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The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to cw
radiation breakup. This can be both a detrimental effect limiting the performance of amplifiers and an underlying
physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical
amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model,
and the range of applicability of the latter is determined. © 2010 Optical Society of America
OCIS codes: 140.3430, 140.3510, 190.4370, 140.4780.

Modulation instability (MI) is a fundamental nonlinear ef-
fect [1–3] that manifests itself in optics, e.g., as a spon-
taneous breakup of a cw radiation with high enough
power into a modulated light wave or a periodic train
of pulses (it is not possible to overview all the literature
on MI effects in optics; however, here we focus only on
MI in active optical media; see, e.g., [1–11] and references
therein). In active fiber, the MI is enhanced when inter-
actions with optical noise provide seeding perturbations
over a range of wavelengths [3]. Amplification of power-
ful laser radiation in optical fiber amplifiers with anom-
alous dispersion might suffer from the MI effect [3] that
leads to the breakup of cw radiation and the appearance
of multiple pulses. MI may impact the performance of an
Er-doped amplifier in the case of signal bandwidth larger
than the Brillouin gain width (35 MHz), when stimulated
Brillouin scattering is suppressed. However, MI can also
be exploited in a constructive way, for instance, as a
technique to generate an optical pulse train or as a pas-
sive mode-locking mechanism in fiber lasers [4–8].
Recent progress in microstructured optical fibers offers
new opportunities for the control of dispersive properties
and thus to new potential applications of MI across a
broad spectral range. Quantitative analysis of the MI is
important for design and optimization of fiber lasers
and amplifiers in which the wave intensity grows expo-
nentially and MI dramatically intensifies nonlinear
instabilities. As we show below, despite a number of pub-
lications, some important aspects of the MI development
over finite device distances have not yet been compre-
hensively studied.
Over a wide range of physical parameters, propagation

of the optical field down a fiber amplifier at leading order
is described by the equation
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Here β2 is the group-velocity dispersion, nonlinear para-
meter γ ¼ 2πn2=ðλ0AeffÞ (λ0 is the operational wave-
length, n2 is the nonlinear refractive index, and Aeff is
the effective area of the fiber), and g0 is the small signal
gain of the amplifier. The parameter T2 characterizes the
gain bandwidth (or effect of external filtering). An optical

field propagates here from z ¼ 0 to z ¼ L. Consider the
MI of the cw field, Ψðz; tÞ ¼ ð ffiffiffiffiffiffi

P0
p þ aþ ibÞ × exp½g0z2 þ

iP0

R
γðz0Þdz0�; here γðzÞ ¼ γð0Þ exp½g0z�. Perturbation to

the power evolution then can be found as jΨðz; tÞj2 ¼
ðP0 þ 2aðz; tÞ ffiffiffiffiffiffi

P0
p þ a2 þ b2Þ × exp½g0z�. Assuming a, b

≪
ffiffiffiffiffiffi
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p
, and expressing the fields a, b through the corre-

sponding Fourier modes aω, bω ∝ exp½−iωt� (we omit in
what follows the index ω) yields the standard linear evo-
lution equations for the spectral modes of perturbations
with the initial conditions to the Caushy problem að0Þ,
bð0Þ. When γ ¼ const, T2 ¼ 0, a ∝ exp½ikzz� leads to
the standard MI relation [1] k2z ¼ β2ω2

2 ½β2ω2

2 þ 2γP0�, with
kz increasing for small values of ω, reaching its maximum
at ω2

max ¼ −2γP0=β2, and approaching zero at ω2
0 ¼

−4γP0=β2. In amplifiers, however, where the field power
grows as PðzÞ ¼ P0e

g0z, the most unstable frequency of
perturbation increases during the propagation due to
the power exponential growth. To estimate the growth
due to MI in an amplifying medium, one can use the ex-
pression for the uniform MI but replace constant power
with the growing one P0 → P0e

g0z. This corresponds to
the so-called adiabatic approximation (see, e.g., [3]),
in which it is assumed that the perturbation growth fol-
lows the intensity adiabatically and the standard MI
expression with a z-dependent intensity γðzÞ can be used.
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, the equations for aðzÞ and bðzÞ can be

presented in the form
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The solution to Eq. (2) can be presented through the
Bessel functions IiμðxÞ and KiμðxÞ (compare to [10,11]):

aðzÞ ¼AIiμðηeg0z=2ÞþBKiμðηeg0z=2Þ;

bðzÞ ¼ −
ηeg0z=2
2μ fCðIiμ−1þ I−iμþ1ÞþDðKiμ−1þKiμþ1Þg: ð3Þ
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Here A ¼ ½−að0ÞηK 0
iμðηÞ þ bð0ÞμKiμðηÞ�e−sz, B ¼ ½að0Þη

I 0iμðηÞ − bð0ÞμIiμðηÞ�e−sz, C ¼ −ημ−1eg0z=2A, and D ¼ ημ−1
eg0z=2B. The solutions of Eq. (3) are functions of three di-
mensionless parameters: g0z, μ, and η. The Stürmian the-
ory [12] guarantees, for the Sturm–Liouville problem in
Eq. (2) that the solutions in Eq. (3) are growing with z

under condition μ < ηeg0z=2. For ηeg0z=2 > μ and μ ≫ 1,
the leading term in the expansion of the exact solution
reads
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It is seen that, in this limit,Kiμ is decaying and Iiμ is grow-
ing and the growth of perturbations in the amplifier is
superexponential. In the opposite limit, μ > ηeg0z=2, both
Kiμ and Iiμ are oscillating. Note that the asymptotic
behavior of Iiμ not only justifies the use of the adiabatic
approximation [3] in the limit μ ≫ 1, but also provides the
preexponential factor. The increment of growth in the
adiabatic approximation is Γ ¼ 2f ðμ; η; g0; LÞ − 2sL, with
f ðμ; η; g0; LÞ defined as

f ¼ ðη2eg0L − μ2Þ1=2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − μ2
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�
;

μ
η > 1:

The important result of our work is that it gives a direct
analytical expression for the dynamics of the perturba-
tions for any arbitrary initial fluctuations and any

propagation distance. The power growth of the initial
perturbations can be characterized by the increment fac-
tor (similar to the homogeneous case making compari-
son more convenient) defined as Γ ¼ 2 ln½aðLÞ=að0Þ�,
μ < η; Γ ¼ 2 × ln½aðzÞ=aðz�Þ�, μ > η, z� ¼ 1

g0
ln
h
μ2
η2
i
. Here,

we assume að0Þ, aðz�Þ ≠ 0. For large aðLÞ=að0Þ, the incre-
ment is practically independent of boundary conditions.
It should be stressed, however, that in the exact solutions
of Eq. (4), there are both growing and decaying solutions.
For short propagation distances, both can contribute to
the development of instability—a fact that is often over-
looked when considering MI. This means, in particular,
that, for short devices where MI does not have enough
time/distance to develop into an asymptotic state with
the growing mode dominating completely, the initial
phase perturbations given by bð0Þmight affect the growth
increment of developing modulations. Initial conditions
also become important near the cutoff of instability, as
the growth is not large near such points and it is influ-
enced by the initial field perturbations. This is illustrated
by Fig. 1, where the relative impact of the initial phase

Fig. 1. Counterplot of the coefficient A ¼ ½−að0ÞηK 0
iμðηÞ þ

bð0ÞμKiμðηÞ� before the growing solution in the plane ðη;ϕÞwith
μ ¼ 1.

Fig. 2. Gain ΓðνÞ for L ¼ 100 m, G ¼ 30 dB. Here P0 ¼ jΨ0j2:
50 (lower red curves), 100 (central green curves) and 200 mW
(top blue curves). Solid curves, exact solutions; dashed curves,
adiabatic approximation [3].

Fig. 3. Integrated gain Γ (log scale) versus propagation dis-
tance for aðz�Þ ¼ 1 and bðz�Þ ¼ 0 (red curve), bðz�Þ ¼ 1 (green
curve), bðz�Þ ¼ 2 (blue curve); black curve, Iiμ, P0 ¼ 50 mW.
Inset, normal scale.
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bð0Þ and amplitude að0Þ perturbations on the growing
solution are shown (the coefficient before the growing
solution A ¼ ½−að0ÞηK 0

iμðηÞ þ bð0ÞμKiμðηÞ�Þ. Here a2ð0Þ þ
b2ð0Þ ¼ 1 and ϕ ¼ tan−1½bð0Þ=að0Þ�. In general, the incre-
ment factor Γðμ; p; s; G; LÞ is a multiparametric function
of the parameters μ, p, s, G, and L or, in the real-world
units, ω, P0, β2, γ, T2, G, and L. Therefore, the existence
of the analytical solution is very useful for design analy-
sis. For fixed values of other parameters, we have to de-
termine the maximum value of the increment growth Γ as
a function of ω. In a uniform media (g0L ¼ 0), the most
unstable mode corresponds to p2 ¼ 1=2 and cutoff at
p2 ¼ 1. In contrast, in an amplifier, the most unstable
value of ω increases during the propagation. For illustra-
tion, we use here similar parameters as in [3]: β2 ¼
−20 ps2=km, γ ¼ 10 W−1 km−1, amplifier length L ¼
100 m, and total gain G ¼ g0L ¼ 30 dB. Figure 2 shows
the integrated gain ΓðνÞ for several values of the input
power. It is seen that the adiabatic approximation
(dashed curves), being close to the exact solutions (solid
curves), still deviates in determination of the frequency
of the maximal instability. This might be critically impor-
tant for design of MI-based lasers. Figure 3 illustrates the

impact of the initial conditions on the instability growth
(typically overlooked in studies limited by the analysis of
the growth increment only), showing growth of the inte-
grated gain Γ with distance for aðz�Þ ¼ 1 and differ-
ent bðz�Þ: bðz�Þ ¼ 0, red curve; bðz�Þ ¼ 1, green curve;
bðz�Þ ¼ 2, blue curve. Here, the black curve corresponds
to Iiμ. Figure 4 depicts the integrated gain x as a function
of the normalized frequency p and the total gain G. Note
that the p corresponding to maximum MI growth shifts
up with g0L increasing; the cutoff takes place at p > 1,
and the most unstable modes correspond to p > 1. This
means that the most unstable modes initially were stable
and start to grow only later downstream.

We have revisited the theory of MI fiber amplifiers. We
derived the complete analytical solutions of the linear
growth that allows us to find the most unstable mode
and calculated the power growth exactly—without re-
stricting the consideration to the asymptotically growing
mode, as in most previous works. We demonstrated that,
for practical situations, the growth of the perturbation is
sensitive to the initial perturbation and to their phases.
Our results are directly relevant to the MI in optical fiber
amplifiers and lasers, but the derived theory is rather
general and can be applied in a variety of physical appli-
cations beyond fiber optics.
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Fig. 4. Counterplot Γ in the plane ðp;GÞ, η2=μ ¼ 0:03. The
white zone corresponds to the oscillating solutions. The border
between stable and unstable regimes is given by the condition
G > μ2=η2.
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