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The science of rogue waves in optics is now over five years old, and it has
emerged as an area of broad interest to researchers across the physical

sciences [1]. This area of study was initiated by the pioneering measurement of
Solli et al [2] when analysing supercontinuum generation in optical fibres. Their
measurements, using a novel dispersive Fourier transform technique to capture
high-speed events in the time domain, observed extraordinarily high amplitude
peaks at certain wavelengths in the chaotic spectrum from the supercontinuum.
By analogy with the extreme waves in the ocean [3], of wide interest after 1995,
such high amplitude pulses were described as ‘optical rogue waves’.

This analogy between localized structures in optics and extreme waves on the
ocean has opened up many possibilities for exploring extreme value dynamics in
convenient table-top optical experiments. In addition to the proposed links with
solitons suggested in [2], other recent studies, motivated from an optical context,
have explored possible links with nonlinear breather propagation. There is now an
international effort, worldwide, to study these extreme events in optics, both for
their own intrinsic interest within their own domain of research, and also because
of their links with the large amplitude ocean wave events [4] that have inspired
their study.

This subject has been rapidly expanding since 2007, with many published
works in different fields: supercontinuum generation in a fibre [5-21], nonlinear
waves in optical cavities [22, 23], pulsed operation of passively mode-locked
lasers [24—28] and wave propagation in photonic crystal fibres [29]. Rogue waves
have been found in erbium-doped fibre systems [30], Raman fibre amplifiers [31,
32], as spatiotemporal structures [33], in parametric processes [34], when
analysing phase profiles [35] and in studies of ways of stimulating and
moderating the appearance of extreme fluctuations [6, 13, 15, 36—41]. Insights
obtained from these works in optics have also motivated parallel work in
hydrodynamics to explore, in more detail, large amplitude waves in their
‘original’ environment [42].

A number of theories for optical rogue wave formation have been advanced for
different experimental conditions. The appearance of rare or unexpected events,
as considered here, is a classical and thus deterministic process. Anomalous
events nevertheless arise due to sensitivity to the initial conditions. Modulation
instability, a complex nonlinear process exhibiting emergent behaviour and strong
sensitivity to initial conditions [16, 18], has been found to play a central role in
the appearance of rogue waves in many optical [2, 8, 18, 43] and hydrodynamic
scenarios. In the case of supercontinuum generation [44, 45], rogue waves can
appear as rare solitons, possessing anomalously large red-shifted energy and peak
intensity. Such rare solitons arise when modulation instability is spontaneously
seeded by a surplus in a particular input noise component [2]. The discovery of
this process has initiated work demonstrating that long-pulse supercontinuum
generation can be stabilized and enhanced by controlled seeding [6, 13]. The
influences of added input modulation [5, 20, 46] and feedback [14, 17, 48] on
supercontinuum generation have also been considered. In other noise-seeded
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situations, gain competition between input noise components can frustrate the
formation of a soliton, leading to rare low amplitude events in a pulse train [15].

Under other experimental conditions, rogue waves may arise through soliton
collisions, which can produce events with high red-shifted energy [47, 49]. The
energy exchange between the solitons is facilitated by third-order dispersion [50,
51] and Raman effects. From multiple collisions, the strong solitons have a
tendency to accumulate energy from the weaker ones, thus exiting the fibre as
rogue waves.

In a different theoretical description, the initial phase of modulation instability
has been shown to lead to the emergence of structures of Akhmediev
breathers [43, 52]. The particular limiting case of the Peregrine solution [53] of
the nonlinear Schrédinger equation has been seen in controlled experiments
aiming to excite the particular prototype isolated rogue wave possessing the
strongest localization [54, 55]. Yet, the initiation of these solutions stochastically,
which is needed to establish a link with rare events (i.e., rogue waves), remains an
open question. Excitation of an isolated rogue wave in a variety of situations is
one of the developing areas of research [56-58]. A recently coined phrase,
‘deterministic rogue wave’, stresses this aspect of study [59, 60].

When excited from special initial conditions, we can expect excitation of
higher-order rogue wave structures [61-63] described by the higher-order rational
solutions of the nonlinear Schrodinger equation [64—69] or its extensions such as
the Hirota equation [70-72], Sasa—Satsuma equation [73], the set of coupled
nonlinear Schrédinger equations [60, 74—76] and a variety of other
equations [77-85]. When the equation is not integrable, approximate solutions in
the form of rogue waves can also be found [86].

An interesting mathematical result from these studies is the prediction of
circular ‘atomic-like’ structures [87, 88] that still need detailed physical
explanations and deserve experimental verification. An optical setup would be an
ideal environment for these observations. Generally, multi-parameter higher-order
rogue wave solutions can be revealed in a variety of other regular shapes [89, 90].
In particular, triangular rogue wave cascades [91] can be observed using
higher-order modulation instability effects [92]. Rogue waves have also been
studied in discrete structures [93]. An array of optical waveguides is one example
of their application [94].

A further analogy with those ocean rogue waves that appear from a chaotic
wave field comes from the notion of ‘optical turbulence’. Wave turbulence is a
classical nonlinear phenomenon that is observed in a variety of physical systems.
Wave turbulence theory deals with the statistical behaviour of a large number of
weakly interacting waves with random phases [95]. In optics, turbulent-type
interactions between a very large number of cavity modes may be responsible for
some observable characteristics of Raman fibre lasers [96-98], such as spectral
broadening of the radiation that is generated. There are several studies stressing
this aspect of optical rogue wave generation [47, 99-101].

In systems with an external pump, such as lasers, the models are again
different. Individual pulses are amplified by a pump and simultaneously the
number of them in the cavity increases. Depending on the type of mutual
interaction between the pulses, they tend to bunch into a group, or spread across
the whole cavity [26]. If bunching takes place, the solitons collide and reveal
higher amplitudes at the time of collision. Multiple collisions may increase the
amplitude of output pulses to the size of a rogue wave that is well above the
average [8, 27]. As dynamical systems with gain and loss are known as
‘dissipative systems’, extreme pulses generated in these systems have been
dubbed ‘dissipative rogue waves’ [24].

A signature of rogue waves is their probability of occurrence, which is larger
than expected from standard Gaussian statistical models [2, 22, 102—107]. The
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overall impact and significance of occurrence of such high amplitude waves are
determined by the nature of the physical system in which they occur. For
example, oceanic rogue waves are infamous for their potential to destroy or
damage vessels. On the other hand, optical rogue waves have already been
suggested for applications in enhancing supercontinuum generation and have
elucidated key aspects of nonlinear dynamical processes, as described above.

In recent studies, complete single-shot spectra have been measured at
megahertz rates [16]. The large volume of data has revealed the existence of
emergent behaviour in modulation instability [16] and yielded new insights into
noise-driven supercontinuum generation [18]. The technique has also been used
to generate higher-order statistical moments of the chaotic spectral
fluctuations [108]. It is interesting to consider that, when the number of statistical
realizations becomes large, even Gaussian statistics can provide some probability
of occurrence for events with atypical amplitudes.

A signature feature of rogue waves is their anomalously large amplitudes. They
involve intensities when nonlinear properties of materials play a significant role.
However, when considering chaotic wave fields and probabilities of the highest
amplitudes in two-dimensional patterns, linear mechanisms can also be taken into
account [109]. Another example comes from signal streams in optical
communication links. As was first shown in [110], and then further elaborated in
the following discussion [111, 112], waves with amplitudes much larger than the
average level can be observed during a short period of time in purely linear
propagation regimes in optical fibre systems. Large broadening of short optical
pulses due to fibre dispersion leads to strong bit-overlapping in data streams,
resulting in statistical deviations of local power from the average level. This linear
effect, leading to the random appearance of high amplitude waves, is routinely
observed in wireless and optical communications and can have a direct impact on
system performance.

The notion of rogue waves has lately expanded to many fields in science [1].
Careful studies on small scales may help to better understand rogue waves in the
ocean. The analogy is mainly based on similar equations used to model rogue
waves in various fields, including waves in the open ocean. However, specific
features of waves in a laboratory also allow them to be considered as individual
new directions in science. It would be hard to cover all these directions in a single
volume. Nevertheless, the papers presented in this special issue present a wide
range of topics. Below, we briefly introduce each of these works.

The paper by DeVore et al [113] revisits recent work on the nonlinear
dynamics of the generation of extreme optical events in silicon waveguides. The
authors show that the underlying processes, namely modulation instability and
stimulated Raman scattering, reshape normally distributed initial conditions into
states with skewed output statistics with properties that can be tailored by
controlling experimental variables. An important observation made by the authors
is the fundamental difference between contributions caused by modulation
instability and stimulated Raman scattering.

The manuscript presented by Wabnitz [114] stresses deep analogies between
optical and ocean nonlinear waves. The term ‘optical tsunamis’ introduced be the
author is a direct consequence of this analogy. He presents exact Riemann wave
solutions of optical shallow water equations and shows that they agree
remarkably well with the numerical solutions of the nonlinear Schrodinger
equation. He also reveals that extreme wave events or optical tsunamis may be
generated in dispersion-tapered fibres in the presence of higher-order dispersion.

The paper ‘Electromagnetic rogue waves in beam—plasma interactions’ [115],
written by Veldes et al, presents the results of an investigation into the occurrence
of rogue waves associated with electromagnetic pulse propagation interacting
with a plasma. The authors solve the fluid-Maxwell equations which describe
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weakly nonlinear, circularly polarized, electromagnetic pulses in magnetized
plasmas. Various solutions are presented as potential candidates for modelling
rogue waves in beam—plasma interactions.

An experimental paper on optical rogue waves in an all-solid-state laser with a
saturable absorber [116], by Bonazzola et al, stresses the importance of spatial
effects. The authors study the features of the optical rogue waves observed in an
all-solid-state Cr:YAG 4 Nd:YVO4, passively O-switched, laser. The extreme
events appear as isolated pulses of extraordinary intensity during the chaotic
regime of this laser. Interestingly, existing standard laser models fail to predict
rogue waves. The authors have found that extreme pulses are observed only when
there are high values of the Fresnel number of the laser cavity and the embedding
dimension of the attractor reconstructed from the experimental time series.

The work of Lecaplain et al [117] provides an extensive study of the
experimental conditions under which dissipative rogue waves, generated in a laser
cavity, can be detected. The authors have found that rogue waves originate from
the nonlinear interactions of bunched chaotic pulses that propagate in a fibre laser
cavity. They appear as rare events of high optical intensity. The crucial influence
of the electrical detection bandwidth is one of the important observations in this
paper.

Bandelow et al study the solutions of Sasa—Satsuma equation that start from a
continuous wave field [118]. This equation contains three terms that are important
for wave propagation in optical fibres. These are the third-order linear dispersion,
a higher-order nonlinear dispersion and the Raman effect. In the case of arbitrary
coefficients for each term, the only way to find solutions of the equation is
numerical modelling. For the Sasa—Satsuma equation, the coefficients have to be
related in a special way. Despite this serious restriction, having analytic solutions,
even in special cases, can be quite helpful in building knowledge related to some
of the features of short-pulse propagation in optical fibres. Such an analytic rogue
wave solution is an important case.

When the coefficients in the NLSE with the above-mentioned terms are
arbitrary, analytic studies can be based on various approximations. One example
of such a study is the paper by Ankiewicz et al [119]. The authors show that a
rogue wave solution of the nonlinear Schrédinger equation (NLSE) can survive
even-parity perturbations of the equation, such as the addition of a quintic term
and fourth-order dispersion. They present a solution which is accurate to the first
order for such a perturbation.

The paper on rogue waves and related solutions of single and coupled
Ablowitz—Ladik and nonlinear Schrédinger equations by Ankiewicz et al [120]
provides a simple technique for finding the correspondence between the solutions
of Ablowitz—Ladik and nonlinear Schrédinger equations. Even though they
belong to different classes, in that one is continuous and one is discrete, there are
matching solutions. Several examples are presented, including the rogue wave
solutions. This technique is also extended to the case of coupled Ablowitz—Ladik
and Manakov equations.

The authors of [121] present a numerical study devoted to generation of
extreme events in lumped Raman fibre amplifiers. They analyse the evolution of
signals, taking into account cross-correlations, the spectra obtained and
probability density functions for high-energy pulses, in addition to exploring their
phase evolution.

Bludov et al [122] study the effect of modulational instability of a continuous
wave and the subsequent generation and evolution of deterministic rogue waves
in a parity-time (PT)-symmetric system of linearly coupled nonlinear Schrédinger
equations. This system describes a Kerr-nonlinear optical coupler with mutually
balanced gain and loss in its cores. In addition to the linear coupling, the cores are
also coupled through a cross-phase-modulation term. The authors demonstrate
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that the focusing cross-phase-modulation interaction results in partial
stabilization of the background wave, together with the Peregrine soliton. The
stability region is found for PT-symmetric and antisymmetric bright solitons, with
the latter presented in analytical form.

Kedziora et al [123] investigate the phase profiles of rogue wave solutions of
the nonlinear Schrodinger equation. The authors focus specifically on the
second-order rogue wave, in various forms, and extrapolate the results for
higher-order structures. They show that the phase profile for any structure in the
rogue wave hierarchy can be determined by examining phase bifurcations marked
by zero-amplitude troughs.

Yan and Dai [124] consider self-similar optical rogue wave solutions and
interactions for the generalized higher-order nonlinear Schrédinger (HONLS)
equation with space- and time-modulated parameters. He presents a similarity
transformation to reduce the generalized HONLS equation to the higher-order
integrable Hirota equation with constant coefficients. In this way, he relates exact
solutions of the generalized HONLS equation to the solutions of the integrable
higher-order Hirota equation. He is able to generate self-similar rogue wave
solutions of the HONLS equation by using the two lowest-order rational solutions
of the higher-order Hirota equation.

As we can see from this short introduction, work on rogue waves is a dynamic
area of research. This special issue mainly concentrates on optics. Nevertheless, it
gives the flavour of the present state of the art on the subject of ‘rogue waves’. As
such, it is hoped that it will accelerate further studies in this important area of
research.
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