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Abstract
We address the collective dynamics of a soliton train propagating in a medium
described by the nonlinear Schrödinger equation. Our approach uses the
reduction of train dynamics to the discrete complex Toda chain (CTC) model
for the evolution of parameters for each train constituent: such a simplification
allows one to carry out an approximate analysis of the dynamics of positions and
phases of individual interacting pulses. Here, we employ the CTC model to the
problem which has relevance to the field of fibre optics communications where
each binary digit of transmitted information is encoded via the phase difference
between the two adjacent solitons. Our goal is to elucidate different scenarios
of the train distortions and the subsequent information garbling caused solely
by the intersoliton interactions. First, we examine how the structure of a given
phase pattern affects the initial stage of the train dynamics and explain the
general mechanisms for the appearance of unstable collective soliton modes.
Then we further discuss the nonlinear regime concentrating on the dependence
of the Lax scattering matrix on the input phase distribution; this allows one
to classify typical features of the train evolution and determine the distance
where the soliton escapes from its slot. In both cases, we demonstrate deep
mathematical analogies with the classical theory of crystal lattice dynamics.

PACS numbers: 05.45.Yv, 42.81.Dp, 45.05.+x, 02.10.Yn

(Some figures may appear in colour only in the online journal)

1. Introduction

The nonlinear Schrodinger equation (NLSE) represents one of the most ubiquitous physical
models occurring when the effects of weak nonlinearity compete with the dispersion of a
narrow field envelope [1]. This equation is integrable by the inverse scattering transform
method [1, 2] and admits highly robust soliton solutions, which can propagate through the
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Figure 1. Example of the RZ-DPSK encoded train referring to {1 0 0 1 1 0} sequence of bits.

media without shape distortion. It is this property of the solitons which makes them good
candidates for the transmission of information in optical fibres (at least in low bit rate regimes
<10 Gb s−1 which is the present-day standard) [3].

Solitons can be used in a highly popular way of encoding an informational stream
frequently implemented in modern lightwave (optical) transmission lines which utilizes the
phase modulation of the carrying wave [4–6]. For the binary digital coding one can ascribe the
logical ‘unities’ to be encoded onto a π phase change between the adjacent pulses, whereas
logical ‘zeros’ to correspond to a zero phase shift. In the theory of information transmission
such a binary phase encoding is called the differential phase-shift-keying format, and we will
use the conventional abbreviation DPSK below to name our encoding scheme. In particular,
in the return-to-zero (RZ) DPSK format the information is encoded by the phase difference
between the two adjacent well-separated localized pulses [5, 6]: the key idea of this RZ DPSK
format is illustrated in figure 1.

For a fibre optical transmission channel, an arbitrary informational message can be
encoded using the RZ DPSK format as a sequence of localized pulses with correspondingly
chosen phase differences between the adjacent pulses (each taking values either 0 or π for
the binary format, see figure 1). The high-quality error-free transmission corresponds to the
ideal case when the pulses do not wander far from their initial positions staying inside their
assigned slots and do not change their phase differences significantly. There exists a multitude
of sources of signal distortion [4–7], and in this study, we will be concerned with one of them:
the information garbling caused by the intrachannel pulse interactions of separated pulses.
Such effects arise due to the mutual (relatively weak) overlap of the tails of pulses belonging to
adjacent slots: after a long propagation distance some of them will move far away from initial
positions and collide (or either drift off from the rest for a finite train). The phase differences
are also altering during the train propagation. In this paper, we propose a mathematical concept
for analysing how the initial distribution of bits (i.e. a given particular set of binary phases)
affects the dynamics of the whole pattern, in particular, the rates at which pulses converge
to/diverge from each other.

Clearly, the direct numerical modelling of large pulse trains has only a limited merit.
Firstly, it does not tell us much about the distortion rate for large sequences, and for each new
sequence one would have to run the simulation from scratch. Secondly, the number of possible
patterns grows as 2N , where N is the size of the pattern, and already for a relatively small
number of bits the computational time can become forbiddingly large. This is one of the reasons
why in practice only very short patterns are usually considered, while in the information theory,
one commonly operates with patterns as long as a few millions. However when pulses are
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localized and well separated, it is often possible to reduce the description from a system with
distributed parameters (like NLSE) to a simplified system of ODEs, i.e. a finite-dimensional
system: the latter describes the evolution of some particular parameters of individual pulses.
Such a simplified approach is often called the collective coordinate method [8]. In the case of
NLSE channel, the fundamental soliton solutions serve as phase-coded localized pulses used
for the transmission. For the particular choice of the soliton transmission format (i.e. for NLSE
solitons), this reduction to the collective coordinates can be proven to be asymptotically exact:
it can be done by means of the machinery of adiabatic soliton perturbation theory [9]. Then
under some additional assumptions imposed on the model parameters, these ODEs can be
further reduced to the integrable complex Toda chain (CTC) model [10–13] (see also papers
[14, 15]): the relevant details are briefly summarized in section 2. One can therefore hope that
the insight obtained in this paper by looking into the specific choice of soliton transmission
format can be helpful for considering the properties of arbitrary RZ-DPSK formats.

The effects of inter-soliton interaction eventually lead to the appearance of errors in the
bit stream. Let us note that although this study is driven primarily by the applications in fibre
optical communications, the mathematical approach used in the paper is rather generic and
valid for the description of a broad spectrum of physical problems referring to the complexes
of interacting solitons like e.g. the soliton trains of the modified NLSE [16] or the discrete
Ablowitz–Ladik chain [17]. Possible applications may also involve soliton (matter wave)
chains in the Bose–Einstein condensate [18], massive Thirring model [19] and to some extent
the multicomponent NLSE generalizations [20]. The underlying idea of the current work is
the application of the methods known from the theory of crystal lattice vibrations [21] (and
more generally, matrix perturbation theory [22, 23]) to studying the collective motion (modes)
of the interacting soliton train. The individual solitons then play the role of effective particles
coupled either elastically or nonelastically to the nearest neighbours via the tails of their field
distribution.

For the purposes of pattern transmission, it is often sufficient to consider only the initial
stage of the soliton train evolution, since at long distances the information gets completely
distorted by the interaction-induced pulse walk-off. Then it is sufficient to linearize the
aforementioned effective system of ODEs around the initial configuration which is, in turn,
determined by the input bit pattern. After the linearization, one ends up with a set of linear
differential–difference equations which are very similar to those of the theory of crystal lattice
dynamics. We address the general structure of these linearized equations and their solutions
in section 3. Analysing the eigenvalues of the emerging linear self-adjoint eigenproblem, one
can determine directly the properties of collective modes for the soliton lattice, (see also
the preliminary analysis of the problem in [24]). The eigenmode with the highest growth
increment can be used as an estimate for the overall rate of the train distortion and, hence
for the evaluation of the maximum error-free propagation distance. Note that the linearization
of the CTC model was already considered in [14], where, however, another source of the
system excitation (in-line noise) was studied. In section 3.2, we deal with the homogeneous
(marginal) input bit distributions, i.e. consider the patterns consisting of either pure ‘zeros’ or
‘unities’. For the former all nontrivial modes are unstable, while the latter case, alternatively,
appears to be linearly stable: in this sense these cases are the marginal scenarios for arbitrary
intermediate input bit patterns. The local deviations from the uniform pattern are considered
in section 4. There is a nice mathematical analogy between the instabilities induced by the
non-homogeneity of the pattern (i.e. the appearance of ‘zeros’ in the stream of pure ‘unities’)
and the appearance of localized defect modes in a nonuniform crystal lattice [21]. First, we
recall some pertinent elements of the matrix perturbation theory to obtain the expression for
the Green function of the inhomogeneous system, see section 4.1. Then in section 4.2, we
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apply this tool for finding the eigenvalues, instability increments and localization lengths of
the inhomogeneous patterns, and in section 4.4 provide some notes on generic bit patterns.
In section 5, we consider the case of a nonlinear dynamical regime for CTC and address the
properties of the Lax scattering matrix for the integrable CTC. By means of the non-Hermitian
generalization of the approach from sections 3 and 4, it is possible to study the eigenvalue
properties of the Lax matrix versus the input bit pattern. We utilize the form of the eigenvalue
distribution to classify the ensuing patterns [13] and provide some estimates for the length
scale of pattern corruption in dependence on the input sequence. Finally, in section 6, we
perform numerical simulations and present some direct applications of the results obtained
referring to characteristic distortion scales in dependence on the input phase distribution. The
findings are then summarized in the conclusion.

2. The model and problem statement

In this section, we briefly recall the necessary conditions for the CTC-model validity for a
NLSE soliton train [10–12], and then apply it specifically to the DPSK encoding format. As
mentioned in the introduction, the analogous treatment of soliton trains in other nonlinear
integrable models is possible as well [16].

The NLSE with constant anomalous dispersion written in dimensionless soliton units
reads as

∂Q

∂z
− i

2

∂2Q

∂t2
− i|Q|2Q = 0. (1)

Since we have the fibre optics applications in mind, the independent variable z (coordinate
along the length of the fibre) plays the role of time variable, and the variable t plays the
role of ‘space’ coordinate [3]. Naturally one can easily recast the results of this paper to
conventional NLSE notations (with the reversed meaning of independent variables) used in
other applications.

We deal with the input having the form of the sum (train) of separated fundamental NLSE
solitons:

Q(t; 0) =
N∑

n=0

2νn eiφn(t)

cosh[2νn(t − ξn)]
, (2)

where

φn(t) = 2μn(t − ξn) + δn,

and δn, ξn, 2νn and 2μn are the phase, position, amplitude and frequency (velocity) of the nth
individual soliton from the train, respectively, with N + 1 being the total number of solitons in
the train. The weak exponential overlap between the adjacent solitons, exp[−νn(ξn+1 − ξn)],
is supposed to be the small parameter of the problem, i.e. the solitons are well separated.

For our task, we assume that the initial amplitudes and velocities of the individual solitons
are identical: ν0

n ≡ ν, μ0
n ≡ μ. Then for simplicity we will work in the reference frame

attached to the train and set μ = 0. After that, we introduce the complex quantity qn as

qn = −2νξn(z) + 2n ln 2ν + i[nπ − δn(z)], (3)

which involves the individual soliton position, ξn, and phase, δn. The z-dependences of the
soliton phase and position for the case of a single unperturbed soliton have the form

δn(z) = 2
∫ z

0
ν2

n dz′ + δ0
n, ξn(z) = ξ 0

n , (4)
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where δ0
n and ξ 0

n are the corresponding initial values (soliton velocity is set to zero). So one has
a ‘fast’ homogeneous rotation of the phase due to the self-phase modulation (the term ∼ ν2z),
which is, however, irrelevant for the DPSK encoding since we operate with the relative phase
differences only (at least when the amplitude distortion can be neglected). The increment
between the two adjacent pulses is given by

qn+1 − qn = −2ν(ξn+1 − ξn) + 2 ln 2ν + i[π − (δn+1 − δn)]. (5)

The information encoded into the nth bit enters via the phase difference: δn+1 − δn.
The simplified dynamics of the train can be described by means of the integrable CTC

(see [10–12, 16] for additional details):

d2qn

dz2
= eqn+1−qn − eqn−qn−1 , n = 0, . . . , N, (6)

where we have applied the renormalization: 4νz → z. The conditions for the applicability of
the CTC (6) match the requirements imposed by the transmission needs. First, the relative
deviation of velocities and amplitudes of individual solitons in the input form (2) must be small
(these are actually set to zero in our analysis). Secondly, the solitons must be well separated
and distinguishable, and hence the aforementioned parameter exp[−νn(ξn+1 − ξn)] involving
the soliton amplitude ν and the intersoliton separation, ξn+1 − ξn is small as well. Then the
dynamics of soliton positions and phases can be described by the CTC (6) with a good accuracy
[10–12, 16]. We will assume the finiteness of the train, so that in equation (6) the subindex
counting the solitons, n, runs from 0 to N. Since there are no solitons with numbers n = −1
and n = N+1, the following boundary conditions are imposed: exp(−q−1) = exp(qN+1) ≡ 0.

The dynamics of the complex variables qn provides the information about the positions
of individual solitons (via its real part) and their phases (via its imaginary part). Studying
the evolution of qn, one can describe the interaction-induced changes (so-called jitters) of the
pulse position and phase that are the principal effects leading to the corruption of encoded
information.

3. The initial stage of the instability: linear evolution of the DPSK-encoded pulse train

In this section, we are interested in the initial stages of propagation where the information is
still not significantly corrupted, and therefore the dynamical properties can be analysed via
the CTC system linearized around the initial input values of qn. This approach is meaningful
for studying the onset of instabilities: one can find the growth increments, symmetry and
activation features of the unstable modes.

3.1. General structure of the linearized dynamical equations

Note that to encode N bits, we need N phase differences, i.e. N + 1 soliton pulses. We will
assume here that initially all solitons are equidistant with the common distance r = ξ 0

n+1 − ξ 0
n

and have the same amplitude ν.
To study the initial stage of the instability, we linearize the system (6) around the initial

configuration (labelled with the superscript ‘0’):

qn(z) = q0
n + wn(z), wn � q0

n. (7)

Then the initial differences are

q0
n+1 − q0

n = −2νr + 2 ln 2ν + i[π − �1δn], n = 0, . . . , N − 1,
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where we have introduced the first forward difference operator, �1 δn ≡ δn+1 − δn. It will
also be convenient to designate different bit patterns as {...}N , where the interior of the braces
displays a particular bit sequence, and subscript identifies the total number of bits.

For an arbitrary DPSK-encoded input we have (i) �1δn = 0 for a ‘zero’ bit number
n + 1 and (ii) �1δn = π for a logical ‘unity’ at the same position. One can write this as
�1δn = π bn+1, where bn+1 is the transmitted bit value, bn+1 = 0, 1. We define the universal
z-scale, a = 2 ν exp(−rν), and use it to rescale the distance again: the eventual scaling now is
4νaz → z.

After the linearization of equation (6) with respect to wn(z), we arrive at the set of
inhomogeneous equations, which we write in the form

d2w
dz2

= 	̂w + f, (8)

where the bold symbols stand for a vector notation and an additional hat indicates a matrix.
The (N + 1) × (N + 1) matrix 	̂ is real, symmetric and tridiagonal. Its elements depend on
the values bn of transmitted bit pattern, {b1, . . . , bN}N , as follows:

	̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−σ1 σ1 0 . . . 0 0 0
σ1 −(σ1 + σ2) σ2 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . σN−1 −(σN−1 + σN ) σN

0 0 0 . . . 0 σN −σN

⎞
⎟⎟⎟⎟⎟⎟⎠ , (9)

where we have introduced the bit indicator quantities σn as

σn = (−1)1+bn , n = 1, . . . , N. (10)

The driving vector f (containing N + 1 elements) is

f = [σ1, σ2 − σ1, σ3 − σ2, . . . , σN − σN−1, −σN]T . (11)

The initial conditions (ICs) for equations (8) can be obtained by recalling equations (3) and
(4) as follows:

w(0) = 0, w′(0) = −2i
ν2

4νa
1 = −iα1. (12)

Here, α = exp(rν)/4, and 1 = [1, 1, ..., 1]T is the vector of dimension N + 1 containing only
unities. Because exp(−νr) is a small parameter, α is large, while in equations (8) all rescaled
coefficients and the inhomogeneity term are of the order of unity.

Now one can find the set of normalized orthogonal (real) eigenvectors vk and
corresponding eigenvalues λk of 	̂. The solution of the system (8) and (12) can be written as
an eigenvector expansion:

w =
∑

k

Uk(z)vk.

The general solution of equations (8) and (12) is the sum of two partial ones,

w = wi + w f =
∑

k

[
Ui

k(z) + U f
k (z)

]
vk, (13)

where wi satisfies the homogeneous reduction of equation (8) with inhomogeneous ICs (12),
whereas w f satisfies the inhomogeneous equation (8) but with zero ICs. We start with the
former. The equations and ICs for the coefficients Uk(z) are

d2Ui
k(z)

dz2
= λkU

i
k(z),

Ui
k(0) = 0,

dUi
k(0)

dz
= αk,

(14)
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where αk is the projection of the initial derivative onto the corresponding eigenvector:
αk = w′(0) · vk. Introducing the notations γk = √|λk|, we can see that for the particular
solution satisfying the initial condition only, we have

Ui
k(z) = αkuk(z), uk(z) =

⎧⎪⎨
⎪⎩

γ −1
k sin γkz for λk < 0,

γ −1
k sinh γkz for λk > 0,

z for λk = 0.

(15)

For any bit pattern there always exists a zero eigenvalue corresponding to the uniform phase
rotation, see equation (4), which can be easily compensated and will be discarded in what
follows. In the theory of crystal lattice dynamics such a common uniform displacement of
atoms is removed by imposing an additional constraint on w.

The sum of the elements in each row of matrix 	̂ is zero. Therefore the sum of all
elements of each of its nontrivial eigenvectors (corresponding to non-zero eigenvalues), vk, is
zero as well. This means that the projections αk of the initial conditions onto the nontrivial
eigenvectors are always zero, i.e. the vector of ICs, equation (12), is orthogonal to these
eigenvectors: αk = 0 for k �= 0. Hence, the ICs (12) can only excite a uniform phase drift of
the soliton train mentioned above.

Now we turn to the particular solution of the inhomogeneous problem. Introducing the
projections fk = f · vk, we obtain the equation defining the functions U f

k (z):

d2U f
k (z)

dz2
= λkU

f
k (z) + fk,

U f
k (0) = 0,

dU f
k (0)

dz
= 0.

(16)

Its solution is

U f
k (z) = fk

∫ z

0
uk(z − τ ) dτ, (17)

with uk defined by (15).
For the subsequent analysis, we will also need the Green function for the matrix 	̂ defined

as

Ĝ(λ) ≡ (λÎ − 	̂)−1. (18)

Its matrix elements are given as

Gnn′ (λ) =
N∑

k=0

vn
k vn′

k

λ − λk
, (19)

where vn
k and vn′

k are the nth and n′th elements of the eigenvector vk. The poles of the trace of
the Green function define the spectrum of the system.

At the end of this section, it is pertinent to note that while the ICs (12) are complex,
the driving vector (11) is, in contrast, purely real. This means that only the real part of the
general solution (13) can be exited, and according to the definition of qn, equation (3), during
this initial stage we have only the change of soliton positions (timing jitters) and no phase
alternations take place (except for the irrelevant homogeneous shift). So, the changes of the
phase differences (phase jitters) are only exited indirectly via the nonlinear corrections from
the initial CTC (6), or due to the deviation of the dynamics described by the simplified CTC
model from the full dynamics of soliton train in the NLSE, equation (1).

7



J. Phys. A: Math. Theor. 45 (2012) 025202 J E Prilepsky et al

3.2. Uniform patterns: (i) pure zeros, {0}N, and (ii) pure unities, {1}N

Let us consider two very specific types of bit patterns for which the complete analytical
expressions can be obtained, namely the patterns consisting of only zeros {0}N and those
consisting of only unities, {1}N (see also [14, 15]).

Case (i). For the configuration {0}N , we have for the bit indicators: σn = −1 for each site,
and equations (8) transform into

− d2wn

dz2
= �2wn, n = 1, . . . , N − 1, (20)

where �2 is the second difference (discrete Laplace operator), �2wn = wn+1 + wn−1 − 2wn.
The equations for the boundary sites 0 and N are

− d2w0

dz2
= 1 + w1 − w0, −d2wN

dz2
= −1 + wN−1 − wN . (21)

Equations (20) correspond to the semi-discrete limit of an elliptic second-order PDE.
The presence of the boundary brings about the appearance of a nonzero driving term in
equations (21) even when the bit pattern is uniform. The homogeneous part of boundary
equations (21) corresponds to the free boundary sites, so the translational mode with zero
eigenvalue exists as described in the previous subsection.

The matrix 	̂ defined by equations (20) and homogeneous part of equations (21), has a
simple form, characteristic for the dynamics of an atomic crystal lattice. One can readily find
its normalized eigenvectors

vn
k =

⎧⎪⎪⎨
⎪⎪⎩

√
2

N + 1
cos[ρk(n + 1/2)], k = 1, . . . , N

1√
N + 1

, k = 0
(22)

and eigenvalues

λk = γ 2
k = 2(1 − cos ρk) � 0, (23)

where ρk = π k/(N + 1). Even k correspond to spatially symmetric eigenvectors while odd k
correspond to an antisymmetric distribution.

We see that all nontrivial eigenmodes of the pattern {0}N are unstable, with the largest
growth exponent located near the boundary of the Brillouin zone:

γN =
√

2 + 2 cos
π

N + 1
,

so that γN ≈ 2 for N 
 1.
Case (ii). For the pure logical ‘unities’, {1}N , we have σn = 1, and this case is tantamount

to altering the signs on the lhs of equations (20) and (21):

d2wn

dz2
= �2wn, (24)

d2w0

dz2
= 1 + w1 − w0,

d2wN

dz2
= −1 + wN−1 − wN . (25)

Now equation (24) is of hyperbolic type and coincides exactly with the system governing the
phonon dynamics in a uniform 1D crystal lattice [21]. Since this case differs from the previous
one only by the sign of the matrix 	̂, the eigenvalues now change their sign:

λk = −2(1 − cos ρk) � 0, (26)

8
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(a) (b)

(c) (d )

Figure 2. Eigenvalue distributions for several typical patterns. (a) The spectrum for the 32 bit
pattern corresponding to a single ‘zero’ inside the uniform stream of ‘unities’; here we placed
‘zero’ at the position s + 1 = 16. The localized eigenvector for the unstable mode of the same
pattern is plotted in the next panel (b). Panel (c) corresponds to the 512 bit pattern of ‘unities’ where
every fifth bit was periodically replaced by a ‘zero’. The last panel (d) is a particular realization
of the spectrum of a random 32 bit pattern (with equal probability to find either ‘zero’ or ‘unity’
at each position). The same realization is also considered in sections 5.4 and 6. In the panels (a),
(c) and (d), the (blue) dashed lines correspond to the spectra of absolutely stable {1}32 (below) and
absolutely unstable {0}32 (above) patterns, see equations (23) and (26).

while the eigenvectors remain the same, see equation (22). From (15), it follows that all
nontrivial eigenmodes uk are now non-growing oscillating functions. In the corresponding
panels of figure 2, we depict the ‘marginal’ dependences (23) and (26) by the dashed lines.
We note that a similar analysis of linear excitations for homogeneous CTC was carried out in
[14] for a different source of driving and periodical boundary conditions. Our expressions for
the spectral dependences (23), (26) and the eigenvectors (22) correspond to the Fourier series
expansions of paper [14] in the limit of a large system.

For both uniform patterns {b}N , where b is either ‘0’ or ‘1’, the projection of the driving
term, f, onto the eigenvectors of 	̂ is

fk = f · vk = (−1)1+b 2
√

2√
N + 1

sin
π k

2
sin

π k N

2(N + 1)
. (27)

One can see that since the boundary forcing f is antisymmetric, only antisymmetric modes
with odd k are excited.

Finally, the Green function for both uniform patterns (we label it with the superscript ‘0’)
is

G0
nn′ (λ) = 1

N + 1

1

λ
+ 2

N + 1

N∑
k=1

cos[ρk(n + 1/2)] cos[ρk(n′ + 1/2)]

λ − λk
. (28)

9
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We can simplify equation (28) by assuming that the number of bits, N, is large so one may use
integration to evaluate the sum for, say, a stable pattern of ‘unities’ with the spectrum (26):

G0
nn′ (λ) ≈ 2

π

∫ π

0
dρ

cos[ρ (n + 1/2)] cos[ρ (n′ + 1/2)]

λ + 2 − 2 cos ρ

= 1√
λ(4 + λ)

(F(λ)n+n′+1 + F(λ)|n−n′|), (29)

where

F(λ) = λ + 2 − √
λ(4 + λ)

2
, (30)

and λ lies outside the spectral band [−4, 0]. In fact, the limit of equation (29) corresponds to
a semi-infinite system, where the site positions n and n′ are counted from the edge.

Let us now calculate the relative spreading for the stable pattern, {1}N , at the initial stage
of the evolution where γkz � 1. For such values of z from equation (17), we have U f

k (z) ∼ z2,
and fk = (δ0n + δNn)vk. Due to the orthogonality of eigenvectors, the nonzero values of w are

w0(z) = −wN (z) = z2/2, (31)

and the linear spreading of the boundary sites is ξ0(z) = ξ0 − z2/2, ξN (z) = ξN + z2/2 (in the
renormalized units).

4. Nonuniform patterns and the onset of instability

In section 4.1, we recall some elements of the matrix perturbation analysis, which are
subsequently applied to a single ‘zero’ bit incorporated into the stable pattern of ‘unities’
(sections 4.2 and 4.3). Section 4.4 deals with the general case.

4.1. Inverse matrix perturbation formula applied to the Green matrices

When performing the analysis of inhomogeneous cases, it is very convenient to utilize the
formalism of matrix perturbation theory based on the Woodbury formula (WF) [23]. A
somewhat simplified version of WF, which applies only to the case of single rank 1 perturbation,
is often referred to as Sherman–Morrison formula, and a triple naming is also popular (for a
thorough historical survey of the subject, applications and direct references see [22]).

The WF itself is introduced as follows. Suppose that a matrix Â is invertible. Let us
now modify Â by introducing m rank 1 corrections (i.e. alter m of its rows or columns). In
practice, the method is most effective when m is much smaller than the dimension (say N) of
the original matrix, Â. After that we introduce two auxiliary rectangular matrices: the N × m
matrix Û and the m×N matrix V̂ so that the product Û V̂ has the same N ×N dimension as the
initial matrix Â. The next step is to recast the perturbation of our matrix Â (i.e. the difference
between the original and altered matrices) in the form of the aforementioned product, Û V̂;
this decomposition is of course not unique and the particular choice of matrices Û and V̂ is
just the matter of convenience. Then, if the m × m capacitance matrix, defined as

Ĉ = Î − V̂Â−1Û , (32)

is invertible, the inverse of the perturbed matrix can be embodied in the form given by the
exact WF [22]:

(Â − Û V̂ )−1 = Â−1 + Â−1Û Ĉ−1V̂Â−1. (33)

Turning to our problem, let our initial matrix be 	̂0 of the form (9) and suppose that we
know its spectrum. Then we seek for the spectrum of the perturbed one, 	̂ = 	̂0 + Û V̂ , where

10
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m columns (rows) are different from those of 	̂0. We can then interpret matrix Â−1 from WF,
equation (33), as the initial (unperturbed) Green matrix, Ĝ0 = Â−1, so that the rhs of the WF
provides the exact expression for the resulting perturbed Green function (resolvent):

Ĝ = (λÎ − 	̂0 − Û V̂ )−1 = Ĝ0 + Ĝ0Û Ĉ−1V̂ Ĝ0. (34)

As the elements of Ĉ−1 are inversely proportional to the determinant of the capacitance matrix,

C(λ) = Det Ĉ(λ), (35)

the new poles of the Green matrix, i.e. the new spectrum values, must be zeros of C(λ).
It is pertinent to note here that of course the perturbative analysis above is just one of the

possible variants of a general matrix perturbation theory (aside from applications to the crystal
lattice theory [21]). Various perturbation techniques for generic tridiagonal Toeplitz matrices
are addressed e.g. in [25–28].

4.2. A single inhomogeneity (‘zero’ bit) in a stable pattern

Now we can take the initial matrix 	̂0 corresponding to the homogeneous cases from
subsection 3.2 and consider local deviations from the uniform bit pattern. To employ
WF (33), one needs to express the perturbation of the initial Green matrix Ĝ0(λ), equation
(28), in terms of the Û V̂-decomposition. Then by looking into the ensuing capacitance matrix,
Ĉ(λ), we can obtain the localized eignemodes lying outside the unperturbed spectral band.

To consider the effect of rare ‘zeros’ in the pattern of ‘unities’, let us first address the case
where there is a single ‘zero’ bit embedded into a uniform stable {1}N pattern: we denote such
a pattern as

{1 . . . 0︸︷︷︸
s+1

. . . 1}N .

This means that the phase difference between the (s + 1)th and sth solitons, �1δs, is zero,
while for all remaining sites these differences are equal to π . For simplicity, we assume that
neither s nor s + 1 are the boundary sites of the train. As the deviation is local, the dynamical
equations remain the same, see equations (24) and (25), except for those for the sites with
numbers s and s + 1, for which our equations become

d2ws

dz2
= ws−1 − ws+1 − 2 = �2ws + 2ws − 2ws+1 + fs,

d2ws+1

dz2
= ws+2 − ws + 2 = �2ws+1 − 2ws + 2ws+1 + fs+1.

(36)

The new nonzero components of the inhomogeneity vector are fs = −2, fs+1 = 2.
Mathematically, the system is very similar to that of the crystal lattice with a single defect
bond. The perturbed Green matrix, Gnn′ (λ), can now be found by the use of perturbation
analysis from subsection 4.1, the number of perturbed rows being two.

The Û V̂-decomposition of the perturbation emerging from equations (36) can be realized
by the following two rectangular matrices:

Ukl = (−1)l−1 [2δks − 2δks+1], Vlk = δksδl1 + δks+1δl2, (37)

where l = 1, 2; k = 1 . . . N + 1. The matrix of our perturbed linear system, equation (36),
expressed through the unperturbed matrix 	̂0 has the form 	̂ = 	̂0 + Û V̂ . The corresponding
capacitance matrix reads

Cl j = δl j + (−1) j
[
2δl1

(
G0

ss − G0
ss+1

) + 2δl2
(
G0

ss+1 − G0
s+1s+1

)]
, k, j = 1, 2. (38)

11
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For the determinant of this capacitance matrix, we find the following expression:

Cs(λ) = 4G0
ss+1(λ) − 2G0

ss(λ) − 2G0
s+1s+1(λ) + 1. (39)

The equation Cs(λ) = 0 then implicitly defines the dependence of the eigenvalue for the
unstable mode on the position s of the ‘defect’ bit: λ = λ∗(s). The method above is
ideologically similar to the Lifshitz criterion for finding localized impurity modes in the
otherwise perfect 1D crystal [21]. The important difference of our case from that considered in
[21] is that we deal with the ‘inelastic’ bond defect involving two sites rather than an isotopic
defect considered by Lifshitz, which resulted in the rank 1 perturbation.

Now assuming N 
 1, we can substitute in equation (39) the approximate expressions
(29) for the elements of the unperturbed Green matrix, G0

ss etc. It means that the system
becomes effectively semi-infinite and the index s numerates the distance of the defect site
from the boundary. The magnitude of the new eigenvalue corresponding to the localized mode
is exponentially close to λ∗ = 4/3:

λ∗(s) = 4

3

(
1 + 32s

27
3−2s

)
+ o(3−2s). (40)

Already if one takes s = 2 (third bit from the boundary) the difference between the value 4/3
and λ∗(s) is of the order of 10−2, so that the estimate λ∗ = 4/3 is precise enough for our
purposes. This means that for a low concentration of inhomogeneous bits, the instability rate
can be evaluated as γ ∗ ≈ 2/

√
3 ≈ 1.15. The numerical example of the 32 bit spectrum with

a single ‘zero’ placed in the centre of the pattern is given in figure 2(a): one observes that the
value of the unstable eigenvalue is indeed very close to 4/3.

As the resulting driving vector f∗ = 2(δs+1 n−δsn) now has two extra nonzero components,
fs and fs+1, in addition to the boundary sites, it no longer possesses any particular symmetry
and excites all the modes of the system including the unstable one. In the initial stage where
γkz � 1, we can expand the functions U f

k (z) (17) up to the terms ∼ z2 : U f
k (z) ∼ z2/2. So the

activation due to f∗ is

w = z2
∑

k

(
vs+1

k − vs
k

)
vk, (41)

and because of the orthogonality the only nonzero components are (up to z2, cf equation (31))

ws+1 = −ws = z2. (42)

4.3. The width of the impurity mode: the case of small concentration of impurities

Because the perturbation in equations (36) affects only two sites, the corresponding unstable
‘impurity’ mode is localized on this perturbed bond as well, see figure 2(b). This effect is
similar to the localization of phonon modes in a crystal lattice with an isotopic defect [21].

For the localized eigenvector v∗ corresponding to the eigenvalue λ∗(s), we have

[λ∗Î − 	̂0]v∗ = Û V̂v∗,

so we can write

vn
∗ = G0

nk(λ
∗)[Û V̂]kmvm

∗ (43)

(the summation over the repeated indices is assumed). Due to the structure of the perturbation
Û V̂ , the expression on the rhs involves only vs

∗ and vs+1
∗ , which are to be treated as two linearly

dependent constants. Indeed, from equation (43), one can write down the explicit expressions
for vs

∗ and vs+1
∗ :

vs
∗ = 2G0

ssv
s
∗ − 2G0

ss+1v
s+1
∗ ,

vs+1
∗ = −2G0

ss+1v
s
∗ + 2G0

s+1s+1v
s+1
∗ .

(44)

12
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The determinant of this system of linear algebraic equations coincides exactly with that for the
capacitance matrix Cs(λ

∗) (35). Recall that Cs(λ
∗) is equal to zero (as it is the very definition

of the localized eigenvalue) and hence equations (44) are linearly dependent. Then the spatial
properties of vn

∗ are determined by the behaviour of G0
ns(λ

∗) (or G0
ns+1(λ

∗), which is virtually
the same for sites n distant from the defect, |n − s| 
 1). One can pick the first equation from
(44) and retaining e.g. vs

∗ as an arbitrary (normalization) constant, vs
∗ = A = const, we have

vs+1
∗ = βsA, where we have introduced the notation

βs = 2G0
ss+1(λ

∗)
2G0

ss(λ
∗) − 1

,

which is also a constant for a given s. From equation (43) one then obtains

vn
∗ = A ε(1 − βs)

[
G0

ns(λ
∗) − G0

ns+1(λ
∗)

]
. (45)

We assume that the decay of the localized eigenvector has the form of the superposition of two
exponents localized at sth and (s + 1)th sites, but with the same decay rate Rs. The explicit
ansatz for the vn

∗ is as follows:

|vn
∗| = 2|A (1 − βs)|

[
exp

(
−|n − s|

Rs

)
− exp

(
−|n − s − 1|

Rs

)]
. (46)

Now comparing this expression with equation (45), we see that due to the form of vn
∗ (46),

the localization is attributed to the localization properties of the corresponding Green matrix
elements. To get some explicit analytical results let us assume that N 
 1, and therefore
we can use the simplified integral expression for the Green matrix of the self-infinite system,
equation (29). Next we suppose that |n + s| 
 1 and |n − s| � |n + s|. Then inasmuch
as |F(λ∗)| < 1, F(λ) being defined by equation (30), one can drop the second summand
∼ F(λ∗)n+s+1 in equation (29). After that one arrives at the approximate expression for the
localization length R∗ (for s being far from the system edge) in the form

R∗ ≈ − 1

ln |F(λ∗)| = 0.91, (47)

i.e. the ‘defect’ modes are rather well localized. The estimate above helps one to extend the
results for a single ‘defect’ bit to the case of sparse ‘zeros’ in the pattern of ‘unities’: if we
introduce a small number of such ‘defects’ that are distant from each other, one still expects
the results of subsection 4.2 to hold. For the correctness of this, we must ensure that the
concentration of the ‘defect bits’, c, satisfies the inequality: c � c∗ = (2R∗)−1.

One such pattern with the concentration of regularly placed defect bits c = 1/5 is given in
figure 2(c): one can observe a pronounced narrow band of unstable modes with λ ≈ λ∗ = 4/3.

4.4. Some remarks on general bit patterns

In the general case, we have an equal probability to meet either ‘zero’ or ‘unity’ (unless some
specific source encoding format is used). If ‘zeros’ are sparse, than each ‘zero’ bit corresponds
to an unstable mode growing with the increment close to

√
λ∗ = 2/

√
3, see figure 2(c),

and this eigenmode has an asymmetric peak localized at a defect. As the concentration of
‘zeros’ increases, the analysis above does not apply. Figure 2(d) shows a particular randomly
generated pattern with the average concentration of zeros c = 1/2, which displays a mixture
of stable and unstable modes without any specific ordering. The characteristic disintegration
time of the pulse train is given by the highest positive eigenvalue λmax; it corresponds to the
eigenmode with the largest growth increment γmax = λ

1/2
max.
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The domain of location of the eigenvalues in the arbitrary case can be estimated via the
Gershgorin theorem [29], which states that for an arbitrary N × N symmetric matrix (say 	̂)
the real eigenvalues occupy the union of N intervals, each defined by the inequalities:

|λ − 	ii| �
N∑
j �=i

|	i j|, i = 1, . . . , N. (48)

Substituting the explicit values of the elements for our 	̂, equation (9), we observe that for
any given pattern the eigenvalues belong to the band [−4, 4]: the region between the minimal
value of λ for pure ‘unities’, −4, and maximal for uniform ‘zeros’, 4.

Further properties of the spectra of arbitrary bit patterns follow from the general theory of
tridiagonal matrices [29]: since all sub-diagonal elements are always non-zero, the spectrum
is non-degenerate. Also, by inverting the bit pattern, {b}N → {1 − b}N , the eigenvalues change
sign, so it is sufficient to study half of the patterns, where the number of ‘zeros’ is less than or
equal to the number of ‘unities’.

Finally, not all the unstable eigenmodes of matrix 	 are excited but only those which
are not orthogonal to the driving vector f, equation (11). Therefore, the problem of finding
the optimal encoding for error-free transmission can be reformulated in terms of finding such
patterns (i.e. encoding formats) which minimize the projections fk of the unstable eigenmodes
onto the driving term f.

5. Nonlinear regime

In the previous section, we considered the linearized dynamics of the CTC, which is valid at
the initial stage of the evolution. However, as the CTC is integrable by the inverse scattering
transform we can also establish its behaviour at longer distances compared to those where the
linearization approach of section 3 is valid [10, 13], and how it depends on the input bit pattern.
It can be done by exploiting the fact that the eigenvalues of the so-called Lax scattering matrix
are the integrals of motion due to the CTC integrability. Then if one determines these Lax
matrix eigenvalues from the initial conditions, the long-distance properties are determined by
the distribution of these eigenvalues. This auxiliary eigenproblem for the CTC is generally
non-Hermitian, and thus differs from the eigenproblem for the linearized dynamical equations
considered previously. We would like to stress again here that the CTC itself describes well
the true NLSE dynamics only for a sufficient interpusle separation. Because of this the long-
time behaviour of the train cannot be correctly described by the CTC for a general initial
distribution, see [12, 16]. However, the results of this section are exact for the CTC itself and
can be applied to the NLSE when the correspondence between the dynamics of two models is
good enough [16].

5.1. Lax representation of CTC

Since equation (6) is integrable by the inverse scattering transform, it allows representation in
terms of the Lax pair [10, 13]:

dL̂

dz
= [�̂ L̂]. (49)

The explicit form of the matrix �̂ is insignificant for our considerations, but the (generally
complex) Lax matrix L̂ has a tridiagonal symmetric structure defined by the expression:

Li j =
N∑

k=1

[Bk{Ei j}kk + Ak({Ei j}k,k+1 + {Ei j}k+1,k)]. (50)

14
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Matrix Ê is a matrix of matrices with elements expressed via the Kronecker symbols,
{Ei j}km = δikδ jm (and additionally {Ei j}km ≡ 0 if either of indexes exceeds the range of
the chain), and for Ak and Bk, we have

Ak = 1
2 e(qk+1−qk )/2, (51)

Bk = 1
2 (μk + iνk). (52)

Again we assume that the amplitudes of the solitons are the same, νk = ν, and the velocities
are zero, μk = 0. Then all Bk are constants, Bk = B = iν/2, and all diagonal elements of L̂,
equation (50), are the same and equal to B. Subtracting these diagonal B, we will deal only
with the reduced matrix (we also denote it by L̂):

Li j =
N∑

k=1

Ak[{Ei j}k,k+1 + {Ei j}k+1,k]. (53)

The details of the CTC dynamical regimes classified through the eigenvalues lk = κk + iζk

of the Lax matrix L̂, are given in [10–13], and we will not reproduce these results here.

5.2. The structure of L̂ matrix for an arbitrary DPSK bit pattern and homogeneous cases

Let us again assume that there are N + 1 solitons employed to transmit a {b1, . . . , bN}N bit
pattern, the solitons being initially equispaced with the spacing r. Then the coefficients Ak

from equation (51) have the form

Ak = (a/2)
√

σk+1, k = 0, 1, . . . , N − 1, AN = 0, (54)

where we have used the notations a and σk from subsection 3.1. The matrix L̂ (53) has
the following structure (we use the reduced matrix with the subtracted constant diagonal
elements [13]):

L̂ = a

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

σ1 0 0 . . . 0 0 0√
σ1 0

√
σ2 0 . . . 0 0 0

0
√

σ2 0
√

σ3 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . .
√

σN−1 0
√

σN

0 0 0 0 . . . 0
√

σN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (55)

We will omit the factor a/2 in the definition of the Lax matrix since it can be absorbed
by rescaling the distance: az/2 → z. We can now study the dynamical regimes for the
same patterns as were considered in section 3. The spectral dependences and corresponding
eigenvectors of these marginal input patterns are a particular realization of the general
homogeneous case considered in [10].

For pure ‘zeros’, we have σn = −1, and L̂ is skew-Hermitian. We shall label the
corresponding matrix (55) with the superscript ‘0’: L̂0. The eigenspectrum is purely imaginary
and given by

lk = 2i cos ρ̃k, ρ̃k = π k

N + 2
, k = 1, . . . , N + 1. (56)

For pure ‘unities’, all σn = 1, and the matrix L̂ is Hermitian. The spectrum is real and given
by

lk = 2 cos ρ̃k, k = 1, . . . , N + 1. (57)
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The normalized eigenvectors for both patterns are

vn
k =

√
2

n + 2
sin[ρ̃k (n + 1)], k = 1, . . . , N + 1, n = 0, . . . , N, (58)

and the Green matrix is (we mark it with a calligraphical letter for distinguishing from the
expressions referring to the linear regime)

Ĝ0
nn′ = (

l − L̂0
)−1

nn′ = 2

N + 1

N+1∑
k=1

sin[ρ̃k(n + 1)] sin[ρ̃k(n′ + 1)]

l − lk
. (59)

In the limit of large N (semiinfinite system), we can again use the continuum approximation
instead of the sum. Then for the {0}N pattern with the dispersion relation (56), we have

Ĝ0
nn′ ≈ 2

π

∫ π

0

sin[ρ(n + 1)] sin[ρ(n′ + 1)]

l − 2i cos ρ
dρ

= − Sign(Re[l])
i√

l2 + 4
(Z(l)|n−n′ | − Z(l)n+n′+2), (60)

where Sign[. . .] means the signum function and

Z(l) =
{

− i
2 (l + √

l2 + 4) for Re[l] < 0,

− i
2 (l − √

l2 + 4) for Re[l] > 0.

5.3. A single ‘unity’ in the pattern of ‘zeros’

One can employ the matrix perturbation analysis from section 4.1 and start with the pattern
{0}N , for example, studying the appearance of states with non-zero real parts of the eigenvalues.
In this section, we assume that the bit number s + 1 is flipped from ‘zero’ to ‘unity’, so that
σs = 1, while the rest of bit indicators are equal to −1.

We begin with the Û V̂-factorization of the perturbation to the L̂0 matrix. For our perturbed
matrix we have Ls+1 s = Ls s+1 = 1, and matrices Û and V̂ can be introduced as follows:

Uk j = γ [δ j1δks+1 + δ j2δks], V jk = δksδ j1 + δks+1δ j2, (61)

where γ = 1 − i; indexes j = 1, 2, and k = 1 . . . N + 1. The resulting (N + 1 × N + 1)

perturbation matrix Û V̂ is zero except for the elements with indices (s, s + 1) and (s + 1, s),
which are equal to γ . The capacitance matrix (32) based on the Green matrix for L̂0,
equation (59), can be readily calculated as

C jl = δ jl
(
1 − γ Ĝ0

ss+1

) − γ
(
Ĝ0

ssδ j1δl2 + Ĝ0
s+1s+1δ j2δl1

)
, (62)

where j, l = 1, 2, and we have accounted for the symmetry of the Green function (59):
Ĝ0

ss+1 = Ĝ0
s+1s. The corresponding determinant Cs(l) is

Cs(l) = (
1 − γ Ĝ0

ss+1

)2 − γ 2Ĝ0
ssĜ0

s+1s+1, (63)

and by using the approximation of the semi-infinite system for the explicit calculation of
sums, equation (60), one can find out the new spectral values, which have arisen due to the
presence of a single ‘unity’. Note that since L̂ is a non-Hermitian matrix, there exist several
new complex roots of the equation Cs(l) = 0. The number of new roots is determined by
the value of s. In figures 3(a) and (b), we depict the contour plots for Re[Cs(l)] = 0 (solid
lines) and Im[Cs(l)] = 0 (dashed lines) for the particular cases s = 5 and s = 10. The points
where these curves cross each other correspond to the new spectrum points, i.e. to the roots
of Cs(l) = 0. One observes that the spectrum now is highly sensitive to the value of s. In the
same plots, we show the numerical results for the 512 bit pattern with the same location of the
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(a)

(c) (d ) (e)

(b)

Figure 3. Some typical spectra of complex eigenvalues, lk = κk +iζk, for the Lax matrix L̂ (the plots
are rotated 90◦). The upper row corresponds to a single ‘unity’ placed near the edge of the 512 bit
pattern of ‘zeros’: for (a) the position of the ‘unity’ is s+1 = 6, and for (b) s+1 = 11. The solid and
dashed lines are the level curves for the determinant of the capacitance matrix for the semi-infinite
system with the same defect placement, (63): the solid line is the contour plot for Re[Cs(l)] = 0,
the dashed—for Im[Cs(l)] = 0; the intersections of these curves give the locations of the new
eigenvalues, defined by Cs(l) = 0. Panels (c) and (d) illustrate the sensitivity of the Lax spectra to
the position of the defect: for the panel (c) the defect is placed at s + 1 = N/2 + 2 = 258, for the
panel (d)—at s + 1 = N/2 + 4 = 260. The last panel (e) displays the distribution corresponding
to the same realization of a random 32 bit sequence as shown for the linear case, see figure 2(d): it
demonstrates all the typical symmetries leading to the complex regimes described in section 5.4.

‘defect bit’ (large dots): the results are in a good agreement with the theory. In general, the
spectrum of L̂ is very sensitive to the location of the ‘defect bit’ in the train, and it is impossible
to derive a simple general formula encompassing all possible cases. Figures 3(c) and (d) also
demonstrate this sensitivity when the defect is located near the centre of the pattern.

5.4. General inhomogeneous patterns in the nonlinear regime

Let us outline the symmetry properties of the eigenspectrum for the matrix L̂, equation (55),
regarding an arbitrary input bit pattern. Let us denote by PN+1(l) the characteristic polynomial
of matrix (55). Then we have the following recurrence relation:

PN+1(l) = −lPN (l) − σNPN−1(l), P0 = 1, P1 = −l.

The coefficients of PN+1(l) are always real, so if lk is an eigenvalue, its complex conjugate,
lk, is also an eigenvalue. Additionally, PN+1(l) contains only either even or odd powers of l,
corresponding to the parity of N +1, respectively (the patterns with the even bit number always
have a zero eigenvalue). This means that it is enough to plot the complex spectra only in the
first quadrant of the complex plane l: the rest follows by a combination of mirror reflections
with respect to both axes. The Gershgorin theorem [29] is applicable to the complex matrix L̂
as well, but instead of Gershgorin intervals one needs to consider the union of Gershgorin discs
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formally defined in the same fashion as in equation (48). This gives the domain of localization
of the eigenvalues: |l| � 2. The spectrum for a random 32 bit pattern is shown in figure 3(e).
It displays all the characteristic symmetries of an arbitrary eigenvalue distribution.

Let us mention some spectral properties ensuing from the aforementioned symmetries.
Firstly, let us formulate a duality principle for the phase-coded CTC input. Suppose that
we have an arbitrary sequence in the form of the DPSK phase-coded input, which yields a
corresponding eigenvalue portrait of the reduced scattering matrix L̂, equation (55). Then, if
one flips ‘zeros’ and ‘unities’, the Lax matrix is transformed as L̂ → i L̂†, and the eigenvalues
distribution of the new pattern is obtained by flipping the original distribution with respect to
the bisector κ = ζ . The corresponding asymptotic regime is then ‘flipped’ accordingly.

Secondly, based on the classification from [12], we can establish the regimes occurring
for a generic CTC DPSK-coded pattern. Generally, each asymptotic regime of the CTC lattice
has a direct counterpart in the dynamics of NLSE soliton train (valid of course when the CTC
is applicable, i.e solitons are well separated). One can discern the following three types of
solution complexes.

• A quadruplet corresponding to the set of four complex eigenvalues, ±lk and ±lk. Each
quadruplet corresponds to the two bound pairs of solitons moving with the same velocity in
the opposite directions.

• A breather corresponding to the pair of purely imaginary eigenvalues ±i ζk. The breathers
make up the nondispersive part of the solution.

• Asymptotically free pairs of solitons moving with equal velocities in the opposite directions.

Note that under some special conditions like e.g. a 3-pulse breather [12], the solutions
of the CTC can become singular. When such solutions approach singularity, the CTC model
of course ceases to apply to the NLSE pulse trains and one has to resort to direct numerical
simulations. The reader is refereed to references [12, 13] for the general discussion of these
solutions. A generic pattern like the one corresponding to figure 3(e) will have all three
constituents: its asymptotic behaviour corresponds to a complicated mixture of the regimes
above which represents a refined classification from [13], now taking into account the specific
symmetries introduced by the binary DPSK encoding of the phase.

6. Some remarks on the practical applications of the method

6.1. Evaluation of scales

The method considered here can be used e.g. for the direct evaluation of various dynamical
scales related to the evolution of the soliton train.

In particular, one often wants to estimate the characteristic error-free propagation distance,
zerr, in the linear regime. For illustrative reasons, let us consider a generic bit pattern of 33
solitons where we randomly encoded 32 bits: we use the same realization of a random bit
pattern as in figure 2(d) (and figure 3(e) as well). For this pattern, one finds the largest positive
eigenvalue for the spectrum of the linearized model: λmax ≈ 3.57. Fixing the parameters of the
transmission, say 2ν = 1, r = 5, we scale the distances back into the soliton units and obtain
the growth rate: γmax = 8ν2e−rν

√
λmax ≈ 0.31. So, the value zerr = γ −1

max ≈ 3.23 defines the
scale beyond which the immediate values of soliton positions for given transmission parameters
become significantly different from the initial distribution. Simultaneously, zerr sets the limit
for the applicability of the linear analysis. Note that the (scaled back) forcing amplitudes in
equation (8), which govern the development of instabilities, are small: | fn| ∼ (4νa)−2, so that
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Figure 4. The density plot of |Q(z, t)|2 obtained by the numerical integration of NLSE (1), which
corresponds to the propagation of the randomly DPSK-encoded 32 bit soliton train. The initial phase
distribution is the same as was used in figures 2(d) and 3(e). The explanation for the corresponding
z-scales zerr and znl is given in the text. Both time and propagation distance are measured in soliton
units (s.u.).

the unstable exponentials are multiplied by small factors and the aforementioned limits are
offset somewhat. In figure 4, we show the dynamics of the chosen 32 bit pattern (obtained by
the direct numerical simulation of NLSE), and the estimate for the zerr for the linear regime
and error-free distance obtained above is visually in a good agreement with the real physical
situation. Let us provide some real world units estimate of the error scale, for which we should
multiply zerr by the dispersion length z0, which is in turn defined as [3]

z0[m] = 6.07 × 102 τ 2[ps]

λ2
w[μm]D[ps/(nm · km)]

,

where λw is the carrier wavelength, τ is the pulse width and D is a group velocity
dispersion. For the typical values used in the transmission: τ = 15 ps, λw = 1.55 μm and
D = 0.5 ps(nm km)−1, we have z0 ≈ 115 km, and zerr in real units amounts to 371.5 km.
Now we can define the same scale, z∗

err but for the ‘rare bit’ format, when the concentration
of ‘zeros’ satisfies c � c∗ ≈ 0.55. The typical spectrum now has a narrow instability band
concentrated around λ∗ = 4/3, see figure 2(c). When we perform the reverse scaling back to
the soliton units, we obtain a universal estimate:

z∗
err =

√
3 erν

16 ν2
. (64)

Setting the same values for ν = 0.5 and r = 5 as in the previous paragraph, one arrives at the
larger value of zerr than that for a pattern above: γ ∗

max ≈ 0.19, z∗
err ≈ 5.28 or 607.2 km in the

real world units. The overall idea underlying the improvement of the quality of information
transmission consists in suppressing the excitation of instable eigenmodes and reducing their
projections onto the driving vector f, equation (8), by means of a more sophisticated encoding
scheme. For the distances more than zerr, the nonlinear effects come into play and we can define
the measure of information distortion during the intermittent evolution only by considering
the exact CTC solutions (or, when the CTC is inapplicable, one must consider the NLSE (1)
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itself). For these evolution distances, the CTC solution evolves into a mixture of nonlinear
regimes (see [13] and the previous chapter). For the illustrative reasons we can again use the
eigenvalues portrait corresponding to the random bit-pattern from figure 3(e), which contains
all peculiarities pertinent to a general case. Now one can pose the question: when will at least
one of the pulses walk off from the prescribed slot and an error will definitely occur? At
this point we note that within the simplified CTC model, there are two possible sources of
error. First of all, we have solitons (or soliton clusters) which behave as ‘free Toda particles’
moving out from their slots—an effect which is within the range of applicability of CTC as
long as the pulses are well separated. But there also exists another type of distortion of the
train when one or more solitons collide and coalesce. The latter can occur for both oscillating
modes corresponding to breather states and for singular solutions of CTC [12]. Such collision
effects represent another possible source of error which is however beyond the scope of the
CTC model and is not discussed here. What we will be concerned with is the scale, znl, which
represents an upper bound on error-free transmission due to ‘free Toda particle’ instability
only. Because it takes into account only one type of error source, it cannot simultaneously serve
as the lower bound for such a distance (because errors of other type might most probably have
occurred earlier) but nevertheless our numerical results show that the bound is remarkably
tight (see below).

To get an estimate of this distance, we resort to considering the complex eigenvalues lk
of the matrix L̂. We assume that the escape rate corresponds to individual solitons (or soliton
complexes) moving away from the slot centre, i.e. having nonzero κk. In order to obtain znl,
one finds the value of the largest real part among all eigenvalues, κmax = max Re[lk]. For
our example pattern, figure 3(e), we obtain κmax = 1.78. The quantity 4ν e−r νκmax gives the
asymptotic ‘velocity’, V = d ξ/d z, of the fastest moving soliton (soliton complex). Then we
estimate the ‘time’ for the soliton to cover half of the distance separating it from the adjacent
slot, i.e. r/2: znl = r/(2V ). For the previously used values, ν = 1, r = 5, this gives the
estimate: znl = (r er ν/8νκmax) ≈ 8.6. Note that it is meaningless to apply the values of znl that
are close to or less than zerr, as the nonlinear regime occurs only after the linear stage.

The considerations based on the lattice-type approach developed in the current work can be
applied to a soliton pattern of an arbitrary length and bit composition. To get the characteristic
boundaries of linear and nonlinear regimes corresponding to a given pattern, one only needs
to analyse two linear, sparse eigenvalue problems, (9) and (55). The numerical procedure is
computationally much less expensive than simulating the original NLSE, equation (1). Indeed,
for the current approach one should assign a single (complex) degree of freedom to each bit,
instead of resolving numerically each pulse on a mesh with a number of points for each
soliton. The further improvement is that although the eigenvalue decomposition of a general
matrix requires O(N3) operations, for the tridiagonal matrices the actual cost is only O(N2)

operations. Finally, when general estimates are sufficient one can use the Gershgorin bounds:
for an arbitrary pattern in the linearized case, the maximum positive eigenvalue λmax < 4,
which gives the minimum possible error-free propagation distance as zerr ∼ er ν/16ν2. As for
the L̂ matrix, the maximum real part of an eigenvalue is κmax < 2, so that the distance znl

can be estimated as Znl ∼ r er ν/16ν. Note that both distances scale exponentially with the
parameter rν (but the requirements e−rν � 1 must be fulfilled in order for the CTC model
to apply).

6.2. Simulation of the NLSE using the random and ‘rare-bits’ input phase encoding

In order to check further how the results of the linear analysis based on the CTC,
equation (6), comply with the true dynamics of a given pattern we performed additional
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(a) (b)

(c ) (d )

Figure 5. Dynamics of timing Dn and phase �n jitters, defined by equations (67) (or D∗
n ,

equation (69), for the timing jitter of the ‘rare bits’ format), and (68) respectively, obtained by the
direct integration of the initial NLSE (1). For the input in panels (a) and (c) we used a random
128-bit pattern with equal probability for each bit value to be either ‘0’ or ‘1’, for panels (b) and
(d)—the 128-slots ‘rare bits’ encoding with each fifth bit encoded with equal probability to be
either ‘0’ or ‘1’. The propagation distance z is measured in soliton units (s.u.).

numerical simulations of the original NLSE (1) with the input in the form of either a
completely random DPSK-coded soliton train or DPSK-code based on the ‘rare-bits’ format.
In every run, we used the initial pattern of well-separated solitons with equal amplitudes
2ν = 1 and initial intersoliton separation r = 5 (both quantities are in soliton units, see
section 2).

A straightforward way of defining phases and positions of individual solitons could be to
use the inverse scattering transform method utilizing the integrability of NLSE [1]. However
for our situation that would overcomplicate the problem as the solitons remain well separated
in the following simulation runs (figure 5). Therefore one can use simpler definitions for
the positions and phases of individual solitons defined via the averaging over the individual
slots [30]:

ξ̄n(z) =
∫
τn

dt t |Q(z, t)|2∫
τn

dt |Q(z, t)|2 + r n, (65)

δ̄n(z) = tan−1

∫
τn

dt Im[Q(z, t)] |Q(z, t)|2∫
τn

dt Re[Q(z, t)] |Q(z, t)|2 − δn(0). (66)

21



J. Phys. A: Math. Theor. 45 (2012) 025202 J E Prilepsky et al

Here the designation
∫
τn

dt . . . means the integration of the corresponding quantity over the nth
symmetric slot of width r centred at the initial position of the nth soliton, rn. While the slots
are rigidly fixed, each of the solitons experiences a complicated motion within each slot or
walks beyond it. In the latter case, of course, the definitions above lose their sense but insofar
as the simulations are performed for the weak deviations of the initial positions, one does not
need to deal with these more difficult cases.

In figure 5, we depict the evolution of the relative soliton position and phase deviations
(i.e. timing and phase jitters, respectively), defined as

Dn(z) = ξ̄n+1(z) − ξ̄n(z)

r
, (67)

�n = δ̄n+1(z) − δ̄n

π
. (68)

These quantities correspond to the dynamics of real and imaginary parts of �1qn from
equation (6). We compare the dynamics of timing and phase jitters for an entirely random
128-bit pattern, panels (a) and (c), and for the ‘rare bits’ format with the same 128 slots, panels
(c) and (d). The latter was discussed in sections 4.2 and 4.3, and predicted to be more robust
compared to the completely random case. In this regime, the number of repelling solitons
largely exceeds the number of attracting ones and we have a quadratic contribution ∼ εspz2

of the stable modes; see the end of section 3.2 and equation (42). We can then introduce an
explicit correction in the jitter definition (67) with the ‘antidrift’ term making positive and
negative jitters balanced:

D∗
n(z) = ξ̄n+1(z) − ξ̄n(z)

r
− εspz2, (69)

where εsp ≈ 2 in the rescaled units of section 3.2 (≈ 0.03 in the soliton units). This new
renormalized quantity now accounts only for the genuine instability occurring due to the
appearance of the rare inhomogeneous bits.

Comparing figures 5(a) and (c), one can see that the utilization of the ‘rare bits’ encoding
gives roughly 20% reduction in the timing jitters (deviation of the relative initial soliton
positions). As to the phase jitters (relative deviations from the initial phase distribution), see
figures 5(b) and (d), those are activated due to the nonlinearity of the initial CTC. Their values
are smaller as compared to the timing jitters, and the advantage of using the ‘rare bits’ encoding
already accounts for more than 60% reduction.

7. Conclusion

To sum up, we have studied the analogy between crystal lattice dynamics as occurring in
condensed matter physics and the dynamic lattice of nonlinearly interacting solitons. The
initial point was to utilize an established method that reduces the dynamics of the position
and phase for each soliton to the integrable complex Toda chain. We have then studied how
the particular symmetries imposed by the DPSK encoding used in optical telecommunications
(where the phase difference between the adjacent solitons is either 0 or π ) affect the dynamics
of a pattern in the two propagation regimes: initial propagation described by the linearization
of the CTC and the nonlinear behaviour at larger propagation distances. In the latter limit, the
CTC generally ceases to apply to the NLSE pulse trains; however, we provide the approximate
upper bound for the error-free transmission which is due to the escape of ‘free Toda particles’.
This escape can still be estimated within the framework of the CTC. In both regimes, the study
was reduced to classifying the eigenvalues of a certain tridiagonal matrix: the real symmetric
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one for the case of linearized dynamics, and the complex symmetric Lax matrix for the long
haul propagation. The DPSK encoding (binary phase encoding of the adjacent pulses) scheme
imposes additional symmetries onto the eigenvalue distribution of these matrices. Firstly, we
established the behaviour at the initial stage of evolution and quantified the inflation and
deflation of intra-pulse distances. Consequently, we applied matrix perturbation theory (in
the form of Woodbury formula) to obtain analytical results for some types of bit patterns
using the analogy with the phonon lattices in the condensed matter physics. We demonstrated
that in order to minimize the distortion of information and create an optimal bit encoding
format, one needs to suppress the unstable modes by reducing their projection onto the driving
forcing vector of the linearized dynamical system. It has to be noted that the proposed ‘rare
bits’ encoding format (where only a small fraction of the pulses encodes information) is just
the illustration of the idea that one can manipulate the properties of the train by imposing
some specific constraints on phase modulation. The resulting properties referring to the format
stability and characteristic scales can be analysed by means of the lattice-type approach.
Then we studied the dynamical properties of a soliton train at larger propagation distances.
We considered some characteristic bit patterns and identified the common mechanisms of
information distortion. Additionally, we classified the emerging asymptotic dynamical regimes
according to the symmetries of the bit patterns, and specified universal bonds on the soliton
escape length.
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