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We use advanced statistical tools of time-series analysis to characterize the dynamical complexity of the
transition to optical wave turbulence in a fiber laser. Ordinal analysis and the horizontal visibility graph
applied to the experimentally measured laser output intensity reveal the presence of temporal correlations
during the transition from the laminar to the turbulent lasing regimes. Both methods unveil coherent
structures with well-defined time scales and strong correlations both, in the timing of the laser pulses and in
their peak intensities. Our approach is generic and may be used in other complex systems that undergo
similar transitions involving the generation of extreme fluctuations.
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Fiber lasers are important practical devices that represent
complex nonlinear systems with many degrees of freedom
[1-4]. Typically, the output of a fiber laser involves
nonlinear interactions of millions of longitudinal cavity
modes in regimes far from thermal equilibrium [5]. In
general, wave dynamics in fiber lasers is highly complex, as
in other optical wave turbulence systems [6,7]. Though the
underlying physical effect, nonlinear four-wave mixing, is
purely deterministic and well understood, it is also well
known that due to a huge number of nonlinearly interacting
elementary modes (up to hundreds of millions) a direct
dynamical description is not fully adequate in this problem
(see, e.g., Refs. [6-8] and references therein), and statistical
tools, such as entropy and complexity measures should be
used to characterize the complex fluctuations in the
generated output signals. Within this framework of wave
turbulence, the role of “temperature” is played by optical
noise that occurs in the gain medium, which in fiber lasers
leads to an effective “nonlinear noise” due to four-wave-
mixing.

Recently, the analogy between hydrodynamic transition
to turbulence and change of operational regimes in fiber
lasers has been studied experimentally and theoretically [8].
Such transition, being a relevant example of a phase
transition in a 1D physical system, was shown to be
accompanied by the occurrence of coherent spatiotemporal
structures.

In this work we address an important question relevant to
practical identification of such structures: are there under-
lying correlations and/or specific time scales in the easily
measurable intensity fluctuations of laser radiation? In
order to investigate this issue we use two nonlinear analysis
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tools: ordinal analysis [9] and the horizontal visibility graph
[10]. Our motivation is that these methods have been
widely used to analyze the observed output signals of
complex systems. They have been able to provide new
information, such as the identification of frequent and/or
missing patterns in the data, the classification of different
behaviors, the characterization of deterministic and sto-
chastic events, etc. [11-19]. Here we show that they both
provide consistent information, allowing us to clearly
identify the presence of long-range temporal correlations
in the experimentally measured laser output intensity.

In our experiments, we measure an output temporal
intensity dynamics of a quasi-cw Raman fiber laser formed
of 1 km of normal dispersion fiber placed between two fiber
Bragg gratings acting as cavity mirrors [8]. State-of-the-art
experimental capabilities allowed us to register extremely
long time traces with total number of intensity data points of
50 x 10°. Taking into account the discretization time of
12.5 ps, the intensity dynamics over 625 us could be
captured. In order to be able to compare among time series
recorded at different pump power, each time series is
normalized to have zero mean and unit variance.
Depending on power, the generation regime can be consid-
ered as “laminar” or “turbulent” [8]. The transition occurs at
pump power 0.9 W (see Ref. [8] for details). Despite the
radically different coherence properties of radiation in these
two regimes, the output intensity /(¢) looks similar and
irregular at all powers, as seen in Fig. 1(a), with typical
intensity probability distribution function (PDF) of intensity
values, p[I(t)], shown on Fig. 1(b).

As a starting step of our analysis, we consider only the
“extreme” intensity fluctuations by selecting an adequate
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FIG. 1. (a) Stochastic dynamics of a quasi-cw Raman fiber
laser: intensity time series measured at pump power 0.9 W (the
dots indicate the peak values above a threshold, indicated with a
dashed line, and the inset displays a detail). (b) PDF of the
intensity values. (c) Schematic representation of the two analysis
methods: the values {x;} in a time series are represented with
vertical bars, the ordinal patterns formed by (x;, x;,;,x; o) are
indicated in red, the links in horizontal visibility graph are
indicated with arrows, and the numbers indicate the degree
(the number of links) of each data point (graph node). (d) Number
of intensity peaks vs the pump power for various thresholds
(threshold values are shown by different colors).

threshold, and filter out the intensity peaks whose height is
below the threshold, as shown in Fig. 1(a). Thus, we keep a
sequence of intensity peaks heights, {/,,,;}, which are
above the threshold, and also consider the sequence of time
intervals between these peaks. In this way, we generate two
new data sets from the experimentally measured intensity
dynamics. Naturally, the precise definition of “extreme”
fluctuations depends on the system under investigation. In
hydrodynamics, when the height of a wave is larger by a
factor of 3 than average, this wave is considered extreme,
but in optics, fluctuations of much higher amplitudes
compared to the average can often be observed. Here,
because each time series is normalized to zero mean and
unit variance, the thresholds used are in units of the
standard deviation o.

The number of peaks found in intensity dynamics
measured at different pump power level is shown on
Fig. 1(d) depending on the threshold value. The transition
between the laminar and turbulent regimes is clearly
detected at 0.9 W. In the following we analyze only the
intensity peaks that are above 20. As shown in the
Supplemental Material [20], our results are robust for other
threshold choices. As each local intensity peak has also a
time instant 7'; at which it occurs, we generate another data

set: a sequence of time intervals between local intensity
peaks {AT,}.

The methods used to analyze the data are represented
schematically in Fig. 1(c). Ordinal analysis [9] transforms a
time series {x;} (where {x;} is either the sequence of peak
heights {7,,,,;} or the sequence of time intervals between
peaks {AT;}) into a sequence of symbols (referred to as
ordinal patterns, OPs), by considering the order relation
among D values of the time series. For example, there are 2
different ordinary patterns of length 2: pattern “01” if x; <
x;;1 and pattern “10” if x; > x; ;. If D = 3, there are 6
possible patterns: x; < x;;; < x;4, gives “012) x;,, <
Xi11 < x; gives “210,” etc. The number of possible patterns
of the given length D is D!. In this way, a sequence of
patterns could be generated from the sequence of the peak
heights or from the sequence of time intervals between
the peaks.

After defining the sequence of patterns, one can calculate
the probability to find the given pattern in the data set, p;.
The entropy computed from their probabilities p; of occur-
rence in the time series, Spg = — Y p;log p;, known as
permutation entropy, has been shown to be an appropriated
measure of the complexity of a time series [9,12,13]. When
there are no serial correlations in the time series {x;}, then
all the patterns are equally probable and Spg ~ log D!. On
the contrary, when there are serial correlations, then the
OPs are not all equally probable, and the permutation
entropy will be Spg < log D!. In the following we refer to
the normalized entropy Spg/log D! as PE entropy. Thus,
with an appropriate choice of pattern length D, the OP
probabilities, and the PE entropy will capture the existence
of underlying correlations in the time series.

To verify independently the presence of correlations, we
also apply the HVG method [10] that converts a time series
{x;} into a graph by considering each data point x; as a
node. Any two nodes are connected if it is possible to trace
a horizontal line linking x; and x; not intersecting inter-
mediate data [see Fig. 1(c)]; mathematically, this means
that x; and x; are connected if x;, x; > x, foralli <n < j.
Note that this graph representation of the time series {x;}
takes into account both the order and the values of the data
points. Time series with different dynamics are mapped
into graphs that exhibit distinct topological structures [14].
The topology of a graph is characterized by the degree
distribution p(k) that is the probability that a node has &
links. Thus, the entropy of the degree distribution, Syyg =
—> pilogp, (in the following, referred to as HVG
entropy), is another complexity measure normalized here
to the entropy of Gaussian white noise [18] (see
Supplemental Material [20]).

The HVG method also allows us to analyze different
time scales by constructing the graph not from all the “raw”
data points, but from lagged data {x;,x; , X; 027, ...}

Both analysis methods share the common feature of
transforming the time series {x;} into a sequence of integer
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FIG. 2. Probabilities of ordinal patterns of length D = 3 vs the
pump power calculated from the sequence of (a) intensity peaks
and (b) time intervals between consecutive peaks. The error bars
are computed with a binomial test and the gray region indicates
probability values consistent with the uniform distribution (see
Supplemental Material [20] for details). PE entropy (c) and HVG
entropy (d) calculated from the sequence of intensity peaks,
original and shuffle data.

numbers, {k;} (in the OP case, k; € [1, D!] is the pattern
label: if O1, k; = 1; if 10, k; = 2, etc.; in the HVG case,
k; € [1, N — 1] is the degree of x;, with N being the number
of data points in the time series). But, while the OP method
requires the predefinition of the length of the pattern D, and
does not take into account the values of the data points, the
HVG method does not require to predefine an analysis
length, and considers both, the order relation and the actual
values of the data points.

Figures 2(a) and 2(b) display the probabilities of the six
patterns of length 3 calculated from the sequence of
intensity peaks and from the sequence of the time intervals,
respectively.

We observe that the variation of the probabilities with the
pump power captures the transition between two dynamical
regimes: below the transition the OPs are equally probable,
while during the transition from laminar to turbulent regime
their probabilities are different from equiprobability. We
also note that the patterns calculated from the intensity
peaks capture more determinism than those computed from
the time intervals [notice the difference in the vertical scales
of Figs. 2(a) and 2(b)]. This indicates that the timing of the
high intensity peaks is more random than their peak values.

The PE entropy Fig. 2(c) quantifies this effect by
decreasing sharply at the transition power. A similar
behavior is observed when computing the HVG entropy,
Fig. 2(d). In both cases, the entropy values computed from
surrogate data obtained by shuffling the values of the data
points in the original time series, are also indicated. One
can observe that, as expected, the transition is not detected
in the shuffle data. In Fig. 2(c) the PE entropy was

computed from D = 3 OPs; similar plots were obtained
with D € [2-6] (see Supplemental Material [20]).

To investigate the presence of specific time-scales in the
dynamics, we analyze the lagged time series, i.e., the
sequence of {I;,I; ., I; s, ...}, where 7 is the lag time. We
begin by considering the case 7 =1 (i.e., we analyze all
data points). Figure 3(a) displays the PE entropy and the
HVG entropy vs the pump power, and same behavior is
seen in both entropies: there is a clear transition at pump
power 0.9 W, where both entropies smoothly decrease. It is
also observed that for the highest pump power, both
entropies increase again. This reveals that during the
transition there is an increase in the “ordering” of con-
secutive intensity values (that is captured by both entropies,
which decrease), but for the highest pump power the trend
reverses and the disorder increases. In contrast, the entropy
computed in the conventional way and referred as PDF
entropy [i.e., the entropy calculated from the intensity
PDFs of the initial intensity dynamics, I(#)] does not
capture this behavior: as it can be seen in Fig. 3(b), after
the transition the PDF entropy monotonically decreases
with the pump power. Thus, the PE and HVG entropies
provide consistent information, which complements that
gained from the standard PDF entropy. The good agree-
ment between the two entropies, also seen in Figs. 2(c) and
2(d), is remarkable because the two methods transform a
time series into a sequence of integer numbers by using
very different encoding rules.

By varying the value of the lag time 7, i.e., by taking into
account not all points in data sets, but every second (z = 2)
point, every third (z = 3) point, etc., we are able to identify
a specific oscillation time scale in the intensity time-series
during the transition. The PE entropy vs 7 for pump powers
below (0.85 W), at (0.90 W), and above (0.95 W) the
transition is displayed in Fig. 4(a). Here we can notice that,
at the transition, there are specific lags for which the PE
entropy decreases sharply. Similar results were obtained
with the HVG entropy.

The sharp minima indicates that, for pump power 0.90 W
and for specific lags, 6 different patterns of length D =3
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FIG. 3. (a) Permutation entropy (black) and HVG entropy (red)
vs the pump power. Calculations are performed with D = 3 OPs.
(b) PDF entropy calculated from the distribution of intensity
values.
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FIG. 4. (a) Permutation entropy vs the lag time before (0.85), at
(0.9), and after (0.95 W) the transition to optical turbulence. Error
bars were computed by dividing the data in 10 windows and
computing the PE entropy in each window. (b) Autocorrelation
function vs lag, for the same pump powers as panel (a).

are not all equally probable, and thus, there are serial
correlations in the sequence of lagged intensity values. To
explore the length of such correlations, we computed the
PE entropy using longer ordinary patterns (D =4 and
D = 6) and found that the minima were more pronounced,
revealing the existence of long serial correlations. These
correlations are not captured by the classical autocorrela-
tion function shown in Fig. 4(b) for comparison purposes,
which displays only a smooth variation with z.

To investigate the nature of these correlations we plot on
Fig. 5(a) how the probabilities of 6 different ordinary
patterns of length D = 3 depend on the lag time. We note a
periodic alternation in which 012 and 210 became the more
probable or the less probable patterns. The probabilities of
the other four patterns are similar (no clear clusters are

0.25
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FIG. 5. (a) Probabilities of the ordinary patterns of length
D = 3 vs lag time 7. (b)—(d) Spatiotemporal structures identified
with the specific lags indicated with arrows in panel (a). The color
scale indicates the value of /; with i = nz 4 j and 7 = 396, 431,
and 496 in units of the sampling time. The pump power is 0.9 W.

seen). The lag values for which 012 and 210 are less
probable correspond, as expected, to the lag values where
the autocorrelation function is minimum (and negative).
However, unexpectedly, the lag values for which 012 and
210 are more probable, do not correspond to the maxima of
the autocorrelation, and moreover, for the lag values where
the autocorrelation is maxima, all six ordinary patterns have
similar probabilities. These observations suggest that
ordinal analysis identifies subtle correlations in the order-
ing of data points, which are not seen by the standard
autocorrelation function, that measures correlations in the
values of the data points.

These “order correlations” result in different types of
spatiotemporal patterns. Let us recall that the intensity time
series can be represented as a spatiotemporal plot, by
choosing an appropriate characteristic time scale [21-23].
Here we apply this concept and choose specific lag times
defined from Fig. 5(a) (shown by arrows) to be used as
characteristic time scales. Figures 5(b)-5(d) display exam-
ples with lags such that patterns 012 and 210 are as
probable [Fig. 5(b)], more probable [Fig. 5(c)], and less
probable [Fig. 5(d)] than the other four patterns. We can see
that these spatiotemporal dynamics of patterns display clear
and different coherent structures. These observations can be
useful for confronting the predictions of state-of-the-art
laser models with empirical data, and the theoretical studies
could provide insight into the physical mechanisms under-
lying these correlations.

To summarize, by applying two independent tools of
nonlinear time-series analysis we have uncovered long-
range temporal correlations in the intensity output of a fiber
laser during the transition to a wave turbulence regime.
Output of laser radiation is easily measurable, making these
easily implementable methods useful and valuable tech-
niques for investigating coherent structures in complex
laser radiation. Both approaches can be applied to any high-
dimensional complex systems that undergo similar tran-
sitions accompanied by the generation of extreme
fluctuations.
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