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Bit Error Rate Estimation Methods for QPSK
CO-OFDM Transmission

Son Thai Le, Keith J. Blow, Vladimir K. Mezentsev, and Sergei K. Turitsyn

Abstract—Coherent optical orthogonal frequency division mul-
tiplexing (CO-OFDM) is an attractive transmission technique
to virtually eliminate intersymbol interference caused by chro-
matic dispersion and polarization-mode dispersion. Design, de-
velopment, and operation of CO-OFDM systems require simple,
efficient, and reliable methods of their performance evaluation. In
this paper, we demonstrate an accurate bit error rate estimation
method for QPSK CO-OFDM transmission based on the probabil-
ity density function of the received QPSK symbols. By comparing
with other known approaches, including data-aided and nondata-
aided error vector magnitude, we show that the proposed method
offers the most accurate estimate of the system performance for
both single channel and wavelength division multiplexing QPSK
CO-OFDM transmission systems.

Index Terms—Bit error rate (BER), coherent detection, coherent
optical transmission, orthogonal frequency division multiplexing.

I. INTRODUCTION

COHERENT optical orthogonal frequency division multi-
plexing (CO-OFDM) is considered as a promising can-

didate for future long-haul high capacity transmission systems
[1]. CO-OFDM provides an efficient way to compensate for
inter-symbol interference (ISI) caused by both chromatic dis-
persion (CD) and polarization-mode dispersion (PMD) [2], [3].
In addition, CO-OFDM also offers flexibility in accessing indi-
vidual subcarriers in a multi-user environment, and a simplified
equalization scheme [4]. The design, development, and oper-
ation of CO-OFDM systems all require simple, efficient and
reliable methods of their performance evaluation.

The bit error rate (BER) in CO-OFDM systems can be esti-
mated in numerical investigations using Monte Carlo simulation
and in experiments (typically with off-line signal processing) by
directly counting the number of errors at the receiver. The cor-
responding Q-factor is calculated using the inverse complemen-
tary error function [5]. However, this method relies on a large
number of statistical samples and, in general, is time-consuming,
especially if the signal quality is high and massive optimization
modelling is required. It is highly desirable and practically im-
portant to develop efficient indirect numerical and statistical
methods for evaluating CO-OFDM system performance.
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For coherent communication systems with multi-level sig-
nals both in amplitude and in phase, the error vector magnitude
(EVM) is commonly used as a fast measure of the received dig-
ital signal’s quality [6], [7]. The EVM describes the effective
distance of the received complex symbol from its ideal posi-
tion in the constellation diagram. In an additive white Gaussian
noise transmission channel the connection of EVM to BER can
be determined theoretically [7]. The standard EVM is a data-
aided estimation technique, where for measurement purposes
the transmitted data are known [6]. On the other hand, it is more
common for real-world receivers that the sent data (e.g. training
sequences) are unknown. In this case, nondata-aided reception
can be applied as shown in [8]. Several other relevant methods
of evaluating the signal quality have recently been proposed,
experimentally verified and compared for single carrier QPSK
systems [9]–[11]. However, the exact relationship between the
BER and the EVM in CO-OFDM still remains an open problem.
In addition, the relative performances of different BER estima-
tion methods for coherent QPSK systems have to be examined
carefully when being applied for CO-OFDM transmission.

Recently, we have proposed a novel statistical BER estima-
tion method for CO-OFDM transmissions [12] based on the
probability density function (PDF) of the received QPSK sym-
bols. The proposed BER estimation method was evaluated in
comparison with other known approaches for single channel
112 Gb/s polarization division multiplexing (PDM) CO-OFDM
transmissions with a cyclic prefix (CP) in [12]. In this paper,
we extend our previous work [12] by studying the statistical
properties of QPSK signals and demonstrating the effectiveness
of this method in reduced-guard-interval (RGI) and wavelength
division multiplexing (WDM) CO-OFDM transmissions. In ad-
dition, the robustness of the proposed BER estimation method
to laser phase noise and frequency offset is also discussed.

II. BER ESTIMATION METHODS FOR OPTICAL

QPSK TRANSMISSIONS

A. Direct Error-Counting

The BER can be directly measured by counting the number
of errors at the receiver subject to sufficient symbols being
recorded. The measured (or estimated) BER is usually converted
to an equivalent “Gaussian noise” Q-factor in dB using the
expression

QBER = 20 log[
√

2 · efrc−1(2BER)] (1)

where erfc−1 is the inverse complementary error function. This
sets the reference Q-factor used in the following evaluation of
different indirect methods.
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Fig. 1. Constellation diagram and error vector for a QPSK signal. Ideal con-
stellation diagram with a received value X. Vector Et,i is the transmitted signal,
vector Er , i is the received signal and Eerr , i = Er , i − Et , i is the error vector.

B. Data-Aided EVM

In an optical communication system with QPSK modulation
format, the data is encoded in the phase of the optical electrical
field. The complex amplitude of this field can be described by
four points in a complex constellation plane. At the receiver, af-
ter propagation through the fiber link, the received signal vector
Er deviates by an error vector Eerr from the ideal transmitted
vector Et as shown in Fig. 1. The data-aided EVM is defined
by a root mean square of Eerr and embraces all (linear and
nonlinear) impairments [6]

EVMm =
σerr

|Et,m | , σ
2
err =

〈
|Eerr,i|2

〉
,Eerr,i = Er,i − Et,i

(2)
where <·> stands for the averaging operation, Et,m is the
longest ideal constellation vector, serving for normalization.

By applying the definition (2), the EVM in QPSK CO-OFDM
transmissions can be calculated as

EVM =

√〈
|ck − ck,ideal|2

〉

|cideal|
(3)

where ck is the kth received symbol and ck,ideal is the corre-
sponding ideal constellation point. Note that for QPSK signals
all ideal constellation points are allocated in a circle:|ck,ideal| =
|cideal|.

For a QPSK system with AGWN channel the BER can be
estimated from the EVM as [7]

BER =
1
2
erfc

(
EVM−1

√
2

)
. (4)

By substituting (4) into (1), we can define the equivalent
Q-factor in dB knowing the EVM as

QEVM = −20 log[EVM]. (5)

C. Nondata-Aided EVM (Q factor 1, Q1)

The EVM can also be calculated without knowing the
transmitted data. The most common approach for calculating
nondata-aided EVM is to perform hard decision on the received
symbols and then apply the expression (2) [6]. In this case, the
error vector of a received symbol is calculated according to the
nearest ideal constellation point. As a consequence, nondata-

aided EVM tends to under-estimate the EVM if the received
signal is strongly noisy.

Another nondata-aided EVM has been proposed for QPSK
CO-OFDM transmission in [8]. In this technique the EVM is
calculated by replacing the four ideal QPSK constellation points
with the mean values of the received symbols in the four quad-
rants of the constellation diagram

EVM1 =
√〈

|ck,i − cavg ,i |2 / |cavg ,i |2
〉

(6)

where cavg ,i, i = 1, 2, 3, 4 are the means of the received sym-
bols ck,i that fall into the i’th quadrant of the constellation
diagram. For comparison purpose we also convert this nondata-
aided EVM into an equivalent Q-factor in dB by the expression

Q1 = −20 log[EVM1]. (7)

D. Q-Factor 2 (Q2)

It has been shown [13] that for single carrier QPSK systems
without optical dispersion compensation, the four components
of a QPSK signal (in-phase x-polarization, in-phase y- polariza-
tion, quadrature x-polarization, quadrature y- polarization) are
Gaussian distributed (or at least nearly Gaussian distributed) and
statistically independent both before and after the digital sig-
nal processing (DSP) in the receiver [13]. Therefore, a QPSK
constellation can be decomposed into two binary-phase-shift-
keying constellations (0 and π), or equivalently two amplitude-
shift-keying constellations (1 and −1), for the in-phase and
quadrature components [5]. As a result, following the same
well known approach for calculating the conventional Q-factor
for on-off-keying signals, we can define the Q-factors of the in-
phase and quadrature components of the received QPSK signals
by [9]

QRe =
〈ck,Re(ck,Re > 0)〉 − 〈ck,Re(ck,Re < 0)〉

σRe(ck,Re > 0) + σRe(ck,Re < 0)
(8)

QIm =
〈ck,Im (ck,Im > 0)〉 − 〈ck,Im (ck,Im < 0)〉

σIm (ck,Im > 0) + σIm (ck,Im < 0)
(9)

where σ(·) denotes the standard deviation (STD) of the statisti-
cal samples. In (8) and (9) QRe(QIm ) is calculated as the ratio
between the difference of the means and the sum of the STDs
of in-phase (quadrature) components with opposite signs. The
BER then can be obtained by using the estimations from both
in-phase and quadrature components

BER =
〈[

1
2
erfc

(
QRe√

2

)
,
1
2
erfc

(
QIm√

2

)]〉
. (10)

E. Q-Factor 3 (Q3)

Another definition of Q-factor was introduced in [9] as the
ratio between the mean and the STD value of each constellation
point. For the symbol in the first quadrant, the Q-factors are

Q1,Re =
|〈ck,Re(ck,Re > 0, ck,Im > 0)〉|

σRe(ck,Re > 0, ck,Im > 0)
(11)

Q1,Im =
|〈ck,Im (ck,Re > 0, ck,Im > 0)〉|

σIm (ck,Re > 0, ck,Im > 0)
. (12)



LE et al.: BIT ERROR RATE ESTIMATION METHODS FOR QPSK CO-OFDM TRANSMISSION 2953

Fig. 2. Block diagram of 112 Gb/s PDM CO-OFDM transmissions. S/P: se-
rial/parallel conversion, P/S: parallel/serial conversion, SM: symbol mappings,
TS: training symbol, DAC: digital-to-analog converter, I/Q: I/Q modulator,
OLO: optical local oscilator.

The overall BER can be obtained by using Qi,Re and Qi,Im ,
i = 1, 2, 3, 4 of all the constellation symbols [9]–[11]

BER =
〈[

1
2
erfc

(
Qi,Re√

2

)
,
1
2
erfc

(
Qi,Im√

2

)]〉
. (13)

III. SIMULATION SETUP OF 112 GB/S QPSK
CO-OFDM TRANSMISSIONS

For investigating the statistical properties of QPSK signals
and comparing the performances of different BER estimation
methods, we set up a 112 Gb/s PDM CO-OFDM transmission
system, the block diagram of which is shown in Fig. 2.

The data stream is first divided into x- and y-polarizations,
each of which is then mapped onto 2048 subcarriers using QPSK
modulation format with Gray code and subsequently transferred
to the time domain by an IFFT of size 4096 while zeros occupy
the remainder for oversampling purpose. The OFDM useful
duration is 60 ns. A CP of length 12 ns is used to accommo-
date dispersion. The long-haul fiber link is assumed to consist of
80-km spans of standard single mode fiber with the loss parame-
ter of 0.2 dB/km, nonlinearity coefficient of 1.22 W−1km−1, dis-
persion of 16 ps/nm/km and PMD coefficient of 0.1 ps/km0.5 .
The fiber span loss is compensated by Erbium-doped fiber am-
plifiers (EDFAs) with 16 dB of gain and a noise figure of 6 dB.
In the simulation amplified spontaneous emission (ASE) noise
is added inline. The transmitter and receiver lasers have the
same linewidth of 100 kHz. The laser phase noise is modeled
as a Wiener-Levy process with a variance σ2 = 2πυt where υ
is the combined laser linewidth and t is the time difference be-
tween two samples [14]. The simulated time window contains
100 OFDM symbols (409 600 bits). The channel estimation and
equalization (including polarization demultiplexing and channel
response equalization) is done with the assistance of an initial
training sequence (two OFDM symbols in each polarization) us-
ing the zero forcing estimation method with MIMO processing

[15]. The common phase error (CPE) due to laser phase noises
is estimated and compensated using the pilot-aided technique
by inserting 16 pilot subcarriers in each OFDM symbol. In the
simulation the timing synchronization is assumed to be per-
fect. Furthermore, the frequency offset between transmitter and
receiver lasers was not considered (except Section VIII).

Another CO-OFDM configuration known as RGI CO-OFDM
[16] is also considered here. In RGI CO-OFDM transmissions
a short CP is added to each OFDM symbol to accommodate the
ISI with short memory, such as fiber PMD or residual CD. The
accumulated dispersion of the optical link is compensated at the
receiver using overlapped frequency-domain equalizers (OFDE)
[17], [18] or time domain finite impulse response filters [19],
[20]. In this work the OFDE with overlap-save method was
applied [17]. As the CD can be effectively compensated at the
receiver, a shorter symbol duration can be used in RGI CO-
OFDM. As a result, in RGI CO-OFDM transmissions a smaller
number of subcarriers can be used [16]. We consider a 112 Gb/s
RGI CO-OFDM transmission system with 112 subcarriers. The
useful OFDM symbol duration is 3.8 ns and the CP length is
0.2 ns. In applying OFDE with overlap-save method, a block
size of ten OFDM symbols (40 ns) was used.

IV. STATISTICAL PROPERTIES OF RECEIVED QPSK SYMBOLS

IN CO-OFDM TRANSMISSIONS

For single carrier PDM QPSK systems in uncompensated
links, the statistical properties of the received nonlinear inter-
ference noise (NLIN) have been investigated and compared with
different modulation formats in [13], [21]. In this section, we
study in detail for the first time the statistical properties of QPSK
signal in PDM CO-OFDM transmissions. We take into account
not only the four aforementioned components but also the phase
of the QPSK signal. The simulation setup of a 112 Gb/s QPSK
PDM CO-OFDM system is discussed in detail in the previous
section.

The histograms of in-phase and quadrature components of
QPSK signal in 112 Gb/s PDM CO-OFDM transmissions are
shown in Figs. 3 and 4 (only for x-polarization, a similar result
for y-polarization is observed, but not shown here) for different
values of the launch power (3 and 6 dBm). The Gaussian fitting
is obtained by calculating the mean and STD of the received
statistical samples. In this simulation the ASE noise added by
EDFAs is not considered in order to analyze the distribution
of signal components alone. In addition, the transmitter and re-
ceiver lasers are considered as noiseless. The only source of
noise is the fiber nonlinearity. We find that the distributions
of in-phase and quadrature components of QPSK signals are
Gaussian-like only for small values of the launch power. Herein,
the well-known Kolmogorov-Smirnov test was applied to de-
fine if a statistical signal has a Gaussian-like distribution. The
Kolmogorov-Smirnov statistic (KSSTAT) for a given cumula-
tive distribution function F(x) is defined as

D = sup |Fn (x) − F (x)| (14)
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Fig. 3. Histogram of in-phase and quadrature components of the received
QPSK symbols in x and y-polarization. Propagation over 800 km in nonlinear
limited regime (3 dBm). Gaussian fitting is superimposed to each histogram,
KSSTAT values are also included in each histogram.

Fig. 4. Histogram of in-phase and quadrature components of the received
QPSK symbols in x-polarization. Propagation over 800 km in nonlinear limited
regime with the launch power of 6 dBm.

where Fn (x) is the empirical distribution function for n obser-
vations of the statistical signal. The typical value of the KSSTAT
for a Gaussian-like signal is below 0.05.

If the launch power is set to 3 dBm (no errors were detected
at the receiver, 409 600 bits were sent) a small mismatch be-
tween the actual distribution and its Gaussian fitting can be
observed (see Fig. 3). If the launch power is increased to 6 dBm
(BER = 0.0002) the mismatch becomes obvious (see Fig. 4)
and the Gaussian distribution shows a poor approximation of
the distribution of in-phase and quadrature components of the
received QPSK symbols.

This result is different from what has been observed for sin-
gle carrier QPSK transmissions in [13], showing that at high
values of the launch power the NLIN in CO-OFDM transmis-
sion deviates from Gaussian distribution. The obtained result
herein agrees well with a recent study on the statistical property
of NLIN in CO-OFDM transmission [22], indicating that the
Gaussian assumption of NLIN, which is the key in the deriva-
tion of closed-form expression for the nonlinear performance of
CO-OFDM in [23], [24] is, in general, not satisfied.

In addition, the statistical properties of in-phase and quadra-
ture components of the received QPSK symbols in CO-OFDM
transmissions are also sensitive to the specific DSP technique
used, especially the CPE estimation and compensation. The
CPE due to laser phase noise and fiber nonlinearity rotates the
constellation diagram and thus changes the statistical proper-
ties of the in-phase and quadrature components significantly. In
the presence of CPE offset due to the estimation inaccuracy,
which usually occurs in the nonlinear limited regime, the PDF
of in-phase and quadrature components cannot be approximated
accurately by a Gaussian distribution (see Fig. 4). As a conse-
quence, the two aforementioned “Gaussian assumption” based
BER estimation methods [expressions (10) and (13)] may not
be effective for QPSK CO-OFDM transmissions.

Herein, we study the statistical properties of the phases of the
received QPSK symbols. The histograms of the received QPSK
symbols’ phases (x-polarization) in four quadrants of the con-
stellation diagram are shown in Figs. 5 and 6 for different values
of the launch power (3 and 6 dBm). We find that the distribu-
tion of the received QPSK symbols’ phases in each quadrant of
the constellation diagram is essentially Gaussian (D < 0.05),
independent of the launch power and the transmission distance.
For the investigated system our analysis is carried out by chang-
ing the launch power from −9 to 9 dBm (in 3 dB steps) and the
transmission distance from 400 to 2400 km (in 400 km steps).
This phenomenon can be explained by the fact that the nonlinear
phase noise in CO-OFDM transmission is dominated by four-
wave mixing and its interaction with ASE noise. As a result,
when independent data is carried on a large number of subcar-
riers, the central limit theorem can be applied for the nonlinear
phase noise. In addition, the distribution of the received QPSK
symbols’ phases in each quadrant is nearly insensitive to the
CPE offset, especially when the number of subcarriers is large,
as the CPE offset affects only the mean value but not the STD
of the received QPSK symbols’ phases. As a result, a more re-
liable statistical BER estimation method for QPSK CO-OFDM
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Fig. 5. Histogram of the received QPSK symbols’ phases (x-polarization)
in four quadrants of the constellation diagram. Propagation over 800 km in
nonlinear limited regime with the launch power of 3 dBm.

Fig. 6. Histogram of the received QPSK symbols’ phases (x-polarization)
in four quadrants of the constellation diagram. Propagation over 800 km in
nonlinear limited regime with the launch power of 6 dBm.

transmissions can be developed based on the statistical proper-
ties of the QPSK symbols’ phases.

V. PROPOSED BER ESTIMATION METHOD FOR QPSK
CO-OFDM TRANSMISSIONS

It has been shown in the previous section that the distribution
of the received QPSK symbols’ phases in each quadrant of the
constellation diagram is in good agreement with a Gaussian
distribution. Using a Gaussian approximation, the PDF of the
received QPSK symbols’ phases in four constellation quadrants
can be expressed as

fk (φ) =
1

σk

√
2π

· exp(− (φ − φk )2

2σ2
k

) (15)

where fk (φ), φk and σk denote the PDF, means and STDs
of the received phases in the kth quadrant (k = 1, 2, 3, 4). In
QPSK (Gray coded) CO-OFDM systems, information symbols
can have one of the four following values:

X1 =
√

2 exp(jπ/4), X2 =
√

2 exp(j3π/4)

X3 =
√

2 exp(−j3π/4), X4 =
√

2 exp(−jπ/4).

The error probability when X1 is transmitted can be calcu-
lated as follows:

PE (X1) =
∫ 0

−∞
f1(φ)dφ +

∫ +∞

π/2
f1(φ)dφ =

=
1
2

[
erfc(

φm,1

σ1
√

2
) + erfc(

π/2 − φm,1

σ1
√

2
)
]

.

(16)

Similarly, we can obtain expressions for PE (X2), PE (X3),
PE (X4), then the system’s BER is given by

BER =
1
8

4∑
k=1

[
erfc

(
φk − θk + π/4

σk

√
2

)

+ erfc
(

θk + π/4 − φk

σk

√
2

) ]
(17)

where θk = arg(Xk ), k = 1, 2, 3, 4. This expression offers a
relatively simple way to estimate the performance of a CO-
OFDM system by calculating the means and STDs of the re-
ceived phases in each quadrant of the constellation diagram.
This BER estimation method is nondata-aided.

The proposed BER estimation method can also be extended
for m-PSK CO-OFDM transmission as

BER =
1

2m

m∑
k=1

[
erfc

(
φk − θk + π/m

σk

√
2

)

+ erfc
(

θk + π/m − φk

σk

√
2

) ]
(18)

where θk = (2k + 1)π/m, k = 0, 1 . . . m − 1 are the phases of
m-PSK information symbols.

VI. PERFORMANCE COMPARISON OF BER ESTIMATION

METHODS FOR QPSK CO-OFDM TRANSMISSIONS

In this section we compare the performances of different BER
estimation methods, namely data-aided EVM, nondata-aided
EVM (Q-factor 1), Q-factor 2, Q-factor 3 and the proposed
method [expression (16)], for QPSK PDM CO-OFDM and
8-PSK PDM CO-OFDM transmissions. For comparison pur-
poses the estimated BERs for x- and y-polarization are averaged
and then converted to a Q-factor using the expression (1).

The investigated BER estimation methods for 112 Gb/s QPSK
PDM CO-OFDM are compared in Fig. 7. The blue line with cir-
cle markers (Q(BER)) is the reference result of the direct error
counting from Monte Carlo simulations (ten runs). The red line
with square markers (Q-proposed) shows the result obtained us-
ing the estimation method proposed here based on a Gaussian
approximation of the phase noise statistics [expression (17)].
In Fig. 7 almost no mismatch between Q(BER) and Q-proposed
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Fig. 7. Q-factor values (average over x-and y-polarization) as a function of
the launch power in 112 Gb/s QPSK PDM CO-OFDM after 2400 km of trans-
mission. Q(EVM), Q1, Q2, Q3 all follow the lower curve.

Fig. 8. Q-factor values (average over x-and y-polarization) as a function of
the launch power in 112 Gb/s QPSK PDM RGI-CO-OFDM after 4000 km of
transmission.

is observed. This result indicates that the proposed BER estima-
tion method is highly accurate. On the other hand, all the other
BER estimation methods, namely EVM (data-aided, nondata-
aided), Q-factor 2 and Q-factor 3, underestimate the system
performance by approximatelly 1 dB. Interestingly, all these
BER estimation methods show almost the same performance
for CO-OFDM transmission.

The performance of the BER estimation methods for
112 Gb/s QPSK PDM RGI-CO-OFDM is shown in Fig. 8. In
112 Gb/s QPSK RGI-CO-OFDM transmissions with OFDE at
the receiver, the proposed BER estimation method also shows
excellent agreement with the direct error counting result. Other
BER estimation methods, unlike the case of the conventional
CO-OFDM transmission, overestimate the system performance.
These BER estimation methods all show similar performance
and the estimation inaccuracy increases with the launch power.
When the launch power is low (ASE limited regime) EVM (data-
aided and nondata-aided), Q-factor 2, Q-factor 3 show good
agreement with the direct error counting technique. However, at
a high level of the launch power (the nonlinear limited regime)
the inaccuracy in estimation is significant and increases pro-
portionally with the launch power. A closer inspection reveals

Fig. 9. Q-factor values for the center channel (average over x- and y-
polarization) as a function of the launch power in 7 × 112 Gb/s QPSK PDM
WDM RGI-CO-OFDM after 3200 km of transmission.

Fig. 10. Q-factor values (average over x- and y-polarization) as a function
of the launch power in 112 Gb/s 8-PSK PDM CO-OFDM after 800 km of
transmission.

that among the BER estimation methods considered here the
data-aided EVM has the poorest performance. However, the dif-
ference in performances of data-aided EVM and other methods
is not significant.

The BER estimation methods applied in WDM CO-OFDM
transmissions transmission are now investigated. We simulate
7 × 112 Gb/s PDM WDM RGI-CO-OFDM transmissions with
50 GHz frequency spacing. In Fig. 9 the Q-factors obtained by
using different BER estimation methods for the center channel
are compared. The proposed BER estimation method also shows
an excellent performance despite the nonlinear impairments
from neighboring WDM channels. Similar to single channel
PDM RGI-CO-OFDM transmission, all other BER estimation
methods overestimate the system performance. The data-aided
EVM also shows the worst performance and nondata-aided,
Q-factor 2 and Q-factor 3 have a similar performance.

Fig. 10 shows the performance of the proposed BER esti-
mation method for 112 Gb/s 8-PSK PDM CO-OFDM trans-
mission. The estimation of the BER from data-aided EVM for
8-PSK systems can be found in [7]. As long as the received
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Fig. 11. Q-factor values (average over x-and y-polarization) as a function of
the combined laser linewidth in 112 Gb/s PDM CO-OFDM after 2000 km of
transmission; the launch power was 1 dBm.

phases of each transmitted symbol has a Gaussian distribution,
the proposed method also offers very accurate estimation of the
system performance if m-PSK modulation format is adopted.
However, the obtained results cannot be extended directly to
high-order quadratic-amplitude modulation (QAM) modulation
formats such as eight QAM or 16QAM, in which the decision
is made by talking into account both the phases and amplitudes
of the received symbols. For high-order QAM modulation for-
mats, a 3-D PDF would be required for estimating the system’s
BER. In this case, a larger number of statistical samples would
be required for an accurate estimation which significantly in-
creases the complexity of the estimator. This problem is beyond
the scope of this paper. However, further investigation on this
subject is of great interest.

VII. IMPACT OF THE LASER PHASE NOISE

In this section we study the robustness of the proposed BER
estimation method to laser phase noise. The laser phase noise can
change the statistical properties of the received QPSK symbols,
and thus affects the performance of all statistical BER estimation
methods. For all results presented in this section the CPE is
estimated and compensated using the pilot-aided technique. For
the conventional 112 Gb/s CO-OFDM transmission 16 pilot
subcarriers are inserted in each OFDM symbol, while for RGI-
CO-OFDM the number of pilot subcarriers used is 6 [25], [26].
Note that a smaller number of pilot subcarriers can be used in
RGI-CO-OFDM due to the shorter symbol duration.

The impact of laser phase noise on the performances of the
BER estimation methods is shown in Figs. 11 and 12 for CO-
OFDM and RGI-CO-OFDM transmissions. The combined laser
linewidth is the sum of the linewidths of the transmitter and
receiver lasers. We assume that the transmitter and receiver
lasers have the same linewidth, which is equal to half of the
combined linewidth. For 112 Gb/s PDM CO-OFDM transmis-
sion almost no mismatch between the BERs estimated by the
proposed method and the direct error counting was observed
when the combined laser linewidth is increased up to 1.2-MHz.
This result indicates that the proposed BER estimation method

Fig. 12. Q-factor values (average over x- and y-polarization) as a function of
the combined laser linewidth in 112 Gb/s PDM RGI-CO-OFDM after 4000 km
of transmission; the launch power was 1 dBm.

is extremely tolerant to laser phase noise. Note that commer-
cial external-cavity lasers have a linewidth of around 100 kHz
which is the value used here. Other BER estimation methods,
on the other hand, are much less tolerant to laser phase noise
as their accuracy decreases when the combined laser linewidth
is increased. At the combined laser linewidth of 200 kHz, all
the aforementioned methods underestimate the system perfor-
mance by approximately 1 dB. However, if the combined laser
linewidth is increased to 1.2 MHz the difference in Q-factor
increases to over 2.5 dB.

For 112 Gb/s PDM RGI-CO-OFDM the combined laser
linewidth is increased to 12 MHz for investigating its impact
on the performance of BER estimation methods. It can be seen
that RGI-CO-OFDM is much more tolerant to laser phase noise
in comparison with the conventional CO-OFDM because of the
shorter symbol duration. In our investigated systems the symbol
duration of RGI-CO-OFDM is 4 ns, which is 18 times shorter
than the symbol duration of the CO-OFDM system (72 ns).
For the CO-OFDM system a 3 dB penalty due to laser phase
noise is observed at 0.5 MHz of combined laser linewidth while
for RGI-CO-OFDM it occurs at 9 MHz (also 18 times dif-
ference). As shown in Fig. 12, the proposed BER estimation
method also shows an excellent tolerance towards the com-
bined laser linewidth. Even though at high level of the combined
laser linewidth this method also overestimates the system per-
formance but the inaccuracy is relatively small, below 0.5 dB
for 12 MHz of the combined laser linewidth. On the other hand,
for the same value of the combined laser linewidth, other BER
estimation methods overestimate the system performance by
around 3 dB. Note that for RGI-CO-OFDM data aided EVM of-
fers the worst performance while the combined laser linewidth
is varied.

The results obtained in this section indicate that the proposed
BER estimation method is highly tolerant to laser phase noise,
both in CO-OFDM and RGI-CO-OFDM transmissions.

VIII. IMPACT OF THE FREQUENCY OFFSET

Similar to laser phase noise, the frequency offset between
the transmitter and receiver lasers also changes the statistical
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Fig. 13. Q-factor values (average over x-and y-polarization) as a function of
the frequency offset in 112 Gb/s PDM CO-OFDM after 2000 km of transmission;
the launch power was 1 dBm.

Fig. 14. Q-factor values (average over x-and y-polarization) as a function
of the frequency offset in 112 Gb/s PDM RGI-CO-OFDM after 4000 km of
transmission; the launch power was 1 dBm.

properties of the received QPSK symbols. In CO-OFDM trans-
missions, this frequency offset can be effectively estimated and
compensated using DSP techniques [27]. However, a residual
uncompensated carrier frequency offset is always present in the
system and thus the performance of statistical BER estimation
methods may be affected. In this section we study the impact
of carrier frequency offset on the effectiveness of the proposed
BER estimation method.

For this investigation the frequency offset in CO-OFDM and
RGI-CO-OFDM systems is varied up to 4 and 36 MHz respec-
tively. As the frequency spacing in RGI-CO-OFDM system can
be much larger than that of the traditional CO-OFDM system,
RGI-CO-OFDM is also more tolerant to the frequency offset.
This is another major advantage of RGI-CO-OFDM as com-
pared to traditional CO-OFDM systems.

The simulation results are shown in Figs. 13 and 14. Remark-
ably, for both the conventional CO-OFDM and RGI-CO-OFDM
systems the proposed BER estimation method also offers the
most accurate estimation of the system performance in the pres-
ence of carrier frequency offset. However, some differences
were observed for CO-OFDM and RGI-CO-OFDM transmis-
sions. For RGI-CO-OFDM, the performance of all the BER
estimation methods becomes worse if the frequency offset is in-

creased. If the frequency offset is set to 36 MHz, the data-aided
EVM overestimates the system performance by over 2 dB in
comparison with 1 dB when no frequency offset is included.
The proposed BER estimation method also underestimates the
system performance in the presence of high frequency offset.
However, the inaccuracy is insignificant. For CO-OFDM sys-
tem, the proposed BER estimation method shows an excellent
performance even in the presence of large frequency offset.
Other BER estimation methods also offer good performances
and their inaccuracies do not seem to increase with the frequency
offset (up to 4 MHz). However, in general, the proposed BER
estimation method shows a much better performance than other
considered here techniques.

IX. CONCLUSION

The statistical properties of CO-OFDM transmission are
rather different from previously studied intensity modulation
direct detection fibre-optic systems [28]–[32]. Therefore, new
rules for BER estimates from numerical modelling have to be
developed and verified. We have investigated the performance of
a novel BER estimation method, which is based on the statistical
properties of the received QPSK symbols, for CO-OFDM trans-
missions. Through numerical modeling of both the conventional
PDM CO-OFDM and PDM RGI-CO-OFDM transmissions we
demonstrate that this method is more accurate compared to com-
monly used BER estimators. In addition, we also show that the
proposed BER estimation method is extremely tolerant to the
laser phase noise and the frequency offset between transmitter
and receiver lasers.
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