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The nonlinear Schrödinger equation (NLSE) is often used
as a master path-average model for fiber-optic transmission
lines. In general, the NLSE describes the co-existence of
dispersive waves and soliton pulses. The propagation of a
signal in such a nonlinear channel is conceptually different
from linear systems. We demonstrate here that the
conventional orthogonal frequency-division multiplexing
(OFDM) input optical signal at powers typical for modern
communication systems might have soliton components
statistically created by the random process corresponding
to the information content. Applying the Zakharov–
Shabat spectral problem to a single OFDM symbol with
multiple subcarriers, we quantify the effect of the statistical
soliton occurrence in such an information-bearing optical
signal. Moreover, we observe that at signal powers optimal
for transmission, an OFDM symbol incorporates multiple
solitons with high probability. The considered optical com-
munication example is relevant to a more general physical
problem of the generation of coherent structures from
noise. © 2018 Optical Society of America

https://doi.org/10.1364/OL.43.005985

An optical fiber is a remarkable engineered physical medium
important for a range of practical applications, including
telecommunications, sensing, lasers, and imaging [1]. Light
trapped in silica waveguide can propagate with extremely
low-field attenuation over long distances. An optical fiber
medium can also act as a nonlinear system when a signal ac-
cumulates a noticeable (of the order of π ) nonlinear phase
change due to the fiber Kerr effect during the propagation.
In some applications, such as mode-locked fiber lasers, the non-
linear Kerr effect is used positively, providing conditions for
mode locking and pulse shaping in a laser. In modern telecom-
munication systems, nonlinearity is typically considered as the
factor limiting their performance at a high signal-to-noise ratio.

The nonlinear properties of the fiber communication links
create a number of unusual (compared to linear channels)
challenges. However, channel nonlinearity also offers new in-
teresting opportunities. It is well known that the nonlinear
Schrödinger equation (NLSE) describes under particular con-
ditions and within certain limits the propagation of a signal
down an optical fiber [1–5]. Written in the generic normalized
form (for details, see Refs. [1–3]) the NLS equation reads

i
∂q
∂z

� 1

2

∂2q
∂t2

� jqj2q � 0: (1)

In the context of fiber-optic, we consider here the case of the
so-called anomalous dispersion, when general solutions of this
equation can include both the dispersive (linear-like) waves and
the coherent structures—solitons. Any initial field evolving
according to this master model can be presented as a nonlinear
superposition of dispersive waves and soliton(s).

In 1972, Zakharov and Shabat demonstrated that the NLSE
can be integrated by the inverse scattering transform (IST)
method [6], also known today as the nonlinear Fourier trans-
form (NFT). The IST/NFT method allows one to present a
field (with the evolution along distance z governed by
NLSE) at an arbitrary distance using nonlinear spectrum of
the initial (at z � 0) signal distribution. More specifically,
the nonlinear spectrum of the initial field q�t, z � 0� can be
found through the solution of the Zakharov–Shabat spectral
problem: �

−∂tψ1 � q�t , 0�ψ2 � iξψ1

∂tψ2 � q��t, 0�ψ1 � iξψ2
: (2)

q�t , 0� � q0�t� is the “potential”—initial distribution of the
signal; ψ1,2 is a vector eigenfunction; and ξ is the spectral
parameter defined on a complex plane.

In general, the nonlinear spectrum for the localized in time
domain optical signal q0�t� has discrete eigenvalues and a con-
tinuous component corresponding to the spectrum of the
system (2). The continuous spectrum of the system (2) fills
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the real axis of the ξ-plane and corresponds to the dispersive
wave component, which will not be our focus here.

The discrete spectrum eigenvalues ξn correspond to soliton
solutions of the NLSE. For some classes of initial pulses, there
are known analytical and numerical results concerning the sol-
iton content in the initial field q0�t�; for details, see Refs. [7–9].
In the case of a real-valued unmodulated (no temporal depend-
ence of the phase) rectangular pulse, the number of solitons N
contained in such a field can be found as

N � int�1∕2� L1�q�∕π�, (3)

where int�…� means the integer part of the expression, and
L1�q� �

R�∞
−∞ jq�t�jdt is the (non-dimensional) signal L1

norm. Evidently, the L2 norm given by L2 �
R�∞
−∞ jq�t�j2dt

corresponds to the signal energy. In the case of more complex
initial signals, the analytical approaches are limited, and the
analysis requires extensive statistical numerical modeling based
on direct solving of the Zakharov–Shabat spectral problem (2).
For instance, in Ref. [10], the generation of solitons from noise
and noncoherent optical pulses has been considered using L2
norm as a measure. The analysis of a soliton content in chirped
Gaussian pulses was done in Ref. [11] and in the optical speckle
fields in Ref. [12]. In particular, it was shown that modulation
of a simple rectangular pulse leads to significant decrease of the
number of emerging solitons [10].

It is well known that an information-bearing signal can be
treated as a random process in which signal characteristics, such
as power and phase, experience statistical variations that depend
on modulation formats and coding [13]. Here we study the
soliton content in a standard optical orthogonal frequency-
division multiplexing (OFDM) signal, in which digital data are
encoded on multiple carrier frequencies. Here we are interested
only in the total number of discrete eigenvalues, not in their
specific parameters. Therefore, we apply the method described
in Ref. [14], which links the number of discrete eigenvalues to
the total phase shift of the coefficient a�ξ� by the formula

N � 1

2π
Arg�a�ξ��j�∞

−∞ , (4)

where the spectral parameter ξ takes values from −∞ to�∞ on
the real axis. The coefficient a�ξ� is one of the coefficients
characterizing the scattering on the “potential” q�t , 0� in the
Zakharov–Shabat problem (2); for details, see Ref. [15] and
the recent work, Ref. [16].

We would like to stress that in the framework of the con-
sidered integrable NLS equation model there is no need for
numerical simulations of the initial signal propagation with
distance z. The number of discrete eigenvalues will not be
changed during the propagation governed by the NLS equa-
tion. Moreover, the parameters of continuous and discrete non-
linear spectra will be changed in a trivial manner [5]. Therefore,
we focus in this Letter on the analysis of the solutions of the
Zakharov–Shabat spectral problem, rather than on the consid-
eration of the propagation dynamics of the field.

OFDM combines multiplexing and modulation. A single
OFDM symbol (over a time interval with duration T ) is pre-
sented as a sum of independent subcarriers:

s�t� �
XM−1

k�0

X kei2πkt∕T , 0 ≤ t < T (5)

where X k corresponds to the digital data, M is the number
of subcarriers, and T is the symbol interval. In practice, the

number of subcarriers is selected as M � 2p to use the fast
Fourier transform (FFT) algorithm. In the real world units,
we examine the OFDM symbol with 10 ns symbol duration
and quadrature phase-shift keying (QPSK) or 16 quadrature
amplitude modulation (QAM). The full FFT size is 1024,
and the number of subcarriers M is changing from 16 to
1024. The average signal power is linked to the L2 norm
(in dimension units) as follows: Pave � L2∕T , and it varies
(in the dimension units) from −21 to −8 dBm.

Without the loss of generality, we focus here on two types of
popular modulation formats: QAM and phase-shift keying
(PSK), and consider a single OFDM symbol (i.e., assuming
burst mode transmission with well separated symbols). We an-
alyze the probability of the appearance of solitons in the input
OFDM symbol, depending on the signal parameters: modula-
tion type, L1 or L2 norms, and the number of sub carriers M .
We use in the numerical simulations shown in Fig. 5 the fol-
lowing typical parameters: group velocity dispersion parameter
β2 � −21.5 (in ps2∕km) and the nonlinear Kerr coefficient
γ � 1.27 (inW−1 km−1). We accumulate statistics on the num-
ber of occurred solitons for a fixed system and signal parameters
by varying the input digital data. Each graph point corresponds
to 160 statistical measurements. For example, Fig. 1 shows the
probability distributions for an OFDM signal with QPSK
modulation at 128 subcarriers with Pave � −18 dBm and
Poisson fit distribution (P�x; λ� � e−λ · λN∕N !) for this data
(λ is extracted from the data fitting), obtained by numerical
simulation. The number of events equals 106.

We now examine the probability of the occurrence of sol-
itons in the OFDM signal defined as the ratio of the number of
symbols containing discrete eigenvalues (corresponding to sol-
itons) of the Zakharov–Shabat spectral problem to the total
number of the considered OFDM symbols. In other words,
we are not interested in the exact number of solitons in the
signal, but rather in their existence in the given OFDM symbol.
Our goal here is to demonstrate that the appearance of solitons
in the OFDM signal is not something exotic, but rather is a
general situation at certain practical power levels. We verified
that the number of solitons does not depend on an increase of
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Fig. 1. Probability distribution of soliton occurrences in the
OFDM symbol with QPSK modulation, with 128 subcarriers and
an average power of −18 dBm.
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the computational grid and the FFT size (temporal signal
discretization).

Figure 2 shows the probability of occurrence of solitons at
128 subcarriers versus the L1 norm value. Note that the prob-
ability of the soliton appearance for signals with the same L1
norm value is higher for signals with 16QAMmodulation com-
pared to QPSK. This trend is maintained for all numerical
modeling with various parameters. It is also seen that for such
highly modulated complex signals, the threshold of the soliton
occurrence is much higher than the analytical results (3) ob-
tained for real unmodulated rectangular smooth functions.

Figures 3 and 4 show how the probability of the occurrence
of the soliton content in the OFDM signal is growing with the
increase of the average power Pave. One can see that in signals

with 128 subcarriers, solitons start to emerge at lower values of
the norm compared to signals with 1024 subcarriers. It is seen
that this effect depends on the number of subcarriers and the
signal modulation format. The transition from random (de-
pending on the information content) appearance of solitons
in certain (relatively rare) OFDM signals to the regime where
most of the symbols contain discrete eigenvalues (soliton com-
ponent) happens over the interval of a 3–4 dB increase of input
signal power. An interesting observation is that the soliton com-
ponent does not require signal power that is too high to become
an inherent part of the OFDM symbol. The soliton component
arises at rather practical levels of a signal power conventional for
telecom applications.

We would like to stress that solitons appear in the OFDM
signal at powers that are not very high. As a matter of fact, a
soliton content is present in the OFDM signals at the powers
optimal for transmission. To illustrate this point, we considered
1000 and 2000 km transmission links based on an ideal dis-
tributed Raman amplification scheme with continuous ampli-
fied spontaneous emission generation (see Refs. [4,5] for
details). As an input, we used 16QAM-OFDM signals with
128 subcarriers and 10 ns symbol duration. At the receiver,
the chromatic dispersion was fully compensated for, and an al-
gorithm based on the 4th-power Viterbi–Viterbi method was
used for phase estimation. The system performance was evalu-
ated using the parameter Q2-factor, which measures the quality
of a transmission signal. The Q2-factor value has been extrapo-
lated from the conventional error vector magnitude function
[17] as Q2 � 1∕EVM2 using the transmission of 214 OFDM
symbols per run. The results are shown in Fig. 5. Optimal
transmission is achieved with an average power around
−15 dBm which, according to Fig. 3, is well in the regime
where a soliton component in the OFDM symbol is likely high.

In general, solitons and dispersive waves propagate in a
different manner down the optical fiber. The most noticeable
difference is that in the soliton, dispersive broadening is
counterbalanced by the nonlinear effects. Therefore, the
presence of solitons embedded into the conventional OFDM
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Fig. 2. Average number of occurred solitons versus the value of L1
norm for OFDM signals with QPSK and 16QAM modulations. The
first threshold of the L1 norm value, calculated using the formula (3), is
1.57 and lies on the left, well outside the boundaries of the graph.
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Fig. 3. Average number of solitons embedded into the OFDM sym-
bol with 128 subcarriers and QPSK and 16QAM modulations versus
the average signal power.
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Fig. 4. Average number of solitons embedded into the OFDM
symbol with 1024 subcarriers, and QPSK and 16QAM modulations
versus the average signal power.

Letter Vol. 43, No. 24 / 15 December 2018 / Optics Letters 5987



symbol potentially should impact the transmission of the com-
bined signal. Comprehension of this fact and its consequences
for signal coding, modulation, and processing might be impor-
tant for the improvement of the performance of fiber-optic
communication systems. However, it should be pointed out
that the effect of the embedded solitons does not lead to a dras-
tic change of the symbol propagation dynamics. Further study
is required to understand how the presence of solitons affects
transmission and how it can be used in practical terms. Note
that even for quasi-linear signal propagation, statistical fluctu-
ations in the plane (z, t) might be very nontrivial and are
dependent on the information data, format, and modulation;
see, e.g., the recent publication Ref. [18].

Traditional signal modulation formats have been designed
and developed for linear communication channels. The trans-
mission in the nonlinear channel reveals rather unusual proper-
ties of such conventional signals. Considering the NLSE as a
master channel model, we have shown here that a standard
OFDM signal statistically contains soliton components at
the powers of practical interest. Using the Zakharov–Shabat
spectral problem, we studied the statistics of soliton occurrences
in a OFDM signal and quantify how the number of solitons
that are embedded into the input OFDM signal increases with
the L1 norm and signal average power.

This observation indicates that transmission in a nonlinear
channel substantially changes the whole paradigm of signal
modulation and processing. Our results show that nonlinear
analysis might be useful not only for special inherently soli-
ton-based systems and signals [3], but also for conventional
communication formats that traditionally are not linked to
the soliton concept and techniques. We believe that our results
indicate that the application of the detection and processing

methods developed for linear channels might not be optimal
for nonlinear communication channels. In this Letter, our focus
was on proving the fact of the occurrence of solitons in the
OFDM signal and study of the statistics of soliton component
appearances. The impact of such low energy solitons on signal
dynamics and, overall, on the transmission will be examined
elsewhere.

Note that our Letter is also relevant to the recently
restarted studies of the so-called integrable turbulence (see,
e.g., Refs. [19–21] and references therein), where a random
initial signal q0 (e.g., amplified spontaneous emission) evolves
in an intricate way in the plane �z, t� according to (1). A stat-
istical analysis of this evolution presented in the nonlinear spec-
trum can provide new insights in the complex dynamics of the
optical field.
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