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Optical rogue waves in telecommunication data streams

Sergey Vergeles'? and Sergei K. Turitsyn®
! Landau Institute for Theoretical Physics RAS, Moscow 119334, Russia
2Moscow Institute of Physics and Technology, Dolgoprudnyj 141700, Russia
3 Photonics Research Group, Aston University, Birmingham, B4 7ET, United Kingdom
(Received 6 October 2010; revised manuscript received 24 December 2010; published 6 June 2011)

Large broadening of short optical pulses due to fiber dispersion leads to a strong overlap in information data
streams resulting in statistical deviations of the local power from its average. We present a theoretical analysis of
rare events of high-intensity fluctuations—optical freak waves—that occur in fiber communication links using
bit-overlapping transmission. Although the nature of the large fluctuations examined here is completely linear,

as compared to commonly studied freak waves generated by nonlinear effects, the considered deviations inherit
from rogue waves the key features of practical interest—random appearance of localized high-intensity pulses.
We use the term “rogue wave” in an unusual context mostly to attract attention to both the possibility of purely
linear statistical generation of huge amplitude waves and to the fact that in optics the occurrence of such pulses

might be observable even with the standard Gaussian or even rarer-than-Gaussian statistics, without imposing
the condition of an increased probability of extreme value events.
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The increase of channel rates of optical communication
systems imposes a use of shorter time slots allocated for each
transmitted symbol and, consequently, shorter optical carrier
pulses. For instance, in fiber-optic systems operating at the
40 Gbit/s channel rate the corresponding temporal interval
between neighboring carrier pulses is 25 ps, and for 100
and 160 Gbit/s links being a subject of intensive laboratory
research the time slots are just 10 and 6.25 ps, respectively.
The width of a carrier pulse has to be even shorter, typically, by
factor of 2 or more. Propagation of ultrashort pulses is strongly
affected by the fiber dispersion resulting in a substantial
temporal broadening. This leads to overlapping of a large
number of transmitted information bits making the properties
of the propagating field envelope dependent on the statistical
characteristics of a data stream. Transmission of information
in fiber links using bit overlapping and ultrashort optical pulses
is a new and largely unexplored research field.

The transmission regime with large broadening of carrier
pulses is often called in the literature either the quasilinear [1]
to stress that dispersion dominates over nonlinear effects or the
bit-overlapping transmission [2]. The bit-overlapping effect
could be even more pronounced in the modern coherent optical
communication systems where dispersion is not compensated
over thousands of kilometers [3,4]. There are two important
physical consequences of large pulse broadening and bit
overlapping. The first-order linear effect is that such a massive
overlapping of uncorrelated bits effectively creates a new type
of randomness in the transmitted field due to the random nature
of the information content in a bit stream. As a result of
the bit-overlapping effect, signal power experiences statistical
fluctuations that might lead to nondesirable events when local
peak power pulsations in some time slots greatly exceed the
average level leading to high local nonlinearity and as a
result to signal degradation. The second effect occurs due to
accumulation of nonlinear interactions of many overlapping
bits. Despite the fact that for a single pulse the dispersion
is a dominant effect, the nonlinearity does affect the signal
as the local power in every time slot during transmission
is determined by a large number of overlapping bits. Such
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nonlinear interactions of many randomly (due to information
content of the bit stream) distributed bits lead to strong
patterning effects and degrades the quality of a transmitted
signal (see, e.g., [1,2,5,6]). In this Rapid Communication we
consider the first problem, focusing on description of statistical
properties of optical power in the quasilinear (bit-overlapping)
regime. There is an interesting link between the considered
effect of occurrence of large amplitude optical fluctuations in
the telecommunication data stream and the so-called optical
rogues waves, actively studied recently [7-10]. Though the
generation of the optical freak (rogue) waves studied in
[7-10] has a completely different nonlinear nature compared
to the pure linear statistical problem considered here, the
manifestation has many similarities, a rare random appearance
of a large-amplitude localized optical wave packet on a lower
power background. In both cases the theoretical challenge
is to predict the probability of generation of a wave with a
certain large amplitude {rogue waves were first studied in
the context of hydrodynamics (see, e.g., [11] and references
therein)}. We use the term “optical rogue wave” without
imposing a requirement that occurrence of such waves should
be statistically more probable than in the Gaussian distribution.
The importance of such high-amplitude wave is determined
both by the impact of a single event of high-intensity
fluctuation and the probability of its occurrence. Knowledge
to what extent occurrence of high-amplitude fluctuations is
suppressed compared to the Gaussian distribution could be
essential for system designers. Therefore, although we focus
on the theoretical aspects of the general problem and our
approach can be used in many other fields, signal statistics are
also important for the practical design of transmission systems
providing information when peak power fluctuations become
too high and dispersion compensation has to be applied in-line.
In this Rapid Communication we derive analytical expressions
for the probability density functions of the optical peak power
in systems using ultrashort optical pulses.

First, recall the very well known analytical presentation for
the linear evolution of the data stream along the fiber span. The
optical signal A(z) at the beginning of the fiber span z = 0 has
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the standard form: A(r,z =0) =), ¢, fo(t —nT). Here the
input carrier pulse shape fj(z) could be any localized function
in the case of the so-called return-to-zero (having zero level of
power in between two consecutive ones) data format. To sim-
plify expressions, in what follows we assume Gaussian pulse
shape fo(t) = «/Poexp[—1%/(273)]. However, any other pulse
shape can be considered in a similar manner. It is convenient to
characterize the initial pulse width in units of the bit slot time
T using dimensionless parameter n = 1o/ 7. Our approach
is general and can be modified in a straightforward manner
and applied to a variety of modulation formats [12]. Recall
that in the modern coherent optical communication systems
dispersion of the transmission line can be compensated
electronically at the receiver allowing for a large accumulated
broadening even for relatively wide pulses [3,4]. Therefore, the
results presented below can be applied to a number of optical
communication applications including coherent transmission.
Here, without loss of generality, we consider an important data
format: the so-called return-to-zero M-level differential-phase-
shift-keying (M-DPSK) modulation formats that have many
advantages such as high spectral efficiency and high tolerance
to linear or nonlinear impairments. In the RZ M-DPSK signal
logical ones and zeros are determined by the phase change
between the consecutive time slots with ¢, = expl[i2w (k —
1)/M], where k = 1,2,...,M. Two currently most popular
formats are binary 2-DPSK (or DBPSK) and quadrature
(4-DPSK or DQPSK) formats with ¢, = &1 and ¢, = 1, i,
— 1, — i, respectively. We assume that information bits
are statistically independent. We consider here regimes of
quasilinear propagation [1,2] when very short pulses are
used to carry information data. In this regime dispersion
dominates over nonlinearity and in the first approximation
we can consider simple dispersion broadening of the pulse
train leading to large bit overlapping. Evolution of the
Gaussian pulses in a fiber span with dispersion B, and
length L is a classical textbook material and is given by
f(t,L) = 1Py *t7" exp[—2/Q2tY)], ©2 = 12 — 2iLpy. We
assume in what follows that the distance L is large enough
(or to be more precise the accumulated dispersion LB, is
large) and all initially separated pulses are spread over many
time slots. Mathematically it is convenient to introduce the
parameter that characterizes a level of broadening and bit
overlapping: ¢ = 2LB,/(7oT). It is also useful to decompose
amplitude and phase factors f(¢t,L) = |f(t,L)| exp(if) that
at large ¢ are |f(1,L)| = /Pon/g expl—¢~2(t/T)*] and
B =1*/2ng) — /4.

It is critically important for transmission that since at
each time slot a large number (order of ¢) of pulses are
overlapped, the properties of the field envelope are not anymore
deterministic and are defined by the statistical properties of
a bit pattern. Thus we assume that averaging of signal power
over the same position in many time slots can be replaced by
averaging of the power over bits statistics.

The main goal of our work is to describe statistical proper-
ties of optical power fluctuations due to large bit overlapping.
Therefore, in what follows we consider local power of the
signal P(¢t,L) = |A(¢,L)|* that will be averaged over the bit
pattern { ). In mathematical terms we study a one-point
probability density function (PDF) for a local power PDF(P).
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Under the assumption that bits in an information stream are
statistically independent, it is easy to derive the statistical prop-
erties for values c;. Moments that are particularly important
for the following analysis are

(cr) =0, (cicy) = bik. (1

Note that, in general, one cannot apply the Wick theorem
[13] and reduce higher order correlation functions of ¢; to
the first two moments, since some irreducible corrections
arise. However, in the limit ¢ >> 1 higher order terms make
negligible contributions to the core of the probability density
function describing most probable fluctuations of the power.
It will be shown below that high-order moments of ¢; and
difference between cases M = 2 and M > 2 are relevant only
for very rare events.

Let us establish general statistical properties of the signal
in the bit-overlapping regime ¢ > 1. The general expression
for an optical field reads

A(t,L) = ch exp(fe) | f(r — kT, L)], 2

k

where By = arg{f(t — kT,L)} and the argument function
“arg” takes values within the interval [0,27]. Technically we
need to calculate the sum (over k) of contributions from bits
at the time slot “k” to the field at some chosen time slot,
for instance the site “0”. Let us start from the estimates
which are fundamental for the following analysis. A phase
Bx as a function of k changes on the scale ~,/¢, whereas
the amplitude of impulse |f(t —kT,L)| as a function of
k changes on the scale ~¢ > ,/¢. Thus, considering the
signal A(t,L) a phase of the factor cie’® can be treated as
a random function with plane probability distribution on the
interval [0,2], independently of specific values of M. As a
result, there are ~¢ summands with almost equal amplitude
|f(t —kT,L)| ~ 1/,/¢ and uncorrelated, effectively random
realizations of phase. Hence, sum (2) can be treated as a sum of
~@ almost equally distributed independent random quantities.
This fact allows us to apply the central limit theorem and
obtain Gaussian distribution for the most probable values of
power. The central limit theorem, however, does not cover the
structure of the far tails of the PDF. Therefore rare fluctuations
of power given by far tails of the PDF will be analyzed
separately using the generalized limit theorem (see, e.g., [14]).

The mean value of A is zero for considered RZ M-DPSK
data format with all bit patterns having equal probabilities.
Note that the PDF of the A(#,L) is isotropic on the complex
plane, as the resulting phase of the field A(¢,L) is random,
because most of the summands in (2) have effectively random
phases. The randomness of phases simplifies derivation of
the standard deviation of A(z,L). Only (P) = (|A(t,L)|?)
contributes to the standard deviation, whereas (A%(¢, L)) tends
to zero as ¢ — 0o. Averaging (|A(t,L)|?) over the signal
statistics (1) leads to

I\ _ _ 2
(P) <7,<p, T) = Xk]f(t kT,L)*.

We keep only the sum of powers for each pulse, because
phases of overlapping pulses are effectively incoherent due
to statistical independence of transmitted information signal.
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The remaining sum is not sensitive to the phase of broadened
pulses and it contains ~¢ summands with an amplitude of
each on the scale of o1/¢. In the limit ¢ > 1 the sum can
be replaced by an integral leading the obvious result for the
average power P = ./wnPy. Using the central limit theorem
we arrive at PDF(A) « exp(—|A2| /P), that reads in terms of
power

PDE(P) = P~ exp(—P/ P). (3)

This formula provides a compact analytical expression for
the probability density function of local optical power in
the quasilinear transmission regime. The standard deviation
o =/(P? — (P)? = P characterizes fluctuations of power.
Our derivation indicates in particular that there is no difference
between RZ DBPSK and RZ M-DPSK in the statistical
analysis of the expression above. The derived probability
density function is valid for relatively small fluctuations
P <« @P (see discussion below).

The more nontrivial problem however is the probability
of giant fluctuations of local optical power (freak optical
waves) that create extremely high-local nonlinearity in the
fiber line. Such fluctuations happen due to very specific random
arrangements in the bit pattern c; and require special analysis.

Let us first find the bit pattern ¢, which leads to maximum
amplitude of the signal at some point ¢ (we denote in what
follows field phase as 8). Mathematically one has to find the so-
lution of the maximum problem max,, {Re[A(z, L) exp(—if)]}.
Using the effective randomness of phase f it is straightfor-
ward to derive from (2) that the maximum amplitude of the
optical field A(t, L) produced by the solution of the maximum
problem, extremal realization of ¢, in the limit of large ¢ can

be presented as
A(t’L)max = eiﬁ\/ qe p’ (4)

where ¢ = 2M?*n—3/%sin?(r/M) is of the order of unity.
Expression (4) has a rather transparent physical meaning: the
maximum is proportional to /¢ because on the optimal real-
ization there are about ¢ in-phase summands with amplitudes
of the order of 1/,/¢.

Next we derive the full PDF of the power in the whole
interval. This problem is technically similar to derivation of
PDF for A(t,L) due to isotropy of the PDF in the complex
plane. Generalization of the central limit theorem that includes
the far tails of the PDF is based on applying the Cramér
function S (see for details, e.g., [14]). The outline of the
procedure described in [14] is that we first construct a
generating function Q(u) = (exp[i(u'Re A + u” Im A)]),, for
the random A defined in (2), where u = u’ + iu”. Since A
is the algebraic sum of random quantities, the generation
function can be represented in the form Q = exp(}_, q«),
where exp[qgx(u)] presents generation function for each of
the summand k in (2). Effective randomness of the phase
factor B; and weak dependence of the pulse amplitude on
k at large ¢ (discussed above) allows us to treat the sum over
k as an averaging over the phase and replace the sum by
an integral that leads to the expression Q = exp( f dk(qi)p)-
Note that averaged (gx) g, still depends on M and is a function
of the absolute value |u| only. It can be shown that the
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FIG. 1. (Color online) (a) Probability density function for normal-
ized power for n = 0.1 and three values of ¢ = 5 (dashed-dotted line);
10 (solid line) at M = 2. Dashed line shows the asymptotic curve for
PDF in the limit of very large ¢. (b) Giant statistical fluctuation
(optical rogue wave) that occurs in the signal power distribution.
Power level in such freak optical wave is 138 times higher [gp &~ 145,
see (4)] than the average signal power. Dashed line is the phase of the
signal.

integral saturates at k ~ ¢. Omitting the technical details of
calculations, the derived PDF reads

PDF(P) o exp[—¢ Sy (P/@P)], (5)

where the nonimportant preexponential factor is ignored. This
is the main result of the paper. The Cramér function Sy, [14]
has minimum at P = 0, is concave, and tends to infinity as
power P approaches its maximum possible value related to
special fluctuation (4). Using tabulated (or easily computed,
as shown in Fig. 1) Cramér functions Sy, for each type of
RZ M-DPSK format it is possible now to present the power
PDF in the whole interval of powers including rare high-power
fluctuations. The PDF(P) in the limit of very large ¢ is shown
in Fig. 1(b) by a dashed line. In the limit of small fluctuations
P < ¢ P expression (5) is reduced to (3). Thus non-Gaussian
statistics [and higher order correlators in (1)] of ¢, and different
M affect only the far tails of the PDF for power, while small
fluctuations are described by the generic formula (3).

Figure 1(a) depicts the computed probability density func-
tion for several values of the parameters ¢ and n. The dashed
line shows PDF in the limit of very large ¢ given by the Cramér
function (5).

Figure 1(b) shows a particular realization of the statistics
in the bit pattern leading to a very large excursion (peak-
to-average ratio) of a local power. It is seen from Fig. 1(b)
that the power level in rare variations can be much higher
than the average power of the signal. Such a rare fluctuation
of the optical field, an optical rogue (freak) wave, occurs
due to statistical properties of the signal in the data stream
propagating along fiber links. The freak optical wave shown
in Fig. 1(b) corresponds to the fluctuations described by the
tail of the probability density function shown in Fig. 1(a) and
given by (5).

The peak of the optical rogue wave shown in Fig. 1(b)
dramatically exceeds an average signal power. This leads to
detrimental nonlinear effects causing overall degradation of
the optical signal. Therefore, in long communication fiber links
using ultrashort optical pulses in-line dispersion compensation
might be required even in the quasilossless propagation regime
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and coherent transmission. The derived PDF (5) can be used to
estimate the required amount and spatial periodicity of in-line
dispersion compensation in such systems. For example, one
can estimate the length N (measured in bit time 7') of a signal
bit stream which will contain a peak power fluctuation of
a given intensity P: N ~ n/PDF(P). This value practically
does not depend on L when the dimensionless parameter
@ > P/P according to (3). The developed theory can be used
to describe both a rare event of high-power fluctuation and
also the conditions leading to increase in an average frequency
of occurrence of rogue optical waves in the information data
stream.

In conclusion, we have presented theoretical analysis of
optical signal statistics in the quasilinear transmission regime
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when locally dispersion is dominating over nonlinear effects.
Large bit overlapping combined with the random nature of
the information pattern leads to a statistical possibility of
high-peak power fluctuations that can be damaging for signal
transmission. Such freak optical waves in telecommunication
data stream increase local nonlinearity and overall degrade
transmitted signal quality. We have derived a analytical
expression for the probability density functions describing
such rare events of high-peak power fluctuations.
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