mode-locked laser were done by the group at MIT to obtain higher energy output pulses [123]. These
included using the light normally absorbed by the intracavity polarizer as the output to generate pulseswith energies greater
than 0.5 nJ and pulse durations less than 100 fs after external chirp compensation [334,335] as well as replacing the pump
laser with a commercial MOPA to obtain a pulse energy up to 2.25 nJ [336]. Since this work in the mid-1990s, further use
of stretched pulse operation for other mode-locked fibre laser systems have been made. For instance, in a fibre laser using
a nonlinear optical loop mirror (NOLM) stretched pulse operation produced 100 fs pulses with 1 nJ energy, constituting a
30-fold increase in pulse energy over previously reported femtosecond fibre lasers with a NOLM [329].

Fig. 28 shows an example of the resulting pulse evolution from the numerical simulation of (99)–(100) with discrete
actions (92) and (93) for a similar experimental set up as in [122]. The laser consists of 1 m of Er-doped fibre operating at
normal dispersion giving ∼12 dB of gain. After the gain segment there is an output coupler and saturable absorber which
is then followed by 5 m of negative dispersion passive fibre. The initial condition is white-noise, thus the pulse evolution is
the final attracting state. It is clear from Fig. 28(d) that, similar to conventional DM solitons, the pulse compress twice per
cavity round trip and acquires both signs of chirp. Indeed, the chirp oscillating between positive and negative values is the
hallmark signature of stretched pulse operation. The output coupler and saturable absorber reduce the peak power of the
pulse, however they only slightly perturb the pulse duration and chirp parameter once the pulse has settled into its stable
periodic state. In such a configuration the output is taken at the end of the gain fibre where the peak power is low and the
chirp is large. Since the chirp is largely linear, it can be compressed with an external dispersive delay line composed of fibre,
prisms or gratings.

It is interesting that at the same time stretched pulse propagation in mode-locked fibre lasers was being investigated,
much attention was being given to DM solitons in optical communications. Obviously they are closely connected, andmuch
of the theory presented for conservative DM solitons can be applied to stretched pulse propagation when the dissipative
terms are balanced or much smaller than the conservative components of the system. An analytic theory was developed in
the mid-1990s to describe stretched pulse mode-locking that used a distributed GLE with a Taylor series expansion of the
saturable absorber and self phase modulation coefficients around the peak of the pulse [136], allowing for chirped Gaussian
solutions to be found. This analysis considers the nonlinearity and residual dispersion to be small perturbations, restricting
the regime of applicability. Further analytical studieswith thismodel investigated the noise characteristics of such stretched
pulse lasers [337,338]. Recently interest has arisen in how dissipative terms can potentially act as a stabilizationmechanism
to support higher energy pulses with shorter pulse durations in a stretched pulse configuration. It was shown from a
distributed GLE equation that stretched pulses with high map strengths can be stabilized by dissipative terms, leading to
the potential generation of stable, short pulses with high energy using dispersion management [339]. The intracavity pulse
dynamics was described by a reducedmodel for stretched pulse lasers when amore realistic model with lumped dissipative
elements were included [286,340].

5.2. Spectral filtering ultrashort pulses in lasers operating in the normal dispersion regime

Solid state lasers were shown to produce highly chirped, relatively long pulses operating in the normal dispersion regime
from additive-pulse mode-locked [341] and self-mode-locked Ti:sapphire lasers [307]. These pulses were experimentally
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characterized with a Kerr-lens mode-locked Ti:sapphire laser and showed that for small positive GVD they had the form of
chirped hyperbolic solutions (76) [275]. These pulses relied on the balance of gain dispersion (or filtering) to compensate
the broadened bandwidth caused by the normal GVD. In agreement with the analytic theory or mode-locking proposed
by Haus et al. [267,268], the pulse energy increased for larger values of (positive) dispersion. This inspired a generation of
Kerr-lens mode-locked lasers operating in the positive dispersion regime, able to reach peak powers that exceed several
megawatts and pulse energies up to 100 nJ [342]. By using chirped multilayer mirrors to achieve net positive dispersion
so-called chirped pulse oscillators generated pulse energies approaching 1 µJ [99,343].

Achieving such operation regimes in a stretched pulse configuration is not possible since such large peak powers
will induce soliton-like instabilities such as spectral pulse splitting and pulse break-up in the anomalous GVD segment.
Elimination of the anomalous dispersion segment of a fibre laser is only possible if the pulse-shaping is not reliant on the
cancellation of phase modulations from GVD and self-phase modulation. Parabolic self-similar pulse propagation in normal
GVD fibre was used in a laser resonator in Ref. [344–346]. These lasers largely relied on known propagation in optical fibre
operating in the normal GVD regime with the pulse duration increasing and chirp parameter going to zero for reasonable
propagation lengths in passive fibre [77]. In Ref. [344,345] the dispersion is compensated for by a linear dispersive delay
line and 100 fs pulses with energy as high as 14 nJ were achieved. In Ref. [346] the dispersion is compensated with a grating
pair and produces ∼200 fs pulses with 4 nJ energy. The pursuit of higher energy pulses suggested laser cavities with larger
positive dispersion, or the elimination of an anomalous GVD segment altogether. A laser without anomalous GVD would
presumably have to exploit dissipative processes for some form of dispersion compensation. It has been recently found that
this is indeed possible, in a variety of ways. First it was shown that, as in the case of solid-state lasers, so-called ‘‘gain-guided
solitons’’ existed in an all-normal dispersion laser cavity [347]. These solutions were static solitons and relied on the balance
of gain filtering with spectral broadening due to the normal GVD of the fibre. Shortly after this finding, Chong et al. proposed
the incorporation of a spectral filter in an all-normal dispersion laser [280]. This was hugely successful in achieving higher
energies as these lasers produced pulses with energies above 20 nJ and peak powers greater than 100 kW with standard
fibre operating at 1 µm [348]. Recently, in another attempt to eliminate the anomalous GVD segment in a mode-locked
fibre laser, a laser cavity that supports amplifier similaritons was been theoretically proposed [287] and experimentally
realized [349,350]. Similar to what is observed in Section 4.3.2, this laser relies on strong spectral filtering a similariton
pulse generated in a doped fibre operating at normal dispersion.

To highlight the pulse dynamics in a similariton laser, Fig. 29 shows an example of the resulting pulse evolution from
numerical simulation of (99)–(100) with discrete actions (92)–(94)) for a similar experimental set up as in [350]. The laser
consists of 4 m of Yb-doped fibre operating at normal dispersion at λ0 = 1 µm, giving ∼17 dB of gain. In the optical
fibre the pulse is attracted to its similariton state with parabolic temporal and spectral profiles. After the gain segment
there is an output coupler, spectral filter and saturable absorber. The spectral filter was assumed to have a Gaussian shape
Â(ω) = exp[−ω2/(2Ω2

F )]. Since the bandwidth ratio Ω2
F /Ω

2
RMS ≪ 1, the spectral filter significantly reduces the pulse

duration and bandwidth as well as shapes the pulse from a parabolic profile to a Gaussian, as highlighted by the insets in
Fig. 29(a), (b). The saturable absorber has little influence on pulse propagation and mainly is needed for the self-starting
and attenuation of dispersive radiation generated in the filtering process. Fig. 27(d) shows that the chirp parameter never
changes sign and decreases to more negative values in the optical fibre. This causes both the pulse duration and bandwidth
to increase, only to be compensated by the discrete action of the spectral filter (see Fig. 27(d)). This is distinctly different
from lasers relying on self-similar propagation in passive normal GVD fibre [344] since the bandwidth is able to have huge
breathing ratios> 20–40. Since the chirp is largely linear at output, it can be compressed with an external dispersive delay
line composed of fibre, prisms or gratings. In this laser configuration there is no anomalous dispersion fibre segment,
allowing for high peak powers (6 kW) and large intracavity pulse energies up to 25 nJ. One of the key advantages of
using optical fibre is the potential for scalability. Indeed, these fibre lasers relying on all-normal GVD pulse propagation
has recently lead to pulse energies approaching 1 µJ by using large-mode-area fibres [351]. An excellent recent review
of high-energy femtosecond fibre lasers operating at normal dispersion can be found in Ref. [352]. Recently ultra-wide
bandwidth pulse generation has been achieved in similariton mode-locked lasers by including a highly nonlinear fibre in
the resonator [353]. This was shown to extend the pulse bandwidth well beyond the gain bandwidth while keeping the
chirp of the pulse approximately linear, allowing for significant compression.

Theoretical efforts to describe highly chirped pulse solutions of lasers that consist of all-normal dispersion fibre have
been made and are mentioned in Section 4.1.1. Gain-guided solitons are well described by chirped soliton solutions of the
CGLE in the normal dispersion regime. Pulse solutions in all-normal dispersion lasers relying on spectral filtering but not
on similariton pulse dynamics have been found to resemble an exact solution of the CQGLE [97], or approximate solutions
to various Ginzburg–Landau equations in the case of highly-chirped solutions [98–100]. Although these solutions can only
represent the average pulse dynamics per cavity round trip, they have had success in describing such oscillators. Indeed, it
is surprising that such averaged models capture some of the physical trends since there are typically hundreds of nonlinear
lengths (φNL ≫ 1) in the length of the cavity,making the validity of a distributedmodel a serious question. Investigations into
the intra-cavity dynamics due to the spectral filter was initiated, however still relied on a distributed model [281,354]. To
obtain amore quantitative agreementwith experiment, the intracavity pulse dynamicswas described including the discrete
nature of the dissipative elements. Analytical results on self-similar mode-locking [340], all-normal dispersion lasers [286],
and similariton lasers [287] were obtained.
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Fig. 29. (a) Temporal and (b) spectral evolution of the power over one round trip once steady state evolution is achieved from the solution to Eqs. (99)–(100)
with discrete actions (92)–(94). A doped-fibre with parameters β2 = 0.025ps2/m, γ = 0.0047 1/(W m), g0 = 1 1/m (corresponding to 17.37 dB total
gain), Es = 10 nJ, Ωg = 100 THz, and L = 4 m is followed by an output coupler with R = 0.2, a Gaussian spectral filter with FWHM 10

√
2 log(2) ∼ 11

THz and a saturable absorber with q0 = 0.9 1/m and Ps = 3W. (c) Poincare map taken at the beginning of the normal dispersion segment. (d) Intra-cavity
evolutions of the RMS pulse duration and chirp parameter once steady state evolution is reached.

5.3. Linear mode-locked fibre laser systems based on SESAMs

Since the development of semiconductor saturable absorber mirrors (SESAMs) [355], they have been widely used for
passive mode-locking of many kinds of solid-state and fibre lasers [310,330,356,357]. This is primarily due to the ability
to engineer the linear and nonlinear optical properties over a wide range, allowing for more freedom in the specific laser
cavity design. The recovery time, saturation fluence, and absorption loss are controllable by proper device design, epitaxial
device growth, post-growth heat treatment, or ion implantation. A detailed description and guideline how to design a SESAM
for passive mode-locking for different laser parameters is given in recent book chapters [358,359]. Indeed, the ability to
tune the design parameters of SESAMs allows them to have many advantages over other saturable absorber methods such
as additive pulse mode-locking [360], Kerr-lens mode-locking [307,361], or nonlinear polarization rotation [321,324,325].
Further, exploiting the SESAMas a cavitymirror in a linear laser configuration results in compact size and in environmentally
stable devices.

Although first implemented in solid-state mode-locked lasers [330], because of the aforementioned advantages SESAM
technology has also been used in mode-locked fibre lasers operating over a broad wavelength range [293,331,362,363].
Understanding how the saturable absorber recovery time and saturation energy of the SESAM in Eq. (101) can effect
a particular fibre laser system is important for optimization. A general analysis of the difference between fast and
slow saturable absorbers has been examined theoretically and numerically [364]. In addition to the saturable absorber
parameters, the operation regimes of mode-locked fibre lasers heavily depends on the dispersionmanagement of the cavity
as well. Stretched pulse operation has been obtained in linear SESAM based mode-locked fibre lasers operating with both
fast and slow saturable absorbers [362]. Here we discuss numerical modelling results of such a linear laser configuration as
shown in Fig. 30 [365]. The cavity consists of an output coupler at one end, followed by a 1.5 m long passive fibre operating
at normal dispersion, 0.5 m long active fibre operating at normal dispersion, a grating pair that provides anomalous GVD
with negligible nonlinearity, and a SESAM at the other end of the resonator. The pulse propagation in the optical fibre
was modelled with Eq. (99)–(100) with an additional third order dispersion term [366]. The parameters for the fibre are
γ = 0.005 1/(W m), β2 = 0.02 ps2/m and β3 = 5 × 10−5 ps3/m. The active fibre segment has a gain of g0 = 5.5 dB/m,
bandwidth of 11.4 THz (corresponding to 40 nm) centred at 1027 nm and gain saturation Es = 0.2 nJ, corresponding to
a round trip time of 20 ns and gain saturation power P (g)s = 10 mW. The grating pair was modelled by solving Eq. (99)
with γ = g0 = 0 and Γ ≠ 0 such that β2 = −0.046 ps2 is the total anomalous GVD provided and the linear losses were
below 20%. The total GVD per cavity round trip is anomalous with βnet

2 = −0.038 ps2. The SESAM is modelled by (101) with
non-saturable loss of q0 = 0.3, energy saturation Esat = 0.5 pJ, and recovery time τA = 10 ps. From an initial white noise
distribution the attracting state of the laser is a pulse with temporal shape that is well approximated by a Gaussian shape
and the spectral profile has sidebands caused by the periodic perturbations in the system, similar to conventional soliton
mode-locking. Fig. 30(b)–(e) shows the RMS pulse characteristics (17) over one round trip once stable mode-locking has
been achieved. The pulse parameters largely vary per cavity round trip and are heavily influenced by the particular discrete
elements. In particular, the dispersion compensation by the grating pair causes the chirp parameter to have both positive
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Fig. 30. (a) Linear laser configuration. RMS (a) power, (b) pulse duration, (c) chirp parameter and (d) bandwidth for a typical parameter regime where
stable single pulse mode-locking is achieved. OC: output coupler; PF: passive fibre; AF: active fibre; G: grating; SA: saturable absorber (SESAM).
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Fig. 31. Regions of stable single and multi-pulse regimes for the laser configuration and parameters shown in Fig. 30 but with SESAM modulation depth
q0 = 0.1 and varying (a) SESAM saturation power and recovery time and (b) total gain and cumulative dispersion controlled by the grating pair.

and negative values, making it a typical dispersion managed system. The pulse duration reaches the minimum value at the
chirp-free point located at ∼3 m, 1 m after the second pass through the grating pair.

To highlight the role of the SESAM and grating pair, we consider the laser configuration shown in Fig. 30(a) and vary
the SESAM parameters, dispersion provided by the grating pair, and total gain around similar values used for stable mode-
locking shown in Fig. 30(b)–(e). Fig. 31 shows the results of extensive numerical modelling (with the same equations as in
Fig. 30) to determine regimes with stable single and multiple pulse generation. The data generated here is quite extensive
and compromises of 1620 (a) and 1770 (b) simulations, each corresponding to a single point in the areas of Fig. 31. The
initial field distribution in the laser cavity is white noise and the simulations carried out until the field attains the steady
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state, which is determined numerically [365]. The curves in Fig. 31 separate regionswhere a different number of pulses exist
in the cavity. The area confined within the red curve corresponds to single pulse generation, while the area confined by the
black line corresponds to two and three pulses circulating in the cavity. The area bounded by the blue curve is for single pulse
generation with a higher tolerance level on the variation of output parameters to reach steady state [365]. Multiple-pulse
regimes are sensitive to initial noise and, consequently, in the same area two and three pulses could be generated depending
on particular noise structure in a given trial of mode-locking start-up. Fig. 31(a) shows the pulse regimes for the parameters
used in Fig. 30 but with variable SESAM parameters in Eq. (101). We see that a high saturation energy and small recovery
time favour single pulse operation. Fig. 31(b) shows the pulse regimes for the parameters used in Fig. 30 but with a variable
net dispersion which is achieved by adjusting the dispersion provided by the grating pair, as well as the total gain. We see
that stable single-pulse regime exists with net anomalous dispersion with a total gain between 5 and 7.5 dB. Increasing the
gain leads tomulti-pulsemode-locking for small anomalous dispersion. The resultant pulse dynamics of such a linearmode-
locked oscillator is critically controlled by the dispersion the grating pair provides as well as the dissipative parameters of
the SESAM. Althoughwe have shown stretched pulse operation here, tuning these parameters allows for different operation
regimes to be obtained, as was observed experimentally in a similar laser design [367].

6. Numerical methods

In this section we briefly overview some relevant numerical methods to NLS and dispersion managed NLS systems.
Numerical modelling of the field evolution in time or propagation in space in nonlinear dispersivemedia plays an important
role in modern nonlinear science. Numerical experiments support and quite often precede theoretical findings. There are
many examples of systems in optics that require intensive numerical modelling. For example, in optical communications
systems it is important to simulate the propagation of an initial signal and repeat such simulations many times to take
into account certain statistical uncertainties such as noise or other random parameters along the fibre line. Further, for
optimization purposes a large number of system parameters should be varied to find the optimal system performance.
Direct approaches compute every possible combination of system and signal parameters and select the set of parameters
that leads to the best system performance. However, due to the rather long transmission distances and a large bandwidth
of the optical signals, such numerical simulations are very time consuming and requires efficient computational algorithms.
Much work has been done over the years on the key models considered above, and new numerical techniques have been
used to approach themany challenges posed in dispersionmanaged systems (see, for instance [368]). Here we do not intend
to present a comprehensive review of all numerical approaches used in this field, but rather a highlight of some of the key
algorithms used in our groups.We first provide an overview of the key numerical methods for solving the NLSE, with details
given on the well known split-step Fourier method and finite-difference scheme of a high order accuracy. Next we discuss
the numerical algorithm to find solutions to the Gabitov–Turitsyn equations in the spectral domain. We then discuss an
algorithm to construct exact DM-soliton solutions and finally we conclude with a discussion on solving periodic boundary
value problems for the TM equations.

6.1. Numerical algorithms to solve NLS-type equations

Due to the nonlinear nature of the NLSE, analytic progress can be challenging. Numerical simulations have always played
an important role in understanding the behaviour of NLS-type systems, and indeed initial observations of localization
came from numerical simulation results themselves [1]. The NLSE has been solved numerically using a number of
methods, including the split-step method [369,370], finite-difference schemes [371–378], the finite element method
[379–381], the discontinuous Galerkinmethod [382,383], spline collocation [384,385], split-step finite-difference [386,387],
symplectic (spectral and finite difference) methods [388–391], as well as using the various steps of the inverse scattering
transform [392]. Efficient numerical routines to solve the NLSE is still an active area of research. A recently developed
method to construct an unconditionally stable explicit high-order discretization of the NLSE was proposed in [393]. The
technique devised a numerical scheme based on spectral spatial discretization and the extraction of the linear semigroup
dependence of the numerical solution which provides unconditional stability along with increased truncation order in z. A
comparison with the SSFM was made and showed that the third order semigroup extraction method is more efficient than
methods considered in [371]. Often it is important to consider coupledNLS equations (CNLS) [366] for various applications in
optical communications, nonlinear optical devices and fibre lasers (especially mode-locked fibre lasers based on nonlinear
polarization rotation). A variety of the numerical approaches to solve the CNLS equations, which are similar to the methods
used to solve the scalar NLSE, have been proposed, including finite difference schemes [372,394–396], both the Galerkin
method [397] and discontinuous Galerkin method [383], parallel split-step Fourier method [398], generalized hyperbolic
function transformation method [399], a linearly implicit conservative method [400], multi-symplectic methods [401,402],
the Chebyshev spectral collocation method [403], as well as different split-step schemes such as finite difference [387,404].

Among the earliest methods used to solve the NLSE numerically are the split-step and Fourier methods used by Hardin
and Tappert [369] and Lake et al. [370]. Taha and Ablowitz [371]made a classical comparative analysis of numericalmethods
to solve the NLS equation. In their fundamental review they considered a number of different numerical algorithms for
solving the nonlinear Schrödinger equation, including the classical explicit (three-level) method, the hopscotchmethod, the
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implicit–explicitmethod, Crank–Nicolson implicit scheme, the Ablowitz–Ladik scheme [405], the split-step Fouriermethod,
and the pseudospectral method. After this work the split-step Fourier method (SSFM) became the mainstream method in
nonlinear optics. Here we discuss the SSFM and how it can be used to solve the governing equation for short pulse evolution
along a single-mode fibre [406,407]

∂u
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= i
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ik

k!
sgn(βk)dk

∂ku
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+ ϵ
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1 +

i
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∂
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
u


∞

0
R(s) |u(t − s)|2ds


+ gu. (103)

The kernel R(t) accounts for the non-linear response of the optical fibre medium (that can be approximated from the
experimental data described in [80,366,406–409]) and contains both electronic and vibrational (Raman) components

R(t) = (1 − fR) δ(t)+ fRhR(t), (104)

where δ(t) is the Dirac delta function and fR represents the fractional contribution of the delayed Raman response to
nonlinear polarization. For instance, in optical fibre fR = 0.18 [406–408]. In general, the Raman response function hR(t)
is rather complex due to the amorphous nature of silica glass and to model it accurately a superposition of a large
number of basis functions is required [409,410]. It is more practical and typical, therefore, to slightly sacrifice accuracy
by approximating the Raman response by damping oscillations (associated with a single vibrational mode) leading to a
Lorentzian-shaped gain spectrum [406]. Eq. (103) is general, including potentially all orders of dispersion as well as a
number of nonlinear effects in the second termof the right hand side such as self-phasemodulation, cross-phasemodulation,
modulation instability, stimulated Raman scattering, four-wave mixing, self-steepening and shock wave formation [366].
In the limit fR = 0, ω0T0 → ∞ (for pulses of width T0 > 5 ps, ω0T0 > 200), and kmax = 2 we obtain the standard NLSE (2).

In the SSFM the linear operator is computed in the frequency domain, while the nonlinear operator is solved in the time
domain. Specifically, consider the evolution equation

uz = (L̂ + N̂)u, (105)

where L̂ and N̂ are linear and nonlinear operators, respectively. The linear and nonlinear operators typically do not commute
with each other as is the case in Eq. (103) where
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The key idea in the split-stepmethod is to approximate the exact solution of Eq. (105) by solving the purely linear and purely
nonlinear equations in a given sequential order, in which the solution of one subproblem is employed as an initial condition
for the next subproblem. This may be implemented by using a solution operator ψn(∆z) that includes an appropriate
combination of products of the exponential operators exp[∆zL̂] and exp[

 z+∆z
z N̂(s)ds] [411]. However, this produces a

splitting error due to the noncommutativity of L̂ and N̂ that can be reduced by the Baker–Hausdorff formula [412]. According
to the Baker–Hausdorff formula, the first-order solution operator is given by

u(z +∆z, t) = ψ1(∆z)× u(z, t), where ψ1 (∆z) = exp

∆zL̂


exp

 z+∆z

z
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
. (107)

To obtain a second-order method, Eq. (107) is modified by letting ψ1(∆z) = ψ2(∆z), where

ψ2(∆z) = exp
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z
N̂(s)ds


exp


∆zL̂


exp

 z+∆z

z+∆z/2
N̂(s)ds


. (108)

Approximations of higher order can be constructed by a proper composition of the second-order symmetric
approximation [413–415]. For example, a fourth-order splitting has the following form [411,413]

ψ4(∆z) = ψ2(η∆z)× ψ2([1 − 2η]∆z)× ψ2(η∆z), (109)

where η =

2 + 21/3

+ 2−1/3

/3. In general, the operators L̂ and N̂ in Eqs. (107)–(109) may be interchanged without

affecting the order of the method.
In order to use the schemes presented in Eqs. (107)–(109), we must compute the operators L̂ and N̂ . As mentioned

previously, in the SSFM the linear operator is computed in the spectral domain and the nonlinear operator is computed
in the time domain. The linear operator L̂ can be presented in the Fourier domain
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Hereω is the frequency in the Fourier domain,F denotes the Fourier transform operation, and L̂(iω) is obtained by replacing
the differential operator ∂/∂t by iω in Eq. (106). Thus to obtain the linear operator in each propagation step two Fourier
transforms are required. The use of the Fast Fourier Transform (FFT) algorithm makes the numerical evaluation the Fourier
transforms relatively fast, with O(N logN) operations needed to be performed, where N is the number of grid points in the
time/frequency domain [416]. To calculate nonlinear operator, we must compute the convolution integral term in Eq. (103)

N(u, t) =


∞

0
R(s) P(t − s)ds, (111)

where P(t) = |u(t)|2 is the signal power. Since integration is performed over an asymmetric domain, the numerical
implementation of this integral using the convolution theorem and the FFT is rather complicated and will typically take
N2 operations. A more efficient way to compute the integral arises when we are interested in localized pulses. Specifically,
if we assume that the power P(z, t) is localized from t ∈ [−a, a] (the step size of the time variable is ∆t = 2a/N) so
that s ∈ [0, 2a], then after discretization R⃗ = {R(tk)}, where tk = k∆t, k = [0, 1, . . . ,N] and P⃗ = {P(tj)}, where
tj = j∆t, j ∈ [−N/2 + 1, . . . ,N/2]. The length of the resulting convolution vector is 2N and its first N components are
the values of integral (111) at the points tj = j∆t, j ∈ [−N/2 + 1, . . . ,N/2]. Thus the number of operations required
for the calculation of the convolution integral N(u, t) is reduced from N2 operations to N log2 N operations [417]. Further
reductions in the operation count to compute (111) can be obtained if the function R(s) has a particular functional form.
Often the Raman response function hR(t) in Eq. (104) is assumed to be a damped oscillator of the form [366,406]

hR(t) =
τ 21 + τ 22

τ1τ
2
2

exp(−t/τ2) sin(t/τ1). (112)

Here the parameters τ1 and τ2 are used as fitting parameters to obtain the best fit of the measured spectrum of the
Raman amplification. Commonly used values for optical fibre are τ1 = 12.2 fs and τ2 = 32 fs along with the fractional
contribution in Eq. (104) fR = 0.18 [406–408]. Using Eq. (112) in Eq. (104), it is possible to use the so-called recursive
algorithm to calculate the nonlinear integral term in Eq. (111) [406,417]. Specifically, it is necessary to compute the
integral
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Letting r = t − s and using standard trigonometric formulae it is possible to show that
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where
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The calculation of the integrals Ñ1 and Ñ2, and thus the calculation of Eq. (111) can be computed in∼N operations recursively
using

Ñi(P, tj+1) = Ñi(P, tj)+

 tj+1

tj
ñi(P, tj+1, s)ds, (116)

where tj = j∆t , j ∈ [−N/2 + 1, . . . ,N/2], tj ∈ [−a, a]. Here it is possible to use such a recursive scheme since hR(t) is the
product of an exponential and a trigonometric function, and thus the variables can be separated out. For a general function
hR(t), this is typically not possible and one must compute the convolution integral.

As with any numerical method, it is important to understand the accuracy and stability of the SSFM algorithm. Indeed,
the step sizes in z and t must be selected carefully to maintain the required accuracy of calculation, depending on the order
of the method used. Such accuracy can easily be monitored by, for instance, calculating the conserved quantities such as
the system energy (in the absence of dissipative terms). Although since the SSFM is explicit and thus conditionally stable,
numerical instabilities are still possible. In a recent study, a numerical instability in the background of a solitonwas observed
when using the SSFM to solve the NLS equation [418]. The instability was found to be very sensitive to small changes in the
numerical grid and the soliton parameters, unlike the instability of most finite-difference schemes. In this example the
period of oscillations of the unstable Fourier modes is much smaller than the width of the soliton, thus the principle of
‘‘frozen coefficients’’, in which variable coefficients are treated as locally constant for the purpose of stability analysis, is
strongly violated.
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The SSFM requires two Fourier transforms (for the linear operator) and the calculation of the convolution integral (for
the nonlinear operator) for a single discretization step in z. As discussed above, each operation roughly takes O(N logN)
operations, making the SSFM potentially faster by up to two orders than most finite-difference schemes [371]. This quality
is mainly responsible for the SSFM being widely used. Improvements in computation speed using the SSFM can be achieved
by optimizing the step-size [419] and employing a logarithmic step-size [420], Fourier series analysis and the multi-level
method [421,422], predictor–corrector techniques [423], and a fast spectral algorithm using an explicit (implicit) method
for the nonlinear (linear operator) [424], among others.

Currently much work is being done to improve the speed of known numerical techniques through parallel
computing. Indeed, parallelization is key for many systems that require intense computational efforts. For instance, WDM
communications systems require propagation of a wide range of frequencies through optical fibre coupled by nonlinearity.
Path-averaged GVD effects cause the optical pulses in distinct WDM channels to move with different group velocities.
Consequently, modelling of WDM systems requires a long time interval with a high resolution in the frequencies, leading to
a very large number of Fourier modes. Fast parallel algorithms will be the key to realize the so-called technique of nonlinear
backward propagation, which will compensate nonlinear transmission impairments for on-chip device implementation in
coherent transmission systems. The efficiency of using supercomputers for SSFM has been shown to be limited because
parallel algorithms for the one dimensional FFT (contrary to multidimensional FFT) provides only a moderate speed
up [425]. For example, one of the leading implementations [426] shows an at best four times acceleration on 16 processor
cores with shared memory. Indeed, including more processors can be inefficient as this requires the use of a distributed
memory approach (cluster), which has higher latency of nodes interconnection media. The experimental data shows that
at harmonics up to 221, a shared memory approach is more efficient. But for higher harmonics, moderate acceleration can
be achieved on a cluster, although scaling would still be far from linear [426]. The parallel implementation of the SSFM
was also considered in Ref. [427], and in recent work the implementation of a parallel algorithm [428] for the simulation of
dispersion-managedWDM optical fibre systems in the case of weak nonlinearity have linear scalability with the number of
computer cores [425].

To take a Fourier transform it is necessary to include all Fourier modes since they are connected with each other
nonlocally. Since at any point in the computational domain you need to use information from across the whole domain,
using the SSFM to numerically solve systems that require a large number of Fourier modes is not optimal. In addition to
SSFM, finite-difference schemes have also been implemented to solve various NLS-type equations [371–378]. In contrast
to the SSFM, finite-difference methods are implemented in such a way that it is only necessary to know information about
the local, or nearest points. In this way FDM offers the potential for increased computational speed when a large number of
modes are present in a parallel format. Here we present an example of a compact implicit finite-difference scheme of order
O(∆z2,∆t4) for the one-dimensional NLSE [429]

∂u
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= −i
d
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∂2u
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+ iγ f , f = |u|2u. (117)

In constructing the finite-difference schemes for solving the NLSE, we use the classical schemes for the linear parabolic heat
equation, where d = id̃ and γ = 0 [430]. Let∆z and∆t be the steps of a uniform grid in z and t respectively, and un

j be the
solution u(z, t) = u(n∆z, j∆t). Various difference schemes can be used to provide both stability and accuracy. For example,
consider the difference scheme for Eq. (117) with weights α (0 ≤ α ≤ 1)
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The second order differential operator in time Λ is defined such that Λun
= (un

j+1 − 2un
j + un

j−1)/(∆t2). To understand
the stability of a certain finite-difference scheme, it is important to compute the amplification factor to the linear equation
(γ = 0). Let un

j = exp[iktj], where k is the grid wave-number and tj = j∆t , and define the amplification factor ρk by letting
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j . Substituting this into the difference equation (118) we obtain
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If the square module of the amplification factor is greater than unity (|ρk|2 > 1), the finite difference scheme is unstable.
In the case of the linear heat equation (d = id̃), the difference scheme (118) is unconditionally stable for α ≥ 1/2, and
conditionally stable if α < 1/2. For the linearized NLSE it is easy to see that the difference scheme is unconditionally stable
when α ≥ 1/2 and absolutely unstable when α < 1/2. Two schemes are particularly important, the purely implicit scheme
with α = 1 and the Crank–Nicolson scheme with α = 1/2. The implicit method has the largest margin of stability as
|ρk|

2 < 1, but it is only first order in z. The Crank–Nicolson method is second order in both z and t , however |ρk|
2

= 1,
which means there is no strong stability. In the case of mathematical modelling of ultra-long fibre links or fibre lasers for
many round-trip times this stabilitymarginmay be insufficient to obtain reliable results. It is possible, however, to overcome
this shortcoming by modifying the Crank–Nicolson scheme by adding a term proportional to ∆z to the weight α, so that
α = 1/2 + c∆z, where c > 0.
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Table 1
Computation results for the linear problem on a sequence of grids for the Crank–Nicolson (CN)
scheme (118) and the modified scheme (120).

nt nz δ (CN) K (CN) δ (Modified) K (Modified)

20 20 8.7144-02 1.2963-02
40 80 2.2095-02 3.94 8.2559-04 15.69
80 320 5.4733-03 4.02 5.1446-05 16.05

160 1280 1.3645-03 4.02 3.2122-06 16.02
320 5120 3.4089-04 4.00 2.0072-07 16.05
640 10480 8.5210-05 4.00 1.2545-08 15.99

Table 2
Computation results for the nonlinear problem on a sequence of grids for the Crank–Nicolson (CN)
scheme (118) and the modified scheme (120).

nt nz δ (CN) K (CN) δ (Modified) K (Modified)

20 20 1.4643-00 7.6688-01
40 80 7.1275-01 2.06 6.6585-02 11.52
80 320 2.2153-01 3.22 6.2449-03 10.66

160 1280 7.6367-02 2.90 5.5693-04 11.21
320 5120 2.6835-02 2.85 4.9901-05 11.16
640 10480 9.4732-03 2.83 4.3687-06 11.42

Over the years there have been many implementations of finite-difference schemes to obtain higher order accuracy
at roughly the same computational cost as the Crank–Nicolson scheme discussed above. Here we outline one such scheme.
Following Ref. [429], taking a specific value of the weight α = 1/2− i/(3r) and a special form of a right-hand side difference
scheme introduced in [430], a higher order (O(∆z2 +∆t4)) finite difference scheme of the form
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was obtained. For this high-order scheme, the amplification factor ρk = [(1 − ψk/3)i − r/2ψk]/[(1 − ψk/3)i + r/2ψk]

and its modulus, as in the Crank–Nicolson scheme, is exactly equal to 1, giving absolute, but not strong stability. Again
it is possible to slightly modify the weight α = 1/2 + c∆z − i/(3r) (c > 0) to obtain strong stability since |ρk|

2
=

1 − [2c∆zr2ψ2
k ]/[1 + r2α2ψ2

k ] < 1. It can be shown that the small change in the weight α is equivalent to the addition
of an artificial dissipative term c∆z2∂u/∂z in Eq. (117) [429]. Similar finite-difference schemes have been implemented,
including a similar scheme in the case when c = 0 [431] and a O(∆z2 +∆t4) scheme that requires three points in space and
nine points in time [432]. Eq. (120) is an implicit nonlinear scheme, andmust be solved iteratively. To obtain the iterations, a
simple method of linearization, similar to the two-step procedure used in the predictor–corrector schemes, is done for each
fixed layer n on an evolutionary variable z. Specifically, we define the sequence v0, v1, . . . , vs (s is the iteration number) that
will converge to the solution un+1 on the (n+ 1)th layer. After an initial approximation for v0, one can iterate the linearized
equation [429]
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to obtain the series v0, v1, . . . , vs until |vs − vs−1| < ε, where ε ∼ 10−8 is the tolerance level chosen. In the linearized
equation (121), I is the identity matrix, and it is obtained by letting un+1

= vs+1 and f n+1
= |vs|

2vs in Eq. (120).
To test the order of both the Crank–Nicolson scheme (118)withα = 1/2+c∆z and themodified scheme (120) discussed

above, we calculate the numerical solution of Eq. (117) in two limits where exact solutions ue(z, t) are known. We decrease
the step size by 1/2 in both t and z and calculate the global C-norm error of the numerical solution δ = max |un

j −ue(zn, tj)|
for the schemes. This error will obviously depend on the step size δ = δ(∆t), and can be used to calculate the order of the
method (here we focus on the order of the method in the time variable). Specifically, by assuming a power law δ ∼ ∆tp,
where p is the order of the method, we can calculate K = δ(∆t)/δ(∆t/2) = 2p, giving us the order p. In the linear limit
(γ = 0) when d = −1 there is an exact solution ue(z, t) = P0 exp[−t2/(2w)]/

√
w, where w = P2

0 − idz and P0 = 1.8.
Table 1 shows the numerical simulation results where the domain was (0 ≤ z ≤ 10) × (−5 ≤ t ≤ 5) and the artificial
parameter c = 0.01. The K values confirm that the Crank–Nicolson scheme is second order (K ∼ 4, p = 2) while the
modified scheme (120) is fourth order accurate (K ∼ 16, p = 4). To test the scheme for a nonlinear problem, we choose the
parameters d = −1 and γ = 1 in Eq. (117), which has an exact soliton solution ue(z, t) = sech(t) exp[iz/2]. For the iterative
solution to the linear equation (121), iterations were carried out with a chosen tolerance ε = 10−8 and an upper limit of 8
iterations. Table 2 shows the numerical simulation results where the domain was (0 ≤ z ≤ 4π) × (−10 ≤ t ≤ 10) and
the artificial parameter c = 0.01. The K parameter again shows reasonable agreement to the theoretically calculated orders
of convergence for both finite difference schemes, and certainly highlights the higher accuracy of the modified method. In
addition to numerical error due to the step size of the grid in t and z, we can also expect numerical error due to the artificial
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Table 3
The calculated error for various values of artificial dissipative parameter c for two different
grids using the modified scheme (120) on the nonlinear NLSE with soliton solution.

c 0.0 0.0001 0.001 0.01 0.1

grid 320 × 1280 0.0444 0.0440 0.0399 0.0021 0.4057
grid 640 × 2360 0.0105 0.0103 0.0087 0.0081 0.1763

dissipative parameter c. To quantify the error caused by this term, we solved the same nonlinear problem as that in Table 2
where the domain was (0 ≤ z ≤ 20π) × (−10 ≤ t ≤ 10) for two different grids and various values of the parameter c
with the modified scheme. Table 3 shows that the error decreases as c is increased from zero, and reaches a minimum at
some point c < 0.1. Indeed, it has been numerically established that in all calculations the best value of the coefficient of
the artificial dissipation is in the range from 0.001 ≤ c ≤ 0.01. The numerical simulation results shown show that indeed
the finite-difference scheme is second order in z and fourth order in t in both the linear and nonlinear regimes. Indeed, the
addition of a small amount of dissipation makes this scheme unconditionally stable, however the amount of error increases
for large values of the artificial dissipative parameter. This method can provide a high accuracy at a reduced computational
cost since it only uses a small number of local points, and can be useful in modelling physical systems that require many
Fourier modes.

6.2. Numerical algorithm to solve the Gabitov–Turitsyn equations

In this section we describe the numerical algorithm that allows us to find DM soliton solutions of the path-averaged
equation (61) [433]

i
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where Tω123 = Tω123(∆Ω) is defined in Eq. (60c). Similar to thewell-studiedNLSE (T is a constant), we seek a soliton solution
of in the form ϕ̂(z, ω) = Ψ (ω) exp(iλ2z), giving
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]Ψ = ϵ
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It was shown that if G(z, ω) = 1/(λ2 + ⟨d⟩ω2) and
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Eq. (123) can be solved by iteration of the form [434,435]

Ψ n+1(ω) =


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Sn2
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Gn(z, ω)F(Ψ n, ω). (125)

For convergence of the iterative routine the parameter 1 < α < 2 (typically α = 3/2). This methodwas originally proposed
by Petviashvili [434,435] for conventional soliton solutions and was applied to DM soliton systems [149,436].

In each iteration in the method proposed by Petviashvili the integral term F(Ψ , ω) must be computed. After a simple
integration utilizing the delta function (ω3 = ω + ω1 − ω2),
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
+∞

−∞

T (∆Ω)Ψ ∗(ω1)Ψ (ω2)Ψ (ω + ω1 − ω2)dω1dω2 . (126)

Thus computing F(Ψ , ω) involves a double integration, generally requiring O(N3) operations, where N is a number of grid
points in the time/frequency domain. We assume that the solution is localized in the interval [−a, a]. Then ω,ω1, ω2 ∈

[−a, a] and ∆Ω = ω2
+ ω2

1 − ω2
2 − ω2

3 = 2(ω2 − ω)(ω1 − ω2) ∈ [−2a2, 2a2]. Here we apply a numerical algorithm
that relies on an approximation of the matrix element T (∆Ω) using both polynomial and trigonometric expansions. This
approximation allows us to apply a fast computation of convolutions and to reduce a number of operations toM N log2(N),
whereM depends on the approximation of T (∆Ω).

First let us approximate the matrix element T by a polynomial expansion

T (∆Ω) =

s
j=0

aj(∆Ω)j (127)
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so that

F(Ψ , ω) =

s
j=0

aj2j


+∞

−∞


+∞

−∞

(ω1 − ω2)
j(ω2 − ω)jΨ ∗(ω1)Ψ (ω2)Ψ (ω + ω1 − ω2)dω1dω2

=

s
j=0

aj2j


∞

−∞


∞

−∞

xj(ω1 − x − ω)jΨ (x + ω)Ψ ∗(ω1)Ψ (ω1 − x)dω1dx

where x = ω2 − ω. Using the binomial theorem (ω1 − x − ω)j =
j

k=0 C
k
j (−ω)

j−k(ω1 − x)k

F(Ψ , ω) =

s
j=0

aj2j


∞

−∞

xj
j

k=0

Ck
j (−ω)

j−kΨ (ω + x)


+∞

−∞

(ω1 − x)kΨ (ω1 − x)Ψ ∗(ω1)dω1


dx.

If we let the function fk(x) be the integral within the square brackets

F(Ψ , ω) =

s
j=0

aj2j
j

k=0

Ck
j (−ω)

j−k


+∞

−∞

xjfk(x)Ψ (ω + x)dx. (128)

Since we are dealing with pulse solutions, the convolution integral will take N log2 N operations to solve. Considering
this, along with the summations the total number of operations it takes to calculate F(Ψ , ω) is (s2N log2 N)/2, which is
a significant reduction from the number of operations necessary to solve the original integral (126).

In general, the matrix element of T (∆Ω) can have an oscillatory structure and a polynomial approximation is not
appropriate. Oscillating kernels are better approximated with trigonometric functions so that

T (∆Ω) =

M
n=0

Tn exp(itn∆Ω) . (129)

Using the symmetrical substitution of variables ω̄1 = ω2 − ω and ω̄2 = ω1 − ω2 along with (129) in Eq. (126) we obtain

F(Ψ , ω) =


+∞

−∞


+∞

−∞

M
n=0

Tn exp(itn∆Ω)Ψ ∗(ω + ω̄1 + ω̄2)Ψ (ω + ω̄1)Ψ (ω + ω̄2)dω̄1dω̄2 ,

where∆Ω = ω2
+ (ω+ ω̄1 + ω̄2)

2
− (ω+ ω̄1)

2
− (ω+ ω̄2)

2. The separation of the integration variables allows us to write

F(Ψ , ω) =

M
n=0

Tneitnω
2


+∞

−∞


+∞

−∞


e−itn(ω+ω̄1+ω̄2)

2
Ψ (ω + ω̄1 + ω̄2)

∗

×


e−itn(ω+ω̄1)

2
Ψ (ω + ω̄1)


e−itn(ω+ω̄2)

2
Ψ (ω + ω̄2)


dω̄1dω̄2. (130)

Integral (130) can be calculated by successive implementation of the correlation procedures and the sum is over the number
of approximating trigonometric functions. It can be shown that to calculate F(Ψ , ω) it takes ∼M N log2(N) operations,
where M is number of approximating functions. Thus, as in the case of using a polynomial approximation for T (∆Ω),
using trigonometric functions to approximate the kernel also reduces the computational time needed to solve the original
integral (126).

6.3. Iterative methods for the construction of exact DM solitons

As discussed above, to obtain exact periodic DMpulse evolution it is necessary to startwith the correct initial condition. In
Ref. [437], a numerical averaging method (Nijhof’s method) for the computation of exact periodic solutions was introduced.
The algorithm is as follows [437]:

• Start with an arbitrary field distribution u(t) = u0(t). For example, u0(t) could be a Gaussian pulse with approximately
the correct parameters.

• Propagate the pulse and calculate the peak power |u(t)|2 at a fixed point in every dispersion map, e.g., in the middle of
the anomalous GVD segment.

• Record the field umin(t) for which the peak power has a minimum and the field umax(t) where the peak power has a
maximum. To know if the peak power has an extremum, it is necessary to look one map period ahead, so that one can
put umin(t) = ulast or umax(t) = ulast.

• Let ulast = u(t) and propagate for another map period, until both umin and umax have been found. When both have been
found, assuming that both umin(t) and umax(t) both have their peaks at t = 0, create the profile

u′(t) =
umin(0)
|umin(0)|

umin(t)+
umax(0)
|umax(0)|

umax(t).
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The profile u′(t) is the combination of umin(t) and umax(t) so that their peaks are in phase, effectively leading to the
greatest discrimination between the periodic pulse and the background.

• Rescale u′(t) so that the new field energy has the same energy as the original field

unew(t) = u′(t)×


|u0(t)|2dt
|u′(t)|2dt

.

• Restart the procedure with u0(t) = unew(t), until the solution has converged sufficiently.

In general, this procedure leads rapidly to an exactly periodic solution unless the nonlinearity is too small (in which case
convergence takes longer) or too large (in which case the procedure may not converge because of instabilities). Variations
of the method for finding solutions of fixed energy and fixed pulse width as well as the effects of including fibre loss were
considered [437].

An alternative iterative scheme was used to obtain exact periodic DM solitons numerically in Ref. [438]. In this method
the initial condition is propagated through one dispersion map period. The output pulse at the end of the dispersion map
is, generally, not identical to the input pulse. However, the output pulse can be used to modify the input pulse in the next
iteration. Specifically, when the input pulse uin(t), taken at z = 0, generates an output pulse uout(t) at the end of the map
period, the input for the next iteration is constructed as

ũin(t) = C [(1 − α) uin(t) exp (−iφin(0))+ αuout(t) exp (−iφout(0))] . (131)

Here the re-scaling constant C is chosen in a way to restore the initial pulse energy, φ(t) is the phase of the pulse which is
subtracted from both the input and output pulses at the reference point t = 0, and α (0 < α < 1) is a relaxation parameter.
Computations using this algorithm are iterated until the output pulse is within some specified numerical tolerance of the
input pulse. The difference of the algorithm from the averaging method discussed above [437] is that Eq. (131) includes a
simple linear combination of the input and output pulse configurations, rather than those taken at points where the pulse
width takes its minimum and maximum values.

6.4. Numerical methods for periodic solutions of the TM equations

As mentioned in the previous sections, it is useful to be able to numerically solve the TM equations (50) or the extended
TM equations (91), which are nonlinear ordinary differential equations with periodic boundary conditions, also known as
boundary value problems. Such problems arise in all fields of science, and several well known methods have been used to
find numerical solutions. These include, among others, finite difference methods [439], direct shooting method (DSM) [440,
441], multiple shooting method (MSM) [440–442], collocation method (CM) [443–446], and the discrete orthogonalization
method [447]. Provided it converges, the DSM is the fastest, most accurate, and easiest to implement for such problems.
However, it is well known that the DSM can fail to converge for problems whose solutions are very sensitive to initial
conditions. For such problems, FDM and CM can be more reliable, although such schemes are typically much harder to set
up than the shooting methods [441]. The MSM was developed as a compromise between the DSM and the FDM methods,
and was capable of keeping the advantages of the DSM while being able to solve a wide variety of problems [442].

Here we give an example of the numerical algorithm that can be used to implement the direct shooting method for
solving for the periodic solutions of Eq. (91). This method was used to create solution curves in Fig. 9, with all dissipative
terms equal to zero (g = Q1 = Q2 = 0 in Eq. (91)). In general, the shooting method reduces the boundary value problem to
an initial value problem that is solved iteratively, so that

G1(τ0, C0, P0) = |τ0 − τ(L)| → 0, (132a)
G2(τ0, C0, P0) = |C0 − C(L)| → 0, (132b)
G3(τ0, C0, P0) = |P0 − P(L)| → 0. (132c)

Here [τ(0) = τ0, C(0) = C0, P(0) = P0] is the initial condition and [τ(L), C(L), P(L)] is the solution after solving Eq. (91)
over one dispersion map period. The iteration procedure is implemented in the following way:

• Choose initial conditions [τ0, C0, P0] and solve for G1, G2 and G3. In general, these initial conditions will not satisfy the
periodic boundary conditions so Gi ≠ 0.

• Calculate the Jacobianmatrix J , where row i (i = 1, 2, 3) in this matrix is given by the vector [∂Gi/∂τ , ∂Gi/∂C, ∂Gi/∂P],
and the partial derivatives are calculated numerically so that, for instance, ∂Gi/∂τ = [Gi(τ0 + δX, C0, P0) −

Gi(τ0, C0, P0)]/δX , for some chosen δX ∼ 10−9.
• We wish to find perturbations [δτ , δC, δP] so that

G1(τ0 + δτ , C0 + δC, P0 + δP) = 0, (133a)
G2(τ0 + δτ , C0 + δC, P0 + δP) = 0, (133b)
G3(τ0 + δτ , C0 + δC, P0 + δP) = 0. (133c)
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Eq. (133) can be linearized so that the approximate perturbation can be found by solving

J


δτ
δC
δP


= −


τ0
C0
P0


. (134)

In order to minimize numerical errors when solving Eq. (134), it is useful to replace J by J × δX , so that we are solving
for the perturbed quantities divided by δX .

• Update the initial condition so that τ new0 = τ0 + δτ , Cnew
0 = C0 + δC , and Pnew

0 = P0 + δP and solve the initial value
problem Eq. (91). If the tolerance condition

|τ new0 − τ(L)| + |Cnew
0 − C(L)| + |Pnew

0 − P(L)| < ∆ (135)

is satisfied, then stop the iterative process. The tolerance parameter ∆ is typically chosen at a value between 10−6 and
10−9.

In this way, the DSM is a relatively easy way to find periodic solutions to nonlinear ordinary differential equations as in
Eq. (91). Convergence and the speed of convergence depends on a variety of factors, including, among others, the initial
guess, tolerance levels, as well as sensitivity of the system to slight perturbations in both initial and system parameters. Of
course, numerical solutions of boundary value problems have been studied extensively over the years, and here we are not
trying to give a comprehensive analysis of all relevant numerical methods, as it is far beyond the scope of this review.

7. Conclusions and future perspectives

Mathematical nonlinear models with periodic modulation of the system parameters occur in a broad range of research
problems from solid state physics and optics to biology. The nonlinearity might result into localization of distributed fields
leading to appearance of stable dynamical structures that have been encountered in many areas of science and engineering.
Propagation of localized nonlinear waves in periodic media with periodic management of parameters, on the one hand,
creates rich opportunities for manipulation and control of such waves, but on the other hand gives possibilities for the
generation of completely different objects. Periodicity introduces a new spatial or temporal scale (period) compared to
similar systems without periodic management. In addition, periodicity of the system changes the interactions between
nonlinearity and dispersion (or other linear mechanisms leading to spreading of waves such as diffraction). The balance
between nonlinearity and dispersion in nonlinear systems with periodic management is implemented on average over one
(or several) period, as opposite to a continuous balance between nonlinearity and dispersion, such as with conventional
solitons. This means that stable nonlinear structures can feature natural oscillations (breathing) of the characteristics linked
to the periodicity of dispersion or nonlinearity management. Such ‘‘breathing’’ dynamics provide more flexibility in the
parameters of stable structures compared to the ‘‘rigid’’ evolution of solitons with a static shape. In the context of ultrashort
lasers, there are many similarities between such breathing dynamics with the so-called chirped-pulse amplification (CPA)
technique when the ultrashort pulse is not amplified directly, but it is first stretched, then amplified, and only after
amplification is re-compressed. The CPA is one example that clearly shows the advantage of having ‘‘breathing’’ or pulsating
dynamics of the optical pulse. DM solitons can help to reconcile two apparently conflicting requirements: to achieve high
energy (or fluence) and to haveminimumpeak power (or intensity) tominimize the undesirable nonlinear effects. In general
terms, compared to the traditional soliton with a fixed shape and pulse parameters (during evolution), the DM soliton can
keep more energy while avoiding possible nonlinear problems with high local intensity.

Though we have presented an overview of dispersion-managed soliton theory focused on the fibre-optic and laser
applications, the results and ideas discussed can also be relevant to many other fields of science. In general, many
evolutionary nonlinear partial differential equations with periodically varying coefficients possess oscillating localized
solutions.Wehave introduced here a general framework for the analysis of such breather-like solutions in nonlinear systems
with periodic variation of parameters. However, fibre-optic contexts and applications are of special interest, both because
of a variety of practical applications from signal processing to lasers and due to the fact that most fibre-optic models can
be considered one dimensional and, as a consequence, more treatable. Another important property of fibre-optic is the
availability of fibres with different dispersion to build various dispersion maps. Remarkable inventions have been made in
the designs of the optical fibre waveguide that allow to tailor fibre characteristics—nonlinearity (from very low to very high)
and dispersion. Rich opportunities are offered by photonic crystal fibres [448–451] where dispersion can be controlled by
design of the fibre medium or by using gas or liquid in the holes in the fibre structure, e.g. in the fibre centre. The technology
of microstructure fibres such as index-guided, photonic bandgap and hollow fibres, has reached amature state and provides
a great level of sophistication in dispersion control. The highly practical all-fibre method for dispersion management can
be achieved using such new types of fibre. Indeed, recently such fibres have been used in an all-normal dispersion laser to
avoid inherent limitations on the pulse bandwidth due to the gain bandwidth [353], allowing for significant compression
from such a laser source. There are bright perspectives for achieving amazing control over dispersion in fibre optics with
corresponding huge impact on optical transmission, all-optical signal processing and ultra-fast fibre laser technologies. We
hope that our review paper will provide some guidance for some emerging applications in these fields and other areas of
science dealing with nonlinear systems with periodic modulation of parameters.
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