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Abstract—Most of the nonlinear Fourier transform (NFT)
based optical communication systems studied so far deal with
the burst mode operation that substantially reduce achievable
spectral efficiency. The burst mode requirement emerges due
to the very nature of the commonly used version of the
NFT processing method: it can process only rapidly decaying
signals, requires zero-padding guard intervals for processing
of dispersion-induced channel memory, and does not allow
one to control the time-domain occupation well. Some of
the limitations and drawbacks imposed by this approach can
be rectified by the recently-introduced more mathematically-
demanding periodic NFT processing tools. However, the studies
incorporating the signals with cyclic prefix extension into the
NFT transmission framework have so far lacked the efficient
digital signal processing (DSP) method of synthesising an optical
signal, the shortcoming that diminishes the approach flexibility.
In this work we introduce the Riemann-Hilbert problem (RHP)
based DSP method as a flexible and expandable tool that would
allow one to utilise the periodic NFT spectrum for transmission
purposes without former restrictions. First, we outline the the-
oretical framework and clarify the implementation underlying
the proposed new DSP method. Then we present the results
of numerical modelling quantifying the performance of long-
haul RHP-based transmission with the account of optical noise,
demonstrating the good performance quality and potential of
RHP-based optical communication systems.

Index Terms—Fibre-optic communications, nonlinear Fourier
transform, nonlinear inverse synthesis, periodic nonlinear
Fourier transform.

I. INTRODUCTION

Historically, the classical communication theory was de-
veloped for linear channels. However, it is well known that
the fibre-optic channels are essentially nonlinear due to the
Kerr effect: modulation, transmission, detection and pro-
cessing techniques optimal for nonlinear fibre channels are
yet to be revealed. One of such truly nonlinear approaches
(coined eigenvalue communications) was proposed in [1]:
it is based on the special properties of the master model
[2] that approximately describes nonlinear fibre channels in
certain limits. The concept of eigenvalue communication
was resurrected and largely extended recently under the
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name of NFT-based transmission, see, e.g., recent papers
[3, 4] and references therein. The anticipated advantage
of NFT-based optical communication systems is their po-
tential “nonlinearity-immune” performance, and the NFT
processing has been shown to be a promising technique
for the mitigation of nonlinear fibre distortion with various
system designs studied in recent years [4–12, 20].

It should be mentioned that NFT is just another name
(frequently used in engineering community) for the inverse
scattering transform method invented for the solution of
a specific class of nonlinear equations – the so-called
integrable equations [2, 13]. A lot of research has been done
in this field by the mathematical community and future
engineering work can take advantage of these previous
mathematical studies. As was shown in the seminal work
by Zakharov and Shabat [2], the nonlinear Schrödinger
equation (NLSE) belongs to the aforementioned class of
integrable equations and have many remarkable proper-
ties that allow one to describe signal evolution in such
nonlinear systems by applying the NFT. Simultaneously,
the NLSE is the key model governing in certain limits and
under specific conditions signal propagation in single-mode
optical fibres [4, 14]. In this work we will focus only on the
NLSE-based communication channels,though these ideas
can be expanded to more general cases. The central idea
behind the NFT-based communication system is to use, in
order to carry the encoded data, the so-called nonlinear
(NFT) spectrum of a signal [1]. The advantage of such an
approach is that the NFT spectrum evolution in an idealised
(described by lossless and noiseless NLSE) nonlinear optical
fibre is linear, and the spectral “bands” defined within the
NFT domain are free from the nonlinear cross-talk [3, 4].
This is in contrast to the “conventional” information trans-
mission in coherent optical systems, where the nonlinear
cross-talk that is widely considered to be one of the factors
limiting conventional systems performance [14, 15].

Insofar, most of the studies related to the NFT-based
communication systems have dealt with the signal process-
ing using NFT methods developed in formal mathematical
terms for an infinite time interval [2, 4]. In such a situation,
signal under consideration, formally defined on the infinite
extent, has to decay in time sufficiently fast (has to have a
finite L1 norm [13], to be more mathematically specific). Of
course, in real-world applications, the truncated waveforms
are used. When the “insufficient portion” of the signal is
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processed, or when the neighbouring NFT symbols overlap
due to a weak time-decay rate or dispersive spreading,
the noticeable performance penalty emerges [16, 17]. Even
with such limited NFT approach, there have already been a
number of experimental confirmations that the NFT-based
techniques do indeed have the potential for mitigation of
nonlinear penalties [8–10, 18–20].

However, despite the promising performance of the
systems based on the “conventional NFT”, they all still
have drawbacks and limitations coming from the current
type of commonly used NFT processing. Aside from some
technical problems related to the utilisation of “unusual”
NFT-generated pulses (the systems’ sensitivity to transceiver
imperfections [4, 7] and optical noise [17]), and the is-
sues related to the NFT routines performance as the sig-
nal power and/or processing interval grow [3, Part II],
[6, 16, 21, 22], which are rather just the peculiarities of
the method, we mention more fundamental issues: (i) the
hardly-controllable (and typically extended) optical signal
duration after the inverse NFT at the transmitter [7, 20, 23];
(ii) a large processing window required, involving the full
dispersion-induced memory; (iii) high signal power fluc-
tuation in a stream of transmitted symbols [4]. The latter
means that compared to the current version of NFT-based
schemes where the dispersion-induced memory either the
same or exceeds the information-bearing batch duration,
the periodic NFT systems render a much lower PAPR (peak-
to-average power ratio) level. (The difficulties when INFT is
applied to long-duration pulses were underlined in [21, 22])

In this respect, considering the periodically-continued
signals and respective NFT processing type (periodic NFT,
PNFT) one can relax or even eliminate some of the afore-
stated problems [24]. In particular, the period of PNFT-
generated signal and, hence, the symbol duration are well
controllable parameters. Note that this problem can also be
dealt with by means of recently-introduced “b-modulation”
NFT-based method [56, 57]. The power fluctuation of
periodically-continued signals is much lower due to the ab-
sence of zero-padding “wings” in-between the information-
bearing time intervals (symbols), and for the current NFT
methods, where the dispersion memory is comparable
with the signal duration, the PNFT renders a significant
reduction in PAPR. Within the PNFT we have to process just
one (predefined) period reducing the processing window
and, hence, the number of samples to process [24, 26],
and the overall complexity of a DSP processing [25]. The
latter basically comes from the advantage of using cyclic
extension in PNFT. Using periodic solutions, one can intro-
duce cyclic extension instead of the zero guard intervals
between data batches. As the signal propagates through
the fibre, it broadens due to the chromatic dispersion. As
far as the length of this guard band (cyclic extension) is
greater than the channel memory, the signal broadening
can be compensated. At the receiver, it is required for the
whole broadened signal to be processed. This means that
some information of the signal slips out of the original
time window, T , into the extended wings of length µ/2,
where µ/2 is equla to the channel memory, see Eq. (10).

However, due to the presence of the cyclic extension, the
original time duration of the signal, T , contains all the
information necessary to recover data and there is no need
to process the rather large window of size T +µ. This fact
can also result in the performance improvement due to ISI
reduction, as the spreading of the neighbouring symbols
affect the central part less than the “wings”.

The signal-to-noise ratio (SNR) degradation due to signal-
noise interference, proportional to the processing inter-
val duration for the transmission inside the NFT domain
[17, 27], can be diminished due to the shorter processing
window as well. A PNFT-based system can have, in addition,
a better overall spectral efficiency due to the smaller time-
bandwidth product of the signal [28]. Another benefit of
PNFT, as will be explained later, is the lower computational
complexity of the inverse transformation numerical rou-
tines in comparing with the available conventional NFT
ones. In our approach of constructing a periodic signal
by solving a RHP, the RHP is solved for each point in
time, hence, the complexity scales linearly with the number
os time samples of the signal which is to be compared
to the best available algorithm with O(N log2 N ) proposed
in [58]. This also helps parallelise the computation in
our proposed approach which. Thus, the PNFT applied to
optical transmission allows us to retain the “conventional”
NFT advantages, but can render a lot of beneficial features
itemised above. The challenge is a growing mathematical
complexity behind PNFT-based methods.

Within the PNFT-based communication concept, we have
to deal with the periodic solutions of nonlinear integrable
equations. The latter have been the subject of study for
a long time [29–33], and their vast application area rang-
ing from water gravity waves to optical turbulence, has
encouraged researchers to develop a solid mathematical
base for their description [34–36]. In particular, there exists
the analogue of inverse scattering method (the NFT, in
other words) for periodic “boundary conditions” [24, 35–
40]. Finding the nonlinear spectrum of a periodic function
(the direct PNFT) at the receiver (Rx) side can be done
using the fast PNFT algorithm described in Ref. [41]: the
complexity here is close to that of the fast Fourier transform.
We also mention some earlier numerical PNFT methods
with improved complexity [35].

The main challenge in PNFT-based communication arises
from the inverse transformation at the transmitter (Tx)
side: constructing a periodic signal in time domain given
the modulated nonlinear (PNFT) spectrum components
(nonlinear modes). To the best of our knowledge, there
is still a lack of a generic and effective method to per-
form the inverse PNFT, and more active involvement of
mathematicians would be greatly beneficial here. There
exist approaches suitable for particular nonlinear solutions
and respective PNFT spectra types [42]. However, these
methods have a somewhat limited flexibility compared to
quite versatile conventional NFT-transmission approaches
[4, 7]. The same problem holds when the periodic solutions
with simple known PNFT spectra are used [26, 28, 43–45],
which can be understood as the analogue of eigenvalue
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Fig. 1: The schematic of a communications system with
the DSP processing modules at Tx and Rx. In particular, for
our research the DSP at Tx side includes the RHP solution,
while at the Rx side the processing described at Appendix
B is used.

communication idea [1], the progenitor of NFT-based tech-
niques. The main technical challenges in the computation
of inverse PNFT at the Tx side are related to the accurate
Riemann theta function computation and Jacobi inversion
problem, see Ref. [24] and referenced therein for more
details.

In this paper we propose and develop the new DSP
method for the PNFT-based transmission (Fig. 1) that allows
one to compute the inverse PNFT harnessing the numer-
ical solution of RHP [47] attributed to the NLSE [48]. In
this work, as a proof-of-concept, we design a relatively
simple communication system based on the RHP signal
processing at the Tx side considering the so-called finite-
genus solutions of NLSE. The finite-genus solutions are
generally quasi-periodic, but the periodicity can be ensured
by imposing some additional constraints on the PNFT
spectrum, see [42] and also Eq. (27) and the mentioned
argument about it.

The paper is organised as follows. In Sec. II we briefly
describe the conventional approach for the computation
of finite-genus solutions, which employs their algebro-
geometric description on Riemann surfaces, and then we
itemise the difficulties that arise comparing it with the
RHP method. In Sec. III we present the RHP approach for
constructing periodic finite-genus solutions of the NLSE.
These results are then used in Sec. IV to illustrate the pro-
cedure of data mapping onto the nonlinear spectrum and
to design a communication system. Further we elucidate
how one can manipulate system’s parameters and compute
the communication-related characteristics of the signal.
Simulation results are given in Sec. V. The elements of
Floquet theory used for direct PNFT are given in Appendix
A, and the RHP formalism for constructing the finite-genus
solutions is outlined in Appendix B. In Appendix C we
discuss the transformation of the RHP in view of improving
effectiveness of its numeric implementation. In this work
bold symbols mean vectors and matrices (e.g. I denotes a

2×2 identity matrix), with the exception of Pauli matrices,

σ2 =
(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

The complex unity in this study is denoted as i , ℜ and
ℑ are the real and imaginary parts of a complex number,
correspondingly, and asterisk means complex conjugate.

II. MATHEMATICAL BACKGROUND: THE

ALGEBRO-GEOMETRIC APPROACH FOR THE COMPUTATION OF

INVERSE PNFT

A. Basic properties of nonlinear spectrum in periodic NFT

Finite-genus (also called finite-gap) NLSE solutions arise
when the spectrum of the associated linear operator (2),
defined below, consists of a finite number of arcs. Here we
write down the NLSE in the dimensionless form (see Ref. [4]
for the explanation of normalisations),

i qz +qt t +2|q|2q = 0, (1)

where q is the normalised light-envelope function, t is the
retarded time, and z is the normalised distance along the fi-
bre. Eq. (1) here is explicitly written for the most interesting
case of anomalous dispersion. It is the celebrated Zakharov-
Shabat system of auxiliary linear equations, which has the
same form for any NFT type (periodic or infinite-duration)
attributed to NLSE:

Φt =
[ −iλ q(t , z)
−q(t , z)∗ iλ

]
Φ, (2)

considered on the whole line t ∈ R, where q(t , z) is a
solution to NLSE (1), Φ(t , z,λ) is a two-element (vector)
eigenfunction, and λ is the spectral parameter that can
be thought of as a nonlinear analogue of frequency. If the
“potential” in (2) is periodic, i.e., q(t , z) = q(t+T, z) for some
period T , then the spectrum of (2) consists of finite or
infinite number of arcs (see Fig 2a) symmetric w.r.t. R. The
so-called main spectrum consists of the end points of the
spectral arcs (some details are given in Appendix A; for more
information, see [37, 39]). If the number of arcs is finite, the
“potential” is called finite gap or finite-genus; the latter term
comes from its construction involving objects defined on a
Riemann surface of finite genus, see Section II-B below. In
this case, the main spectrum consists of pairs of complex
conjugated numbers, {λ j ,λ∗

j }, j = 0,1, . . . ,N for a genus-N
solution. If q(t , z) satisfies the NLSE (1), the spectral arcs
(and thus their end points λ j ) are independent of z (similar
to the soliton eigenvalues of “conventional“ NFT [2, 4, 13]).
These arcs constitute the continuous nonlinear spectrum
part locus, in contrast to the “conventional” NFT, where
the continuous spectrum locus is the real axis, see Fig. 2.

B. Algebro-geometric approach

Finite-genus solutions of Eq. (1) are conventionally ex-
pressed in terms of meromorphic functions, differentials
and integrals on hyperelliptic Riemann surfaces of finite
genus, see [40]. The construction of such solutions (usu-
ally called in this context algebro-geometric) involves the
following steps:
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Fig. 2: a) Nonlinear spectrum of a periodic signal with multiple continuous spectra and the main spectrum as the
endpoints of the arcs, and b) Nonlinear spectrum of a vanishing boundary signal with a continuous spectrum and the
discrete spectrum as the singular complex points independent of the location of the continuous spectrum.

Fig. 3: The procedure of the inverse transformation with algebro-geometric approach (upper row) and solving a Riemann-
Hilbert problem (lower row).

(i) Given {λ j }, j = 0,1, . . . ,N , introduce the Riemann sur-
face X associated with the algebraic curve F (w,λ) = 0
having the form

w2 =
N∏
j=0

(λ−λ j )(λ−λ∗
j ).

Introduce the canonical basis of oriented circles
(a j ,b j ), j = 1, . . . ,N , on X and define the associated
objects: the period matrix B , the basis of holomorphic
differentials ω, and the Abel integrals Ω j , j = 1,2,3,
fixed by their particular behaviour at ∞± (the infinity
points at two sheets of X ).

(iii) Determine the scalar parameters E , N , and α from the
asymptotic expansions of Ω j at ∞±, and the vector
parameters V, W, and r by V j =

∫
b j

dΩ1, W j =
∫

b j
dΩ2,

j = 1, . . . ,N , r = ∫ ∞+
∞− ω.

(iv) Given B , determine the Riemann theta function

Θ(u1, . . . ,uN ) = ∑
l∈ZN

exp
[1

2
(B l, l)+ (l,u)

]
, (3)

where (l,u) = l1u1 + . . .+ lN uN .
(iv) Given an additional N -dimensional vector D, deter-

mine the solution q(t , z) of (1) by

q(t , z) =αΘ(i Vt + i Wz −D+ r)

Θ(i Vt + i Wz −D)

Θ(D)

Θ(D− r)
e−i Et+i N z .

Although the construction of q(t , z) above can be consid-
ered as explicit, its numerical implementation faces several
drawbacks, one of them being related to the numerical
calculation of Riemann theta function. The first step in the
calculation of Θ as a multi-dimensional Fourier series is to
truncate the grid from which the vectors l are drawn, to a
bounded subspace of CN , thus introducing the sampling
of the frequency-wavenumber domain, V − W. This itself
introduces some error in the calculations, which can be
controlled to some extent by considering the contribution
of different terms along the series [46]. However, if this
bounded grid is limited to integers between −M1 and M1,
the number of terms in (3) is (2M1 + 1)N which grows
exponentially with the number of arcs. However, the argu-
ment of Riemann theta function in Eq. (3), contains literally
linear dependency on time. Taking this into account, we
can ensure the periodicity using a commensurable set of
frequencies, C f

j (see appendix B) to convert the multi-
dimensional series into an ordinary Fourier series. In this
way, calculating the Riemann theta function is turned into
a Fourier series with time-dependent coefficients coming
from another Fourier series [35]. Considering this approach,
which is called the hyperfast method of evaluating the
Riemann theta function [35], the complexity of constructing
a periodic signal with N time samples is

O
(
NN (2M1 +1)N log(2M1 +1)

)
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Although the latter property helps decrease the computa-
tional complexity, it remains considerably heavy especially
when compared to its alternative that is rendered by the
RHP approach, see Sec. III.

III. CONSTRUCTING A PERIODIC FINITE-GAP SOLUTION VIA

THE SOLUTION OF A RHP

The same NLSE solutions can be constructed in terms of
the solutions of RHP [48], which is based on the auxiliary
factorisation problem defined in the complex plane of
spectral parameter λ entering Zakharov-Shabat system (2):
given jump matrices on N +1 arcs connecting λ j with λ∗

j ,
find a (matrix-valued) function which is analytic outside
the arcs, whose limiting values from the both sides of the
arcs are related through the given jumps, and whose large-
λ behaviour is prescribed (for details, see Appendix B). A
remarkable features of this RHP is that the dependence
of the jumps on the independent variables t and z of
the NLSE solution appears in an explicit, exponential way.
Particularly, this implies that no time or space stepping is
required to obtain the value of the solution at a specific
t and z. In turn, solving the RHP reduces to solving an
integral equation for a function determined by the union
of the arcs, for which an efficient numeric implementation
is now available [49, 50] (more on the computational
complexity follows). A schematic comparison between the
stages of constructing a periodic solution for the NLSE
using the algebro-geometric and RHP approaches is shown
in Fig. 3. NLSE, being an integrable nonlinear equations,
can be represented as the compatibility condition for a Lax
pair of auxiliary linear equations, consisting of Zakharov-
Shabat system (2), determining the nonlinear spectrum of
a pulse at a given z, and the second equation, determining
the evolution of the nonlinear spectral data [2]:

Φz = R(t , z,λ)Φ, (4)

where

R(λ, t , z) =
[

i |q|2 −2iλ2 2λq + i qt

−2λq∗+ i q∗
t −i |q|2 −2iλ2

]
. (5)

The RHP associated with a genus-N solution to the NLSE
has a distinguished feature that its jump matrices are con-
stants (w.r.t. λ) on each connected part of the jump contour:
each individual arc of the contour is determined by the
main spectrum {λ j }Nj=0 whereas the jump matrix associated

with this arc is determined by the real “phases” {φ j }Nj=0 (an
analogue of vector D in the algebro-geometric approach),
see (7) below. Associated with this data set {{λ j }Nj=0, {φ j }Nj=0}
is the so-called (planar) Baker-Akhiezer function Φ(t , z,λ),
which is a special solution of both Eqs. (2) and (4) that can
be uniquely characterized by the following conditions:

(i) For any t and z, Φ(t , z,λ) is analytic, 2 × 2-valued
function of λ in C\Γ with Γ=∪N

j=0Γ j and Γ j = (λ j ,λ∗
j )

)

is the arc connecting λ j and its complex conjugate.

(ii) The limiting values Φ± of Φ, as λ approaches both the
sides of Γ j , are related through the jump conditions:

Φ−(t , z,λ) =Φ+(t , z,λ)J j , for λ ∈ Γ j , j = 0, . . . ,N ,
(6)

J j =
[

0 i e−iφ j

i e iφ j 0

]
. (7)

(iii) As λ→∞, the limiting value satisfies

Φ(t , z,λ) =
[

I+O
(
λ−1)]e(−iλt−2iλ2z)σ3 . (8)

The associated genus-N solution q(t , z) of the NLSE is

q(t , z) = 2i (Φ1(t , z))1,2

(where (·)1,2 denotes the (1,2) matrix entry), where

Φ1(t , z) = limλ→∞λ
(
Φ(t , z,λ)e(iλt+2iλ2z)σ3 − I

)
. To construct

the time domain waveform given the set of parameters
{{λ j }Nj=0, {φ j }Nj=0}, we need to define the jump matrices, J j

and solve a RHP to arrive at Φ(t , z,λ) and eventually q(t , z).
The most involved part in this scheme is to solve the RHP
(more precisely, to solve a family of RHP parametrized
by t and z). It can be reduced (and then implemented
numerically) to solving an integral equation for a function
determined on the union of all arcs, see Appendix B. We
refer the reader to detailed book [47] for the numerical
realisation of this step. For our purpose, in this work we
will use the existing numerical package RHPackage [49].
Using RHSolve subroutine from RHPackage we note
that in order to solve the RHP we need to deal with
fast discrete cosine transform (DCT) and compute Cauchy
integral (21) at n Chebyshev points of the second kind,
where n is the total number of spectral points on the arcs
(directly related to the resolution ∆λ between the adjacent
discretisation points). The numerical error is shown to
decay spectrally as n grows [50], see also Appendix D.
Computing (21) can be significantly expedited by expanding
the solution using the Chebyshev polynomials of the first
kind inasmuch as the expressions for the Cauchy integral
involving these polynomials are known explicitly. Evaluating
the n Chebyshev polynomials can be done using O(n logn)
floating point operations. To facilitate comparison between
the complexity of evaluating the Riemann theta function
with solving the RHP, keeping the spectral resolution, ∆λ
fixed (i.e. n = n0N where n0 is the number of points over
each cut), one can find the computational complexity of
our proposed method to be

O
(
NN n0 log(N n0)+N M(N n0)

)
,

where M(n1) is the complexity of solving an n1 ×n1 linear
system. The equation above shows that as opposed to
evaluating the Riemann theta, the computational complex-
ity of solving the RHP does not scale exponentially with
the number of cuts which is going to be important when
the approach is generalised to a higher symbol per signal
communication. This feature is the principle advantage
with respect to the alternative approach of the construction
of algebro-geometric solutions where the Riemann theta
functions (3) are used, see Subsec. II-B. It is worth noting
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Fig. 4: Exemplary main spectrum of a genus-1 signal: which
shows complex λ-plane with the cuts Γ j along the arcsÜ(λ j , λ∗

j ), and endpoints {λ j ,λ∗
j }. In our study the data are

mapped on the imaginary parts of eigenvalues.

that the number of cuts can have indirect influence on the
accuracy of the numerical routines through the require-
ments of the application. For example, if increasing the
genus entails a larger bandwidth which in turn enhances
the fibre distortion, the system will need more accurate
numerical calculations realised by more time samples. An-
other note is that, there are periodic solutions to the NLSE
with analytically known closed form based on the algebro-
geometric approach that can provide two real degrees of
freedom while avoiding the Riemann theta function [42,
51, 52]. However, these signals are not generalisable to
a more symbol per signal case while our RHP approach
is. Notice also that the RHP approach guarantees (by the
requirement that all φ j ’s in (7) are real) that the solution
satisfies the focusing NLSE (and not just a NLS system).
This is an advantage over the algebro-geometric approaches
for nonlinear equations associated with non-self-adjoint
Lax spectral problems (like the focusing NLSE), where the
loci of the auxiliary spectrum points are not prescribed
beforehand, and thus a special care should be taken (as
is done, for example, in [51] in the genus-1 case only) in
order to determine physically relevant classes of solutions
(this problem is called the “reality problem” [40]).

IV. A COMMUNICATION SYSTEM BASED ON PERIODIC NFT

To have a signal capable of carrying one complex QAM
symbol in its PNFT (main) spectrum, we use a genus-1
solution as the most straightforward non-trivial case. The
exemplary main spectrum is shown in Fig. 4. For simplicity,
we also do not make use of the additional PNFT parameters
φ0,1 from (7) for our building up the simple proof-of-
concept communication system here, setting φ0 = φ1 = 0.

A. Data mapping, optical signal construction, and its pa-
rameters evaluation

As it was indicated in Sec. III, for our simple genus-
1 system we can ensure the periodicity of the underlying
q(t , z) in t by applying an appropriate shift along the real
axis to the whole spectral picture in Fig. 4, see eq. (27)
and remarks in the paragraph below it. On the other hand,
the difference between the real parts of λ0 and λ1 is
related to the value of the period. Thus, if we want to have
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Fig. 5: Examples of a signal waveform, panes (a) and (c),
constructed from the main spectra shown in panes (b) and
(d), respectively (only the region ℑλ> 0 is depicted).

some predefined period, we can adjust the real parts of
λ0 and λ1, and the QAM symbol can be constructed by
modulating their imaginary parts. In other words, knowing
the imaginary part of the eigenvalues and a given signal
period, T (and thus fixing C f = 2π/T , see (28)), we can
find the real parts of λ0 and λ1. The coefficient C g in
eq. (28) is then calculated, the jump matrices from (29)
are defined, and the solution of the RHP (30) is obtained
using the RHPackage for WOLFRAM MATHEMATICA [49].
Two example signals obtained in such a way (together with
their main spectrum) are shown in Fig. 5 via a procedure
illustrated in Fig. 6. Now notice that the real parts of λ0

and λ1 are associated with the signal bandwidth: when
we keep the imaginary parts fixed, the larger the distance
between the real parts, the greater the bandwidth. The
signal period T = 2π/C f is also affected by this distance;
being rather a complicated function of this distance in
general, it turns to be an almost linear function of it in
the range applicable for practical purpose, see Fig. 7a. The
signal bandwidth dependency is shown in Fig. 7b. For our
simulations we choose to have a signal with bandwidth of
around ∆ν = 5 GHz. These calibration plots allow us to
choose a proper value for the difference in real parts to
guarantee the desirable signal period. On the other hand,
the signal power (or energy, to be more accurate) depends
on the imaginary parts of the points of the main spectrum:
the larger the imaginary parts, the higher the power. For
small difference of the real parts, the signal power is
determined by the largest imaginary part (panes (a) and
(b) in Fig. 8), and thus we can fix the largest imaginary
parts and manipulate with the second one, keeping the
power value almost unchanged. For a larger difference,
both points of the main spectrum are equally involved in
defining the signal power value (see panes (c) and (d) in
Fig. 8). Due to the perturbing noise (numerical, receiver and
amplifier noise), the signal power has a lower bound below
which it is impossible to discern the information bearing
eigenvalues from the noise-induced spurious ones. We have
found this lower limit by performing some simulations
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Fig. 6: The procedure of modulating the NS from a random bit stream.

Fig. 7: Dependencies of (a) the signal period, and (b)
the bandwidth on difference between the real parts of
eigenvalues, for various combinations of imaginary parts..

and have chosen a value large enough to minimise the
possibility of spurious eigenvalue being mistaken for a
data-bearing one. On the other hand, the upper bound on
the signal power is determined by the numerical errors in
nonlinear signal processing and more pronounced signal-
noise interaction. Therefore, the imaginary parts of the
eigenvalues can be seen as ℑλ0,1 = I0+(l−1)∆I , l = 1, · · · ,

p
M

where I0 is the smallest imaginary part imposed by noise,
∆I is the step size, and M is the constellation size. In the
case considered in our work, a QAM constellation, made
up by the imaginary parts of two main spectrum points,
contains a point corresponding to a signal with the lowest
power (the left bottom point of the constellation, see Fig. 9
for example) and other points corresponding to higher
signal powers (having larger ℑλ0,1). Increasing the signal
power by raising the imaginary part of the main spectrum
points makes the distance between the constellation points

Fig. 8: The power of the genus-1 solution as function
of the imaginary parts of the main spectrum for various
differences between the real parts.

grow farther. Thus, the probability of the constellation
points crossing the decision boundaries at the receiver gets
lower. The consequence of controlling the signal power by
means of changing the imaginary part of the eigenvalues
(changing the SNR) and the ability to control the error
by scaling the constellation are the main reason why we
have chosen the imaginary parts of the spectrum points to
carry the data. The real parts are determined by the desired
signal period and the chosen imaginary parts. However,
we note that the effective SNR defined inside the PNFT
domain is an involved function of the signal power and
distance between the constellation points: we can not have
a better performance by simply enlarging the constellation
size. So the interrelation between the system performance
and signal power (constellation size) is studied through
numerical simulations in the following section.

V. SIMULATION RESULTS

In this section, simulation results for a system with
signal (22) in a fibre link with ideal Raman amplification
and in a link with lumped amplification (using EDFA) are
presented. The block diagram of the communication system
is depicted in Fig. 1. The fibre characteristics chosen are
those of a standard single mode fibre: α = 0.2 dB/km,
β2 =−20 ps2/km and γ= 1.3 /W/km, and the span length of
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80 km is considered. For the links with Raman amplification
and EDFA the noise power spectral density, N R

ASE and N E
ASE

respectively, are given by the expressions [14]:

N R
ASE =αLhνs KT , N E

ASE = (eαL −1)hνs nsp , (9)

where hνs is the photon energy, nsp ≈ 1 and KT ≈ 1.13 are
the amplification parameters. In the simulations, when the
lumped amplification (with EDFA) is used, it is necessary
to adopt a path-average model for the fibre link to take into
account the impact of periodic loss and amplification in the
framework of NFT (PNFT). Using such a model, we apply
the adjustment explained in [45] to optimise the location
of amplifiers to improve the performance of an NFT-based
communication system. To overcome the ISI caused by
the chromatic dispersion-induced signal broadening, we
append the signal with cyclic extension in time domain,
Fig. 10. Each signal, carrying one QAM symbol, is extended
for the value greater than the channel memory calculated
from the signal bandwidth ∆ν [53]:

µ= 2π|β2|∆νL, (10)

where L is the link length. In our simulations, the symbols
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Fig. 9: a) The received constellation at 580 km, b) the
received constellation at 1120 km, and c) Q2-factor for a 4-
QAM 1 Gsym/s signal with −5 dBm power against distance.
We used ideal Raman amplification (blue) and EDFA (red),
Lspan = 80 km, adding ASE noise.

are transmitted in “bursts” of 4M samples, where M is the
size of the constellation. The burst is formed as follows:
several signals, modulated using random data, are cyclically
extended and put together. At the receiver, a simple phase
rotation of the constellation is used to reduce the residual
impact of ISI when the broadening is slightly larger than the

Fig. 10: Adding cyclic extension.

cyclic extension. Fig. 11c depicts the Q2-factor calculated
from the EVM for four systems with different constellation
sizes in a 880 km link. The Q2-factor is averaged over the
number of symbols in each burst and over 28 runs. The
symbol rate is 0.8 GSym/s; it can be increased by increasing
the signal bandwidth (changing the real part of the eigen-
values). Fig. 11 shows that there is an optimum power at
which the Q2-factor is maximal. One reason for a decline in
the system performance at higher powers is the dependence
of numerical accuracy on power, as is evident from Fig. 12b.
Increasing the sampling rate and the accuracy of the arcs
discretisation can improve the performance. Based on the
Back-to-Back error shown in Fig. 12a, an over-sampling
ratio of N = 128 is chosen considering the trade off between
the effective noise, complexity and the numerical accuracy.
The received constellations at optimum power are shown in
Fig. 11 a, b, d, and e. As explained before, the axes of these
scatter plots are the imaginary parts of the two eigenvalues
in the discrete (main) spectrum of the received signal,
ℑλ0 and ℑλ1, and points are centred to zero to facilitate
comparison. Fig. 9c portrays the dependency of the Q2-
factor on the link length and the impact of the particular
amplification type: ideal Raman and EDFA. The close-to-
ideal Raman amplification can be realised with a reasonable
degree of accuracy through the second-order Raman pump
[54]. In our simulations the signal power was set to −5 dBm,
and the symbol rate is 1 GSym/s. The received constellation
is depicted at distances z = 580 km and z = 1120 km. We see
that the system performances deteriorates quickly at long
distances due to the ISI caused by the limited cyclic prefix
duration. The performance can be improved by enlarging
the duration of cyclic prefix.

Another important object in communication systems’
design is the probability distribution function (PDF) of the
received symbols. Finding the PDF of the received symbols
given the transmitted ones is necessary to find the mutual
information, channel capacity and to design an optimum
coding and detection strategies. Since there is still a lack
of a mathematical understanding of the behaviour of the
PNFT spectrum quantities under the influence of optical
noise [55], here we rely on the empirical PDF coming from
the histogram of the received symbols. For a 1024-QAM
signal, a 2D histogram of the received QAM symbols is
plotted in Fig. 13 by using 29 symbols. The almost circular
shapes in that figure indicate that the received distribution
is close to the circular Gaussian one. However, as it is
typically occurs in other communication systems based on
the NFT [27], the characteristics of this Gaussian PDF differ
for symbols with different signal power. This can be seen
in Figs. 13b and c where the histogram of the small- and
large-power parts of the constellation are shown. From this
figure, an increase in the standard deviation is apparent
for the symbols (constellation points) attributed to higher
powers. These results are in agreement with the earlier ones
reported in [55] for a PNFT system with different processing
type. This observation suggests a Gaussian mixture model
for the received points λ̂, the PDF of which we can write
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Fig. 11: a) The 4-QAM receiver constellation at the optimum power, b) the 4-QAM receiver constellation at power P =
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Fig. 12: Error of numerical computation of the points of the main spectrum from the NLSE solution, obtained from RHP
solution a) against the resolution at the complex plane of parameter λ and temporal resolution ∆t , and b) against the
signal power P and bandwidth ∆ν.

down as

P (λ̂) = ∑
λ∈Λ

pλN (λ̂;λ,σ2
λ), (11)

where Λ is the set of points in the constellation, pλ is a
probability function over Λ, and N (λ̂;λ,σ2

λ
) denotes a nor-

mal Gaussian distribution for the random variable λ̂ with
mean λ and variance σ2

λ
. One of the most important metrics

of a communication system performance is the mutual
information of the transmitted and received symbols, here
λ and λ̂, respectively. Fig. 14 demonstrates the behaviour of
the achievable mutual information as a functions of the link
length. This figure, when compared with other discrete NFT
spectrum communications systems such as eigenvalue and
norming constants-based communications [59], indicates
the good potential of the PNFT-based systems in rendering
a high spectral efficiency.

VI. DISCUSSION AND CONCLUSION

In this work, we introduced a new approach utilising
the RHP to the modulation, detection, and processing of

optical signal in NFT (or rather PNFT) based systems.
We demonstrated how to construct a periodic signal with
two arcs in its nonlinear spectrum by numerically solving
a RHP, thus using the latter as a DSP tool in a fibre-
optic communication system. Considering only two arcs
(the simplest non-trivial case) simplifies the calculations
and algorithms, however at the expense of our having a
small number of the degrees of freedom per signal that
can be simultaneously modulated. The lack of the direct
precise control over the signal bandwidth and a relatively
small spectral efficiency emerging due to the large time-
bandwidth product are among the consequences of this
choice. In a two-arc system, each signal carries just one
QAM symbol. Therefore, the the cyclic prefixes inserted
to mitigate ISI and carrying no data produce a negative
impact on the spectral efficiency value. However, we note
that the important feature of our current approach is that
it can be scaled up in a straightforward manner. So we
can generally incorporate more arcs for our having more
available parameters for the modulation, and then adjust
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Fig. 13: a) A 2D histogram of the received constellation of a 1024-QAM system at distance z = 680 km and signal power
P =−5 dBm, and a close up for two parts of the constellation attributed to b) the highest and c) the lowest signal power.
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Fig. 14: The achievable mutual information versus the link
length.

the system parameters to have a periodic solution. Then
we can employ some parameters to set the bandwidth
and power. In addition, we can potentially use the phases
φ0,1, participating in the jump matrices definition (8),
alongside with the main spectrum points, to convey more
information. In this way, the ratio of the signal duration
plus guard interval (cyclic prefix) to the number of bits
encoded decreases, leading to a better spectral efficiency.
However, this is left for future works, as at the moment
we do not present any efficient receiver DSP design that
could retrieve the phases. We also notice that a QAM
constellation used in our current work may not be the
best constellation or at least it can be improved by using
probabilistic shaping, and the respective results will be
reported in [60]. It is an interesting idea which we have
been working on as a separate paper At the end we note
that solving the RHP requires extra caution in the case
where the jump contour consists of open arcs, because
its solution has, in general, singularities at the arc ends.
The latter feature would inevitably affect the numerical
implementation. Appendix C shows the way of how we

cope with this problem by transforming the original RHP
to that with the contours consisting of closed arcs. In this
work, the RHP solver RHSolve from [49] is used as a black
box, and we notice that it was not optimally designed for
our purpose, of course. The next step is to design such a
flexible RHP solver package in which the desired problem-
specific adjustments are possible and the accuracy is well
controllable.
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APPENDIX A
NONLINEAR SPECTRUM OF A PERIODIC SOLUTION OF THE

NLSE

Nonlinear spectrum of a periodic solution to the NLSE
is obtained through the spectral analysis of the Zakharov-
Shabat operator Eq. (2), where z is a parameter. Writing it
in the form[

∂t + iλ −q(t , z)
q(t , z)∗ ∂t − iλ

]
Φ= 0 =LΦ, (12)

the spectrum of this operator considered in L2(−∞,∞) is
defined as the collection of those values of the spectral
parameter λ, for which: 1) L fails to be bijective, or 2)
the inverse operator is not bounded. In terms of solutions
of (12), for λ in the spectrum there exist a bounded non-
trivial solution of (12). Determine these two independent
solutions to Eq. (12) by imposing two initial values at a
base point t0 [39] and suppressing the dependence on z

θ(t0, t0;λ) =
[

1
0

]
, and φ(t0, t0;λ) =

[
0
1

]
. (13)
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The fundamental matrix made by these two solutions, being
evaluated at one period T after the base point, is called the
monodromy matrix:

M =
[
θ1(t0, t0 +T ;λ) φ1(t0, t0 +T ;λ)
θ2(t0, t0 +T ;λ) φ2(t0, t0 +T ;λ)

]
, (14)

with detM = 1 and the trace ∆(λ) = TrM , called the
discriminant, independent of the base point. In the Flo-
quet theory for the Zakharov-Shabat operator with periodic
coefficients, its Bloch solution Ψ is determined as an
eigenfunction of the operator of shift by the period:

ψ(t +T ;λ) = m(λ)ψ(t ;λ), (15)

where m(λ) is called the Floquet multiplier. Clearly, ψ is
bounded on the whole line for those λ, for which |m(λ)| = 1.
On the other hand, being a solution of the Zakharov-Shabat
system, ψ is a combination of θ and φ at any time:

ψ(t0 +T ;λ) = Aφ(t0, t0 +T ;λ)+Bθ(t0, t0 +T ;λ)

=M

[
A
B

]
.

Combining this with Eq. (15), it follows that

m(λ)

[
A
B

]
=M

[
A
B

]
, (16)

i.e., m(λ) is an eigenvalue of the monodromy matrix M .
Since detM = 1, two eigenvalues, m+(λ) and m−(λ), are
determined by ∆(λ):

m±(λ) = ∆(λ)±
√
∆2(λ)−4

2
, (17)

from which we can realise that ∆(λ) ∈ [−2,2] for the solution
to be bounded. It follows that the continuous spectrum of
the Zakharov-Shabat operator, which is where |m(λ)| = 1,
can be characterized by the inequality ∆2(λ) ≤ 4. For the
end points λ= λ j , we have ∆(λ j ) =±2 and thus m(λ j ) = 1
or m(λ j ) = −1, which, in view of (15), corresponds to the
periodic or anti-periodic solutions of (12). Thus the end
points of the spectral arcs (the main spectrum) can be
found as the eigenvalues of the periodic or anti-periodic
problem for (12) posed on the period interval.

Let λ belong to the spectrum associated to two Bloch
solutions, ψ+ and ψ−. To construct a periodic solution to
the NLSE, one can define squared eigenfunctions using
these Bloch solutions as follows [39]:

f (t , z;λ) =− i

2

(
ψ+

1ψ
−
2 +ψ+

2ψ
−
1

)
,

g (t , z;λ) =ψ+
1ψ

−
1 ,

h(t , z;λ) =−ψ+
2ψ

−
2 .

Having a finite-gap solution implies that these squared
eigenfunctions are finite-order polynomials in λ. Straight-
forward calculations yield:

f 2 − g h =−1

4
W (ψ+ψ−)2 =

N∏
j=0

(
λ−λ j

)(
λ−λ∗

j

)
,

g (t , z;λ) = i q(t , z)×
N∏
j=1

(
λ−µ j (t , z)

)
,

(18)

where W (·) is the Wronskian and µ j (t , z) are called the
auxiliary spectrum, which represent the evolution of signal
as it propagates through the fibre. To find µ j (t , z) at any z
and t , one needs to solve a system of differential equations,
see [39]. The auxiliary spectrum lies on a Riemann surface
defined by the first line of Eq. (18).

APPENDIX B
DETAILS OF RHP STATEMENT

The inverse stage in the NFT presented in section III is
based on the following observation [48]: Φ(t , z,λ) can be
constructed using the solution of a RHP with the standard
normalization and with jumps across Γ still independent of
λ on each Γ j . Namely,

Φ(t , z;λ) = e(i f0t+i g0z)σ3 M(t , z;λ)e−(i f (λ)t+i g (λ)z)σ3 , (19)

where:

1) f (λ) and g (λ) are scalar functions analytic in C \Γ
satisfying the following conditions: (i) f (λ) = λ+ f0 +
O(1/λ) and g (λ) = 2λ2 + g0 +O(1/λ) as λ→ ∞, with
some constants f0 and g0; (ii) the limiting values of
f and g across Γ are related by

f+(λ)+ f−(λ) =C f
j , g+(λ)+ g−(λ) =C g

j , j = 0, . . . ,N ,

with some real constants C f
j and C g

j .
2) The matrix M is the solution of the RHP with (i) the

jump conditions M−(t , z,λ) = M+(t , z,λ)G j (t , z), λ ∈
Γ j , where

G j (t , z) =
 0 i e

−i (C
f
j t+C

g
j z+φ j )

i e
i (C

f
j t+C

g
j z+φ j )

0

 , (20)

and (ii) the normalization condition M → I as λ→∞.

In turn, finding M can be reduced to solving a linear
integral equation. Indeed, if µ = µ(t , z,ξ), ξ ∈ Σ = ∪ jΓ j is
the solution of the integral equation (with respect to ξ; t
and z are parameters) µ−CGµ= I , where the operator CG

is defined as follows:

(CGf )(t , z,ξ) := 1

2πi

∫
Σ

f (s)(G(t , z, s)−I)

s −ξ− d s, ξ ∈Σ, (21)

(in our case, G(t , z, s) is piecewise constant w.r.t. s:
G(t , z, s) = G j (t , z) for s ∈ Γ j ). Then M can be expressed in
terms of µ as follows:

M(t , z,λ) = I + 1

2πi

∫
Σ

µ(t , z,ξ)(G(t , z,ξ)−I)

ξ−λ dξ, λ ∈C\Σ.

In terms of M, the expression for q(t , z) takes the form

q(t , z) = 2i (M1)1,2(t , z)e2i f0t+2i g0z , (22)

where M1(t , z) is determined by the asymptotic relations
M(t , z,λ) = I +M1/λ+O(λ−2) as λ→∞. Alternatively, q can
be expressed in terms of µ by

q(t , z) =− 1

π

∫
Σ

(
µ(t , z,ξ)(G(t , z, s)−I)

)
1,2 d s.

Notice that if one sets C f
0 =C g

0 = 0, then the conditions in

1) determine uniquely C f
j and C g

j for j = 1, . . . ,N , as well
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as the quantities f0 and g0. Namely, if N ≥ 3, then C f
j and

C g
j are respectively the unique solutions of the systems of

linear algebraic equations

N∑
j=1

C f
j

∫
Γ j

ξk dξ

w(ξ)
= 0, k = 0, . . . ,N −2,

N∑
j=1

C f
j

∫
Γ j

ξN −1dξ

w(ξ)
=−2πi , (23)

and

N∑
j=1

C g
j

∫
Γ j

ξk dξ

w(ξ)
= 0, k = 0, . . . ,N −3,

N∑
j=1

C g
j

∫
Γ j

ξN −2dξ

w(ξ)
=−4πi ,

N∑
j=1

C g
j

∫
Γ j

ξN −1dξ

w(ξ)
=−2πi

N∑
j=0

(λ j +λ∗
j ). (24)

If N = 1, then C f
1 and C g

1 are determined by the last

equations in (23) and (24) (cf. (28)); if N = 2, then C f
j ,

j = 1,2 are defined by the system in general form (23)
whereas C g

j , j = 1,2 are determined by the system of two
last equations in (24). Then f (λ) is determined, for all
N ≥ 1, by

f (λ) = w(λ)

2πi

N∑
j=1

∫
Γ j

C f
j dξ

w(ξ)(ξ−λ)
, (25)

whereas g (λ) is given by

g (λ) = w(λ)

2πi

N∑
j=1

∫
Γ j

C g
j dξ

w(ξ)(ξ−λ)

for N ≥ 2 and by

g (λ) = 2w(λ)+ w(λ)

2πi

∫
Γ1

C g
1 dξ

w(ξ)(ξ−λ)

for N = 1. In turn, f0 and g0 are determined from the
asymptotic relations: f (λ) = λ + f0 + O(1/λ) and g (λ) =
2λ2 + g0 +O(1/λ) as λ → ∞ ( f (λ) and g (λ) are given by
the expressions above).

The finite-genus solutions are quasi-periodic in t but
not, in general, periodic. On the other hand, in order to
arrive at periodic NLSE solutions, see (22), it is sufficient to
require all the frequencies C f

j , j = 1, . . . ,N supplemented
by f0 to be commensurable. Indeed, if this is the case, then
all the jump matrices G j (t , z), see (20), have a common
period, which implies (due to the uniqueness of the solution
of the RHP) that the solution M(t , z,λ) of the RHP is
periodic w.r.t. t , with the same period, for all z and λ;
consequently, (M1)1,2(t , z) in (22) is also periodic w.r.t. t with
the same period. Notice that the periodicity is not affected
by φ j ’s in (20), which can thus be arbitrarily chosen (as real
parameters). On the other hand, the additional constraint

N∑
j=1

C f
j

∫
Γ j

ξN dξ

w(ξ)
=−iπ

N∑
j=0

(λ j +λ∗
j ), (26)

provides that f0 = 0 in (22). In turn, the commensurability
of C f

j , j = 1, . . . ,N can be ensured by an appropriate choice
of λ j . Indeed, the system (23) complemented by (26) can be

viewed as a system of N +1 complex equations: given C f
j ,

j = 1, . . . ,N , determine N +1 complex parameters {λ j }Nj=0.
Now let us consider the simplest non-trivial case, i.e., the

case N = 1. In this case, the problem of ensuring periodicity
is greatly simplified: it is sufficient to ensure that f0 = 0,
which, in turn, can be done by simultaneously shifting all
the spectral data points {λ j }Nj=0 along the real axis. Thus a
preliminary step in the construction of a genus-1 solution
consists in the adjustment of the main spectrum: given
{λ̂ j }1

j=0, the real-valued shift is computed as follows:

f̂0 =
∫
Γ̂1

ξdξ
ŵ(ξ)∫

Γ̂1

dξ
ŵ(ξ)

− 1

2

1∑
j=0

(λ̂ j + λ̂∗
j ) (27)

with ŵ(ξ) = ŵ+(ξ), where ŵ+(ξ) is the limiting value from
the (+) side of Γ̂1 (according to the orientation shown in

Fig. 4) of the function ŵ(λ) =
√∏1

j=0(λ− λ̂ j )(λ− λ̂∗
j ) defined

with the cuts Γ̂0,1 along the arcs (λ̂0,1, λ̂∗
0,1)

)

, where the
branch is fixed by the condition ŵ(λ) ∼λ2 as λ→∞. Then
the new points λ j , corresponding to a periodic genus-1
solution with f0 = 0 (see (22)), are defined by: λ j = λ̂ j + f̂0.
Now, given {λ j }1

j=0 and φ1 (setting φ0 = 0), the procedure of
construction of a genus-1 solution consists of the following
steps.

(i) Calculate

C f =− 2πi∫
Γ1

dξ
w(ξ)

, C g =C f
1∑

j=0
(λ j +λ∗

j ), (28)

where w(ξ) is defined as above, with λ̂0,1 replaced by
λ0,1.

(ii) Define the jump matrices:

G0 =
[

0 i
i 0

]
,

G1(t , z) =
[

0 −1/θ(t , z)
θ(t , z) 0

]
,

(29)

where θ(t , z) = i e i (C f t+C g z+φ1) and C f ,g are defined by
(28).

(iii) Solve the matrix RHP: given G j , j = 0,1, find a 2×2-
valued function M(·, ·,λ) analytic in C \ {Γ0 ∪Γ1} and
satisfying the following conditions:

M−(t , z,λ) = M+(t , z,λ)G j (t , z), for λ ∈ Γ j , j = 0,1,

M(t , z,λ→∞) → I.
(30)

(iv) Calculate M1(t , z) from the asymptotic expansion:

M(t , z,λ) = I+M1(t , z)λ−1 +O
(
λ−2) as λ→∞.

(v) Retrieve the solution of the NLSE by

q(t , z) = 2i (M1)1,2(t , z).
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Fig. 15: Closed contours Ξ0,1, enveloping the arcs Γ0,1 for
alternative RHP to avoid singularity points.

APPENDIX C
RHP CONTOUR DEFORMATION TO AVOID SINGULARITIES AT

THE ENDS OF OPEN ARCS

Solving RHP with jumps on open arcs (or, equivalently,
with discontinuous jumps on closed contours) faces the
problem of singularities at the arc ends, which affects
numerical solutions of the associated integral equations.
To remedy this, the original RHP can be transformed to
a problem with (continuous) jumps on closed contours.

Introduce two (rectangular in our simulations) contours
Ξ0,1 enveloping the arcs Γ0,1 with reasonable offset (see
Fig. 15), define the functions

Å j (λ) =
(
λ−λ j

λ−λ∗
j

)1/4

(31)

for λ ∈C\Γ j (the branch is fixed by the condition κ j (λ) → 1
as λ→∞), and define the matrices K0,1 by

K0(λ) = 1

2

(
Å0(λ)+ 1

Å0(λ) −Å0(λ)+ 1
Å0(λ)

−Å0(λ)+ 1
Å0(λ) Å0(λ)+ 1

Å0(λ)

)
and

K1(t , z,λ) = 1

2

 Å1(λ)+ 1
Å1(λ)

Å1(λ)− 1
Å1(λ)

iθ(t ,z)

iθ(t , z)
(
Å1(λ)− 1

Å1(λ)

)
Å1(λ)+ 1

Å1(λ)

 .

Introduce M̂ by

M̂ =
{

MK−1
j , inside Ξ j ,

M, outside Ξ j ,

where M is the solution of the original RHP (30). Then M̂
satisfies the RHP with jump continuous on each closed part
Ξ j of the total contour:

M̂−(t , z,λ) = M̂+(t , z,λ)K j , λ ∈Ξ j , j = 0,1,

M̂(t , z,λ→∞) → I
(32)

(notice that M̂, in contrast to M, has no jumps across Γ0,1).
Such a problem can be efficiently solved numerically using
the RHP solver [49]. On the other hand, the solution M̂ of
the RHP (32) still gives rise to the genus-1 solution of the
NLSE by q(t , z) = 2i (M̂1)1,2(t , z).

Presented RHP deformation makes the numerical com-
putation more reliable for further communication applica-
tions.

APPENDIX D
EVALUATION OF THE NUMERICAL ACCURACY OF THE

PROPOSED METHOD

In order to understand the impact of the numerical
errors on the overall performance of a communication
system, the back-to-back error is calculated. Given a pair of
complex points with their imaginary parts as the degrees
of freedom, a signal is constructed solving the RHP. The
points of the main spectrum of this signal is then calculated
(see Appendix A), and the average of the displacement in
the imaginary parts of these points is considered as the
error. Two numerical procedures contribute to this error:
inverse transformation (Riemann-Hilbert solver) and direct
transformation (Ablowitz-Ladik algorithm). The first error
is directly controllable by the resolution at the complex
plane of parameter λ (designated below as ∆λ, related
to the number of spectral points, n) The location of the
points of the main spectrum determines the signal power
(through the imaginary part) and signal bandwidth (through
the real part). However, due to our particular method
of constructing a periodic signal with the predetermined
period, the real part of these points depend slightly on the
imaginary part. Since the data is carried by the imaginary
parts of these points, this slight change in the real parts is
irrelevant as long as we are able to separate two spectral
arcs at the receiver.

On the other hand, the accuracy of the direct transform
is known to depend on the resolution in the temporal
domain, ∆t , signal power and bandwidth. Fig. 12a depicts
the dependency of the numerical error (mean of imaginary
parts squared differences) on ∆λ and ∆t (keeping the
bandwidth value around 5 GHz, like in our transmission
system simulations). As it is evident from this figure, error
falls as resolutions increase until the point beyond which
the impact is insignificant. The improvement through de-
creasing ∆t also plateaus at a very large number of samples.
The effect of the signal power and bandwidth on the
accuracy is illustrated in Fig. 12b, which shows an almost
constant trend against bandwidth but a sharp decline as
the signal power grows, which, as in the following, shows
itself in the overall performance of the system (see Fig. 11).
For fair comparison we kept the temporal discretisation ∆t
in the range 1-2 ps, what is significantly lower than the
inverse signal bandwidth. Hereafter, we fix the discretisation
of the arcs, n, and ∆t considering its impact on the effect
of amplifier noise, which linearly grows with bandwidth.
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