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Intermediate asymptotics in nonlinear optical systems
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Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic
states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g.,
coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable
asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a
particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping
regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular
distribution of the intensity.
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I. INTRODUCTION

Nowadays it is widely recognized that stable asymptotic
solutions of nonlinear equations play an important role in
physics, biology, and many other fields of science. Asymptotic
solutions define the long-term evolution of a nonlinear system.
Often, coherent asymptotic structures can be generated from
rather arbitrary or easily satisfied initial conditions. Such
asymptotic solutions can be featured rather differently. For
instance, the well-known solitons are static solutions of a
nonlinear wave equation [1], dispersion-managed solitons
are periodic breathing-like (nonlinear Bloch wave) solutions
[2], and the more recently observed similaritons are self-
similarly evolving, parabolic-shaped solitary-wave solutions
to the nonlinear Schrödinger (NLS) equation with gain in
the quasiclassical limit [3]. Due to their stability, asymptotic
solutions of nonlinear systems are used in a wide range
of practical applications. In particular, an important area of
application of nonlinear solitary waves is in mode-locked
lasers, where the generation of stable single optical pulses
with certain properties quite often is the key purpose of
the laser system operation. In this paper, we consider this
particular, but important example of a nonlinear optical system
for illustration of a more general idea. The proposed idea
is based on a rather simple observation. In many practical
nonlinear systems, the evolution of a wave field in time or
distance is finite. Accordingly, under certain conditions, even
formally unstable structures with a finite lifetime or distance
can be used for a variety of applications in such systems.
The key condition is that the intermediate asymptotics field
should leave the system (in the laser context, it should be
outcoupled) before it becomes unstable. Such an approach
based on intermediate asymptotic states discloses a range of
new opportunities for nonlinear systems.

II. INTERMEDIATE ASYMPTOTIC DYNAMICS
IN THE NLS EQUATION

First, we highlight how the intermediate asymptotics
approach can provide new outlook even in rather well-
studied systems by considering the very well-known integrable
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NLS equation [1], which is a fundamental equation of
nonlinear science and, in particular, the key model gov-
erning the localized optical pulse propagation in an optical
fiber [4]:

uξ = −i 1
2uττ + i|u|2u. (1)

Here, we use the dimensionless quantities: u(ξ,τ ) = NU ,
U (ξ,τ ) = ψ/

√
P0, ξ = z/LD, and τ = t/T0, where ψ(z,t)

is the slowly varying amplitude of the pulse envelope in a
comoving frame, T0 and P0 are, respectively, some temporal
characteristic value and the peak power of the initial pulse,
and LD, LNL, and N are, respectively, the dispersion length,
the nonlinear length, and the energy parameter (“soliton”
number), defined as LD = T 2

0 /|β(2)|, LNL = 1/(γP0), and
N = √

LD/LNL, where β(2) and γ are the respective group-
velocity dispersion (GVD) and Kerr nonlinearity parameters of
the fiber. In the normal-dispersion regime of the fiber, starting
from an arbitrary bell-shaped initial field distribution, e.g.,
from a Gaussian pulse, it is possible to generate some advanced
field distributions, such as parabolic-, flat-top-, and triangular-
profiled pulses with a linear frequency chirp [5]. Such pulse
waveforms represent transient states of the nonlinear pulse
evolution in the fiber medium and can be associated with
an intermediate asymptotic regime of the pulse propagation.
Intermediate asymptotic evolution is of crucial importance
in nonlinear physics, as it describes the development of a
self-similar system at propagation distances such that the fine
structure due to the boundaries has disappeared yet the system
has not reached its asymptotic state [6]. For the triangular pulse
state being considered in this paper, this corresponds to the fact
that a self-similar nature of the propagation is dominant over
some finite distance so that we can identify a triangular pulse,
yet the asymptotic pulse solution has not been reached. The
characteristic length scale of the self-similar triangular pulse
dynamics, or life distance, depends on the initial pulse features
(shape, energy, and chirp profile).

Different approaches are possible to characterize the
pulse shape [5,7]. Here we choose the parameter of
misfit MS between the pulse temporal intensity profile
and a specific shape fit |uS(τ )|2 of the same energy
and full width at half-maximum (FWHM) duration:
M2

S = ∫
dτ (|u|2 − |uS|2)2/

∫
dτ |u|4. An example of the

evolution of an initial Gaussian pulse toward a pulse with a
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FIG. 1. (Color online) Evolution of an initial Gaussian pulse in
the fiber. (a) Evolution of the misfit parameter to a triangular temporal
shape for varying values of N and the (normalized) chirp parameter
C. Left: N = 6 (dotted curve), N = 10 (solid curve), and N = 14
(dashed curve); C = 1. Right: C = 0.75 (dotted curve), C = 1 (solid
curve), and C = 1.25 (dashed curve); N = 10. Gray (red) lines define
the life distances of the triangular pulses. (b) Evolution of the intensity
profile for N = 10 and C = 1. The profiles at distances ξ0 � ξ �
ξ0 + ξlife are drawn in red and shown in the inset.

triangular intensity profile is presented in Fig. 1. We define
here the life distance ξlife of the triangular solution as the
distance in the fiber where the misfit parameter to a triangular
shape MT � MT(ξ∗), where ξ∗ is the closest position to the
point of absolute minimum of the MT curve where the gradient
of the curve |dMT/dξ | becomes equal to or greater than a
sufficiently small value, which is set to 0.15 as an example.
Both the distance where MT reaches a minimum and the life
distance of the triangular solution increase for increasing
values of N , showing that formation of a triangular-shaped
pulse happens later in propagation distance and this pulse form
is maintained over larger distances. Larger values of the initial
chirp parameter lead to an earlier onset of the triangular pulse
evolution and a better fit of the triangular profile, whereas
the formed shape is maintained over shorter distances. We
note that a necessary condition for triangular pulse formation
in the fiber is that the initial pulse has a nonzero, positive
chirp (using the definition iCτ 2 for the phase profile) [5].
We note also that for a different choice of the initial pulse
shape, similar pulse-shaping regimes occur upon propagation
in the fiber, whereas the relevant parameter regions are
different. We find that in the quasiclassical or WKB limit of
Eq. (1) (i.e., the limit of high amplitude or small dispersion
such that |(|u|)ττ |/(2|u|3) � 1), the dynamic evolution
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FIG. 2. (Color online) Evolution of the pulse width τ0(ξ ) [gray
(red) line] and chirp parameter b(ξ ) (black line) for N = 10 and C =
1: solid curves, simulation results; crosses, theoretical predictions
from (2b) and (2c) for ξ � ξ0. The shaded region defines the life
distance of the triangular solution.

of the formed triangular pulse can be modeled as u(ξ,τ )
= √

p0(ξ )[1 − |τ/τ0(ξ )|]1/2 exp[ib(ξ )τ 2 + iφ0(ξ )]θ (τ0(ξ ) −
|τ |), where θ (x) is the Heaviside function, and the peak
power p0(ξ ), pulse width τ0(ξ ), and chirp parameter b(ξ ) are
given by

p0(ξ ) = p0(ξ0)

1 − 2b(ξ0)(ξ − ξ0)
, (2a)

τ0(ξ ) = τ0(ξ0)[1 − 2b(ξ0)(ξ − ξ0)], (2b)

b(ξ ) = b(ξ0)

1 − 2b(ξ0)(ξ − ξ0)
. (2c)

Here, ξ0 is the initial transition distance preceding the
triangular regime, and Eqs. (2a) and (2b) give the energy-
conservation condition. Figure 2 shows an example of the
evolution of the pulse parameters obtained from fits to the
propagating pulse from simulations. The expected results
obtained from Eqs. (2b) and (2c) calculated for ξ � ξ0

are in good agreement with the simulation values, even at
propagation distances ξ > ξ0 + ξlife.

III. NONLINEAR PULSE SHAPING IN MODE-LOCKED
FIBER LASERS

Next, we demonstrate how intermediate asymptotics can
be exploited in a practical laser system. Rapid recent progress
in passively mode-locked fiber lasers is closely linked to new
nonlinear regimes of pulse generation, namely, the self-similar
parabolic pulse [8] and the all-normal-dispersion (dissipative
soliton) [9] regimes. These are fundamentally different from
the well-known soliton [10] and dispersion-managed soliton
[11] regimes. In 2010 Oktem and colleagues [12] demon-
strated an entirely new regime of mode locking in a fiber
laser simultaneously sustaining distinctly different amplifier
similariton and soliton pulses. Amplifier similaritons were
also demonstrated in an all-normal dispersion fiber laser [13]
and in a Raman fiber laser [14]. Mode-locked fiber lasers are
complex physical systems exhibiting a nontrivial interplay
among the effects of gain, dispersion, and nonlinearity.
This interplay can be used to shape the pulses and pulse
dynamics and, hence, lead to different mode-locking regimes.
This makes such lasers interesting realizations of so-called
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FIG. 3. Schematic model for the laser. SMF, single-mode fiber;
OC, output coupler; SA, saturable absorber; DDL, dispersive delay
line.

dissipative nonlinear systems [15] with a variety of possible
pulse-shaping mechanisms not yet fully explored. Here we
report numerical predictions of the existence of two distinct
steady-state solutions of stable single pulses in a laser cavity in
different regions of the system parameter space: the previously
known self-similar parabolic pulse and a pulse with a triangular
temporal profile and a linear frequency chirp. To the best of our
knowledge, this is the first report of the possibility of triangular
pulse shaping in mode-locked lasers.

In our modeling, to stress the generality of the results, we
use a rather standard laser cavity similar to that described
in Ref. [8] as an example (Fig. 3). A 6-m-long segment of
single-mode fiber (SMF) with normal GVD forms the major
part of the cavity and is connected to a short length—0.3 m—of
ytterbium-doped gain fiber that provides pulse amplification.
An output coupler (OC) is placed at the end of the SMF
where interesting pulse shapes are observed. The gain fiber
is followed by a saturable absorber element. The final element
is a dispersive delay line (DDL) that provides anomalous
GVD with negligible nonlinearity. The cavity is a ring, and
thus, after the DDL the pulse returns to the SMF. Numerical
simulations are based on a modified NLS equation, expressed
in a dimensional form as

ψz = −i
β(2)

2
ψtt + iγ |ψ |2ψ + 1

2
g ∗ ψ. (3)

Here, β(2) = 25 fs2/mm, γ = 0.005 (W m)−1, ∗ represents the
Fourier convolution, and g(t) is the inverse Fourier transform
of the gain spectrum given by

g = g0

1 + W/W0,g + (ω − ω0)2/
2
g

≈ g0

1 + W/W0,g

[
1 − (ω − ω0)2/
2

g

]
, (4)

where g0 is the small-signal gain, which is nonzero only
for the gain fiber, ω0 is the central angular frequency, 
g

is the gain bandwidth, which is chosen to correspond to
a 40-nm FWHM bandwidth, W (z) = ∫

dt |ψ |2 is the pulse
energy, and W0,g = 400 pJ is an effective gain saturation
energy corresponding to the saturation power (determined
by the pump power) for a given repetition rate. The OC
is described by a coupling coefficient R such that at each
round-trip the fraction of input field that passes through is given
by ψpass(t)/ψin(t) = √

R. The linear losses inside the cavity
are accounted for by R without loss of generality. The saturable
absorber is modeled by a transfer function that describes its
transmittance T (t) = 1 − q0/[1 + P (t)/P0,a], where q0 = 0.3
is the unsaturated loss, P (z,t) = |ψ(z,t)|2 is the instanta-
neous pulse power, and P0,a = 150 W is the saturation
power.

Two practically tunable system parameters, namely, the
net cavity dispersion β

(2)
net and the integrated gain of the

gain fiber G, are varied to achieve different mode-locking

FIG. 4. (Color online) Misfit parameters of the steady-state pulses
to parabolic and triangular temporal shapes at the end of the SMF
versus net cavity dispersion and total gain. Misfit values >0.1 are
rendered with the same color associated with 0.1. The coupling
coefficient R = 0.1.

regimes. Here β
(2)
net is varied by changing the dispersion

compensation provided by the DDL, and G is varied by
changing the small-signal gain g0. A Gaussian pulse with
the energy 66 pJ and the FWHM duration 0.1665 ps is used
as the initial condition at the input of the SMF. Results of
the characterization of the steady-state pulse shapes at the
end of the SMF section for the laser operating at normal
net dispersion and with R = 0.1 are shown in Fig. 4. We
can see that pulses with a parabolic temporal shape are
obtained for relatively large values of the net dispersion and
moderate gain values. In contrast, triangular-shaped pulses
are observed for smaller net dispersion and rather high gain
values. We note that the formation of better-quality triangular
pulses at the SMF output for realistic gain values from 20 to
40 dB is possible by use of an SMF with higher nonlinearity.
Furthermore, at such gains close-to-ideal triangular shapes
generally form earlier in propagation distance within the SMF.
Then placing a small OC about such a position in the SMF
would permit extraction of the sought pulses from the cavity.
This would effectively correspond to extracting the interme-
diate asymptotics field from the cavity before it becomes
unstable.

Solutions obtained at representative points in the parameter
space of the parabolic and triangular pulse regimes are shown
in Fig. 5. The pulse evolution is illustrated by plots of the root-
mean-square (rms) pulse duration, spectral bandwidth, and
chirp parameter as functions of position in the cavity (Fig. 6).
For the parabolic pulse regime, the parabolic temporal profile
after the SMF, linear frequency chirp, and imaging of the
temporal shape in the spectral domain are all signatures of what
is well known from self-similar propagation and mode locking
[3,8] and are due to self-similar evolution in the SMF. The
nonlinear evolution in the SMF is monotonic with the growth of
both temporal and spectral widths. The generated bandwidth is
filtered by the gain medium, and the pulse is always negatively
chirped inside the cavity with a minimum just after entering
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FIG. 5. (Color online) (a) Temporal [solid (red) curves] and
spectral [dash-dotted (black) curves] profiles of the pulse at the
end of the SMF for β

(2)
net = 0.011 ps2 and G = 20 dB (left) and

for β
(2)
net = 0.004 ps2 and G = 60 dB (right). (b) Temporal intensity

profiles on a log scale [solid (black) curves] and chirp profiles [open
(black) circles]. Dashed (red) curves: parabolic (left) and triangular
(right) fits. The coupling coefficient R = 0.1.

the SMF [8]. In the case of triangular pulse shaping, pulses
with both triangular temporal and spectral intensity profiles
are obtained after the SMF. The spectral shape reflecting the
temporal shape is again a result of the linear chirp and high
value of the chirp coefficient. This can be explained using the
stationary phase method, i.e., the cancellation of oscillating
contributions with rapidly varying phase. Consider the linearly
chirped pulse, ψS(t) = A(t) exp(ibt2 + φ0), where |ψS(t)|2 is
a parabolic (S = P) or triangular (S = T) fit to the actual pulse
shape |ψ(t)|2, and b is the chirp coefficient. The points of
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FIG. 6. (Color online) Evolution of (a) the rms temporal [(red)
circles] and spectral [(black) triangles] widths and (b) the chirp
parameter [(blue) diamonds] along the cavity for β

(2)
net = 0.011 ps2

and G = 20 dB (left) and for β
(2)
net = 0.004 ps2 and G = 60 dB (right).

The coupling coefficient R = 0.1.

stationary phase in ψS(t) exp(iωt) are the times t0 = −ω/(2b).
Approximating the phase with a Taylor series expansion about
the dominant time t0 and neglecting terms of order higher
than (t − t0)2, it can be seen that when b is relatively large,
even a small difference (t − t0) generates rapid oscillations
within the Fourier transform integral, leading to cancellation
of such terms. In other words, the limits of integration are
extended beyond the limit for a Taylor expansion, which yields
a parabolic or triangular spectral shape for ψS(t). Similarly
to the parabolic pulse regime, the nonlinear evolution in the
SMF is monotonic, though the scales of temporal and spectral
broadening are larger. The main difference from the parabolic
regime is that the chirp is changed from negative at the end
of the gain fiber to positive at the entrance of the SMF by the
DDL, and correspondingly, the pulse compresses to minimum
duration in the DDL. We note that the positive sign of the chirp
coefficient at the entrance of the SMF is consistent with our
previously reported findings on triangular pulse generation in
one-stage fiber systems [5,16].

The triangular pulse intermediate asymptotic dynamics has
been investigated using additional propagation in the SMF
at the laser output. We have observed that larger integrated
cavity gain and larger net cavity dispersion both generally
lead to the formation of triangular pulses later in propagation
distance and to a larger life distance of the formed pulses. In
particular, this means that at a large gain or dispersion the
outcoupled intermediate asymptotics field can still propagate
over some distance before becoming unstable. A detailed study
will be presented in future work. We have also analyzed
the dependence of the pulse-shaping regimes on the energy
coupled inside and outside the cavity, with results showing that
in the range of net cavity dispersions and gains explored, in
contrast to the parabolic regime, the triangular regime appears
to be almost independent of the energy coupling, thus offering
more flexibility in the laser design.

IV. CONCLUSION

Using intermediate asymptotics in finite nonlinear optical
systems, we have proposed to produce field distributions that
cannot be created using asymptotically stable solutions. Taking
into account the finite nature of the spatial and temporal
scales related to physical systems, the possibility of generating
nonlinear pulse waveforms that reproduce themselves on
some distance could be of great interest for many practical
applications in nonlinear optics. We have demonstrated the
possibility of pulse shaping in a mode-locked fiber laser
using control of the intracavity propagation dynamics by
adjustment of the normal net dispersion and integrated gain.
The existence of a novel type of pulse shaping regime that
produces pulses with a triangular temporal intensity profile and
a linear frequency chirp has been shown. From a fundamental
viewpoint, these results are interesting from the perspective of
the physics of dissipative nonlinear systems. From a practical
viewpoint, the simple intensity profile of triangular pulses is
attractive for various photonic applications, including time-
domain add-drop multiplexing, wavelength conversion [17],
and doubling of optical pulses in the frequency and time
domains [18].
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