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Abstract

We find the probability distribution of the fluctuating parameters of a soliton propagating through a medium with additive
noise. Our method is a modification of the instanton formalism (method of optimal fluctuation) based on a saddle-point
approximation in the path integral. We first solve consistently a fundamental problem of soliton propagation within the
framework of noisy nonlinear Schrédinger equation. We then consider model modifications due to in-line (filtering, amplitude
and phase modulation) control. Itis examined how control elements change the error probability in optical soliton transmission.
Even though a weak noise is considered, we are interested here in probabilities of error-causing large fluctuations which are
beyond perturbation theory. We describe in detail a new phenomenon of soliton collapse that occurs under the combined
action of noise, filtering and amplitude modulation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Solitons play an important role in the dynamics and statistics of nonlinear systems in fields as diverse as hydrody-
namics, plasmas, nonlinear optics, molecular biology, solid state physics, field theory, and astrophysics. Presumably
the most impressive practical implementation of the fundamental soliton concept has been achieved in fiber optics,
where soliton pulses are used as the information carriers (elementary “bits”) to transmit digital signal at high bit
rates over long distances. Fiber optic applications of the soliton theory are governed by the integrable nonlinear
Schrédinger equation (NLSE) and its modifications related to different control elements introduced into the optical
line. The limitations on the error-free transmission distance are set mainly by the spontaneous emission noise added
by in-line optical amplifiers. Even though the noise is weak one cannot generally use a perturbation approach to
obtain the error probability because errors occur when signal changes substg8&l priori it is not even clear
whether one may still consider signal as a soliton-like or fluctuations with a substantial change of the waveform
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determine the error probability. Large rare fluctuations in a nonlinear system are typically beyond the area of appli-
cability of usual Gaussian statistifz-4]. On the other hand, neither experiment not direct numerical simulations
are presently capable to provide an adequate statistics of such rare errors so that theoretical methods are of utmo
importance here. The method to derive the probability of rare events was suggd&{easia maximume-likelihood
approach which boils down to finding an optimal fluctuation that provides a given large deviation of soliton param-
eters. The method is technically a saddle-point approximation in the path integral for probabilities and is indeed
known to describe the tails of the probability density funcish

This paper presents a consistent development of the optimal fluctuation approach for soliton-bearing systems.
The brief sketch of this theory and main results have been repor{@d &nd here we explain in more detail the
developed technique and present numerical evidence of the predicted effect of a soliton collapse. The conditions
on the noise level and propagation distance will be formulated for an optimal fluctuation to be close to a soliton
with slowly varying parameters. That makes it possible to reduce the formally infinite-dimensional problem to
the analysis of the finite set of soliton parameters and effectively find the error probability for a single soliton
transmission under different control schemes. The probability density function (PDF) is essentially Gaussian for
timing jitter [8—11]in systems without control and may have substantially non-Gaussian tails in systems with in-line
filtering and amplitude modulation. Here, we consider a single-soliton propagation, the effects related to soliton
interaction are described [&,3,12—-14]

Amplified spontaneous emission (ASE) noise added at each amplifier changes randomly the amplitude, position,
frequency and phase of the solitons. The fiber dispersion converts frequency variations in the arrival times jitter
known as the Gordon—Haus eff¢8} (see als¢9] where the mathematical theory of the effect has been developed).
Contribution of the Gordon—Haus effect to the total bit error rate (BER) is the probability that a soliton (corresponding
to elementary “one”) will arrive outside the detection window. Depending on the detector construction it may also
happen that the amplitude jitter will lead to a non-zero probability that some soliton with an amplitude lower
than the detection threshold will be registered as “zero”. Such rare events, nevertheless, can be of importance ir
the modern communication systems operating with BER less thaf. Existing theoretical models of soliton
parameters fluctuations under the impact of ASE noise are based on the assumption of the Gaussian statistics. In th
case, one needs to know only standard deviations of moments under consideration to find BER. Widely employed
numerical method of evaluation of fiber transmission systems performance (the so@d#letbr method) in the
basic formulation assumes a Gaussian noise distribution on both the zero and one levels. Qualitative justification
of this assumption for a single pulse is based on the fact that in the NLS equation the first-order perturbations
are captured by the soliton. Effectively first-order perturbations only renormalize soliton parameters leading as a
result to the Gaussian statistics. It is not obvious, however, that statistics in the nonlinear models governing systems
with soliton control elements will still be Gaussian. In fact, as we will show below some in-line control leads to
substantially non-Gaussian statistics even for the distribution of soliton position (arrival time). Note also that to the
best of our knowledge, the Gaussian statistics for pure (without soliton control elements) NLSE soliton under effect
of additive noise has never been proved rigorously. We would like to emphasize once more that relatively small
deviations from the Gaussian distribution tails can result in a wrong estimate of BER (that must be less han 10
Evidently, at such low level estimate of BER is very sensitive to correct determination of the distribution tails. To
be specific, we consider here a practical soliton transmission system, however, we would like to point out that our
basic purpose in this work is to introduce a powerful and rigorous mathematical method to analyze non-Gaussian
statistics in general soliton-bearing systems with additive noise. For this reason we also limit consideration by a
scalar model and focus only on the effects of the distributed additive noise.

The structure of the paper is as follows: We introduce the models and present some general relations for the
spectrum of soliton perturbations$ection 2\We pass to the reduced description in terms of the soliton parameters
and derive their probability distribution for a noisy nonlinear Schrodinger equation (NS€xition 3 The role of
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the continuous spectrum of perturbations is analyzegkiction 4where we formulate the conditions for optimal
fluctuation to be close to solitosection 5is devoted to the statistical analysis of different control schemes, here
we describe what is probably the most interesting physical phenomenon discovered in this work: soliton collapse
under the action of noise in the system with in-line filtering and amplitude modulation. Derivations of the main
results used through the paper can be fourtigpendices A, B and C

2. General relations

The evolution of nonlinear wave packet under the action of an additive noise is governed by the noisy NSE:
—i0,W = PW + W2 + & (1)

In particular, inthe fiber optic applications the coordinate along the lineis time, both expressed in dimensionless
units. We assume thatis a white noise characterized by the correlation function

(E(r1, x1)E¥ (12, x2)) = DS(t1 — 12)8(x1 — X2), (2

whereD is the amplitude of the noise.
In this paper we describe the statistics of noise-induced perturbations of a single soliton. We assume-tBat at
the ideal soliton signal occurs

¥(0, x) 3)

- coshx)’

We will examine a probability distribution of different distortions of the signal at a finite “tiffie” 0 (which is the
length of the communication line). Another important problem is to estimate the probability to detect a signal at a
finite ‘time’ T provided there is no signal at= 0. Answers can be obtained after studying statistics of noise-induced
fluctuations of the field’ around the ideal signal fori{2). We assume here that the “line lengfiiis long7T > 1
and that the noise is wedlk <« 1. More precise conditions will be introduced below.

To determine the probability of a wrong detection of digital bit, first one should specify a particular measuring
procedure. For example, the presence of the signal at a tm& can be decided by comparing with the threshold
the value of the integral

l
/ dx ¥ (T, x)¥(T, x), 4)
—l

taken over a window—/, /) atr = T. If the value ofl is large enough then the integi@l) (playing the role of

energy) is close to 2 for the solitdB). The value of the threshold is generally put smaller than 2 but larger than

the noise level. Errors in detection are due to events with the value of the inf(éessentially smaller than 2.

There are two leading processes which can lead to such decay of the detected energy. The first process is a drastic
decrease of the amplitude that can be characterized by the integral

0= %/f e U (T, X)W, ). 5)

that is equal to unity for the ideal sign@). The second effect is a shift of the soliton position. In other words, shift
of the soliton as a whole which is characterized by the quantity

1 © *
Y= E/_w dx x¥* (T, x)¥(T, x), (6)
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giving the “mass center” position of the soliton. For the ideal siggpY = 0. Therefore, below we focus analysis
on the joint probability distribution function (PDF)

P(0,Y) = <5 |:Q - %/dx (T, x)W(T, x)i| 8 |:Y - % f dx x¥™* (T, x)¥(T, x)i|>. @)
The averaging here should be performed over the statistics of the noise.
2.1. Madifications of the basic model by in-line control elements

As itis well known, one of the important effects leading to a loss of the soliton signal is the so-called Gordon—Haus
effect[8,9] that manifests itself as fluctuations of the soliton positiq6). One can estimate the variance/#8) ~
DTS, To suppress this effect a number of techniques have been proposed that mathematically can be describe:
by adding different terms (corresponding to specific in-line control elements) to the right-hand side of the basic
equation (1) All the additional terms are assumed to be small. Therefore, below all coeffieiantse equations
are treated as small parameters.

An attractive technique to suppress timing jitter is to use filtering cofit&jl Under the presence of a shallow
parabolic filter and weak amplification (to offset the energy lost due to filtering), the equation for the light envelope
propagation down the line takes the following fof

10, = W + 2|W|2W + £ — ieW — Bied?W (8)

We have chosen here the relation between filtering and amplification in a way to keep the amplitude of the stationary
soliton equal to unity. To suppress the generation of background that is inherent for this scheme, it was suggestec
to use filters with sliding frequendyt6]. The equation in this case takes the following fdith

0, = 020 + 2QW|?P + £ — ieW — 3Bie(d, + 2ir)2W (9)

Note that filtering only suppresses the timing jitter, but does not stop its growth. To stabilize the timing jitter one
can apply in-line intensity modulation control which modifies the basic model in the following way:

—0, = 02U + 2QW|PW 4 £ — i)W — 1€20°W + ieax®W (10)

An alternative way to suppress the Gordon—Haus effect is to use in-line phase modulation that mathematically can
be described in terms of the following model

9, = 020 + 2W|?Y — ex?w (11)
2.2. Separation of the discrete spectrum

Animportant issue in the consideration of the soliton statistics is to analyze the effect of radiation and a possibility
to separate discrete spectrum from continuum. There are four degrees of freedom corresponding to the deformation
of a single soliton. Let us introduce parameters, », y describing those degrees of freedom:

¥ = nexpiBx + ia +in[cosh™(z) + 1], (12)
z=nx—y), dr = »?dr, (13)

whereq, B, n, y are arbitrary functions of time, and we defined the “internal timeWe have also introduced the
field v(z, ©) which accounts for the continuous spectrum. This part of the perturbation can be expandgd over
which are the eigenfunctions of the linearized equation introducégpendix A
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+00 gk _
( li) = / 2—[skf7k(z) + 53 f-k(2)].
v —00 T

It is possible now to rewrite the original equation tarin terms of the new variables B, y, n, s¢, s;. Substituting
(12) and (13)nto (1) one gets

U1 = Uz + U; + Uk, (14)

[0 dk .- v _ v _ v
Uy = —|f S hsi fotc+ DL k] + (@1x + yer) ( *) — 9,01 + 29.) ( *> + 18,0, ( *>
T —vV v v

+@:By + 3@) fo(z) + 118, Bf2(2) +18,f3(2) — indrya(2), (15)
R 2 2 4 2pp*
_ 2L v e i 2 v o v 2n Ve +
Uz =n°L; (v*> B fo—2ipnfL— B <_v*> + 2iBno, (v* + cosh@) \ 200 — (v*)?
+2n%vv* ( v*) , (16)
—Uv

(17)

Us=—ﬂlexp(ia+ixﬁ+ir)s*< nexp—la —1xp 'T)S)

—n Lexplio — ixg +ir)&*

where¢ = Inn and the functiongp, f1, /2, f3 and the operatak are introduced ippendix A Here we denoted
by U1 the sum of the terms with time derivatives, by those generated by dispersion and nonlinearity antiby
the sum of the noise-generated terms. For different control schemes, one must add to the right-harjti4itreof
terms that originate from the additional terms in the right-hand sidesg|ef(8), (9), (11) and (67)ve shall call the
sum of such term#/, (see section below).

Now, to derive the equations for, 8, 1, y, s, s; one should find projections d&q. (14)onto the discrete and
continuous spectra using relations giverAippendix A This is done in the next sections.

3. Truncated model

Our main goal in the present paper is to compute probabilities of large deviations of the soliton parameters from
their initial values. In general, this requires to take into account the completgset, y andv. However, a” > 1
such probabilities are shown here to be determined by fluctuations of the discrete variables. This is because the
discrete modes are localized on the “core” of soliton and the integral effect of their fluctuations (continued in time)
can be significant. On the other hand, dynamics of the fiedghread its fluctuations over the whole space and
only weakly influences the soliton. In the subsequent section it will be shown that the influence of the fluctuations
attributed to the continuous spectrum on the statistics of the “soft” variabj@s; andy is negligible in the limit
DT? « 1. The variables, y anda, g are dynamically coupled (and this interaction plays the key role in the soliton
statistics). This means that we can restrict our consideration by an analysis of the discrete modesagiyen by
andy. Those variables have to be introduced nonlinearly to avoid growing in time contribution from them into the
dynamics of continuous spectrum (so that neglecting the latter is justified).

In this section we consider the situation described by the legsiation (1)An impact of the terms corresponding
to in-line control elements will be examined in the subsequent sections.
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3.1. Truncated action

First, we consider the case= 0, U, = 0. In physical terms this corresponds to soliton propagation in system
without in-line elements and we neglect interaction of the soliton with the continuum radiation. The later assumption
is discussed and justified Appendix C Then the projection dEq. (14)onto the functiongo, f1, f2 and f3 (written
in Appendix A) gives the following set of ODEs:

3¢ = Bo, 3B = 51, &y — 2B = E», do + yo, B+ B2 = Ea, (18)
1 tanh(z) 3 / z
Eo=—-/d I B = d R o= — d I
0 / * cosh(z) ! 77/ * cosh(z) 2 7 * cosh(z)
ztanh(z) — 1
By=— | dx>"""2 "R 19
3 / T cosh(z) (19)
R = Re[texp(—ia — ixB —i7)], I = Im[& exp(—ia — ixB —i7)]. (20)

The projection introduces new noise terfg =1, =2, 53 which depend both on our initial noigeand the soliton
parameters. Unambiguous definition of the mean values and variances of the new noises requires regularizatiot
and is presented iAppendix B Here we directly apply the results obtained there with the only difference is that
the summation over should be replaced by the integration oweiCalculating the pair correlation functions in
accordance witleq. (B.13)we get zero cross-correlations 8§, &1, Z», Z3 and

(E0(0)Eo(8)) = —8(0), (E1(0)E1(D)) = 5 Dné (1), (E2(0)52(0) = 573680,
n 3 129
o 1 7%\ D
(83(0)&3(0) = 3 (1+ 1—2> ;S(ﬁ (21)

Next, we calculate the average valuesshf-&'3 in accordance wittieqg. (B.12) The average values &1, Z» and
Z3 are zero and foEp we get
D
2_7]’ <
Itis interesting that there is a single non-zero average that means a systematic increase of the soliton amplitude
due to the noise. Although, in physical terms this is not a surprise to have such a growing amplitude in the system
with a permanent pump of the energy (through noise), to the best of our knowledge this mathematical fact has not
yet been pointed out in the literature. Note that the corresponding amplitude increase factor is small in the limit
DT? « 1 considered here.

As a result of the previous analysis we obtain a closed description of the dynamicg,of and n with the

relations(21) and (22) The correlation functions of those parameters can be examined applying the effective action
constructed in accordance wily. (B.17)

G|

(Bo) = 1) =0, (E2) =0, (83) =0. (22)

. . D . . .
iz = 2/ dr [—IMO <8z§ - 2_n> +ius0 B — 1pue(dy — 2B) — ipn3(dr + yo, B + ﬁz)]

dr 2n? 7 2 2
—D | —|2ud+ =2+ —pl+=(1+=)u3 23
/n[“°+ 3“5+6n2"“6+3< +12>“3 ’ 23)

whereuo, us, ue, w3 are auxiliary fields ang = In ». For instance, the pair correlation functiomatan be written
as the following functional integral

(y(t)y(r2)) = / DaDBD;DyDoDusDusDuz eXpil) y(t1) y(t2). (24)
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In a similar way one can present the POf. Next step is to drop in Eq. (12) Then the integral€s) and (6)are
simply Q = n(T) andY = y(T). Therefore, we can rewritéq. (7)as

PO.Y) = / DaDED;DyDyuoDusDusDus explil. (25)

Due to causality, the integral ovein Eq. (23)can be taken from = O tor = T. The integral here is over the
quantities which are arbitrary functions of time on the intex@all) with the following boundary conditions

t=0: n=1 y=0 B=0, a=0, (26)
t=T: Q=nD, Y=yD, ups=pn3z=0. (27)

The integration ovewx in Eq. (25)and the boundary conditiof27) give uz = O for all timesz. Therefore, this
degree of freedom can be dropped in the following consideration. Next, the term with linear drift &Q. (23)
does not play any essential role in the subsequent analysis (since we are interested i yalld€sand can be
neglected. Ther?(Q, Y) reads

PO.1) = / DFDEDyDyuoDusDius XPiLy).

r iD 2 2n? 2 7 P
I, = 5 df { 21400:¢ — 2us08 + 216(3ry — 2B) + o 2+ 3 M5 + 6_172M6 . (28)

We can now integrate oved which yields the relatiod, us = 2ug. Substituting the relation intkq. (28)we get
an action fory andn. Recall that we are interested in times> 1. This allows us to neglect in this integral the term
(9;5)% compared tmé. One should be careful since in this case we have to impose the cortiiitien0 atr = 0.
The resulting effective action is

~ T . 2
7= / dr {[2uoa,g + 9,usd,y] +iD [2,% e+ 3 e%é“ , (29)
0
where é = 5. To find the PDFP(T, Q, Y) one has to calculate the functional integral
P(T.0.Y) = / D¢DyDyoDyus explid). (30)

where now the functions andy must satisfy the boundary conditions

¢(0) =0, y(0) =0, 9 y(0) =0, expl(D] = Q, D =Y, ps(T) = 0. (31)
3.2. Saddle-point calculations

We shall calculate the integréB0) in the saddle-point approximation. This approximation is justified by a
smallness of the probability to observe deviations of order yBityin this approximation, the probability of a rare
event is determined by a single realization that realizes probability maximum:

In P ~ iisadcﬂe (32)

whereZsagdieis the saddle-point value of the effective acti@9). Thus, the original problem is reduced to deter-
mination of a saddle-point, which has to be computed by extremum conditions for the effective action.
The extremum conditions for the acti@@9) are given by the following differential equations

10, +2Dpoe ¢ =0, id,00 + Duge ™t — 1Dt =0, (33)

i92y = 4D € s, 32 us = 0. (34)
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The saddle-point value of the acti¢29) can be rewritten using these equations as

= T 1
i Zsaddle= ZD/O dr |:,Uv% exp(—¢) + 3 qu{)Mé} . (35)
A solution of the ODE$34) with the boundary condition1) can be found as
3|)\' ! / t/ 7 7 7
ws=e . y=a[df [ o - ek, (36)
D 0 0
wherea is a parameter to be determined from the other boundary conditions. This leads to
92 e/? = 23T — % e/?, o = —%8, €. (37)

A solution of Eq. (37)for €/2 is
/2 = VT = 1{CLIyal AT — %] + CoJ_1/al 31(T — 7]}, (38)
where the constants; andC» have to be determined from the boundary conditions. For example,

V2C, = 134/ o.

Below we assume that~ 1 (though the difference — 1 can be much larger than its average value). Then we can
estimate fronEqs. (34) and (36) ~ Y/ T2. Therefore, if we are interested in the valies T (since we assumed
T > 1thenY can be much larger unity), thef? « 1. Under this condition only first terms of the expansion of the
Bessel functions iiEq. (38)are relevant and we can use in the analysis only first terms of this expansion. Moreover,
under the conditiory « T an alternative perturbation scheme is applicable. Namely, at the condlitigrnT” the
contribution to the effective actidf29) associated witls, y can be treated as a perturbation. Therefore we can first
solve the problem fot, 1o, neglectingus, y, and then examine the dynamics,of, y on the background of this
zero solution fok, . Then the correction to the action relatequt) y can be found by substituting those solution
for us, y into theus, y-dependent part of the effective actif#9) or (35). Indeed this scheme is realized below.
After neglecting the term witlus in Eq. (33)the set of equations farand g can be easily solved and we get
for /2 an explicit expression

exp(g) —1+ Lo -, (39)

which solves the zero approximation problem for the dynamics @f. Next, substituting the expressi¢do) into
the double integra36) for y we get

Y =yD =413t + 4/0+ %0 (40)
Eqg. (37)allows us to rewrite ef,ug asD 2[5, exp(¢/2)]2. Using the explicit expressior{86) for u5 and(39) for

€%/2 and expressing from Eq. (40)we obtain:

2 2 9y?
NPT 0.1~ ~2= (V@ -1)" ~ R(Q) 5. (41)

_ [1/10+ 4/5)V0 + (1/10)Q]
[3/5+ (3/10/0 + (1/10)0]?
Recall that the expressio41) and (42)are valid only fory <« T.

R(Q)

(42)
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It is seen that foDT « 1 the PDF(41) has a sharp maximum at= 1. Considering fluctuations of under
conditionn ~ 1 yields the Gaussian statistics with

(Y% = ﬂg
9
Besides for 1- Q ~ 1 we get a non-trivial tail corresponding, roughly speaking, to a Gaussian distribution for
/O — 1. Distribution of Y at a givenQ is qualitatively the same as fa@ = 1. Namely, the same estimate
Y ~ DY?2T3/2 s correct, but the coefficients are different.

3.3. Probability to generate soliton from noise

Let us consider a probability to observe a soliton-like pgBeat a timer = T provided no signal exists at= 0.
Considerw = 0 att = 0. Assume that the corresponding optimal fluctuation is close to a soliton. Then it is natural
to start from the reduced actiq@9) derived in the previous section. Correspondingly, we can use the instanton
(saddle-pointEgs. (33) and (34)However, we should impose different boundary conditions. Namely, O at
t =0andy =ny att = T. As to us we should takg:s = 0 since we are not interested in the initial position and
the initial “velocity” a,y of the soliton. Extrema conditions over the initial positipand over the initial “velocity”

9;y give us(0) = 0, 9,u5 = 0. Thenus = 0 as a consequence B§. (34) Therefore the equation faris Eq. (37)
with & = 0. It can be easily solved and we get a solution

t
V= TV (43)
satisfying the boundary conditions. Next, we obtain frem (37)for o
ot
=—l—./N7. 44
Mo | DT2 ny ( )

Substitutingegs. (43) and (44into the action29) we get

iisaddlez - (45)

ﬁﬁf'
The probability to have a unit signal at zero input can be estimated &exaie, it grows with increasing’.

4. Role of continuous spectrum

The crucial point in the above analysis is that the contribution of the continuous spectrum to tH&BIgF, )
is neglected provided >>> 1. This is a manifestation of adiabaticity and of the fact that the first-order perturbations
are incorporated into the discrete modes.

We describe here the role of the continuous spectsuns; in terms of an effective action similar to the one
examined above. The starting point of the description is the equatieridibowing from Eq. (14) Let us introduce
the auxiliary fields, v; conjugated tay, s¢. Then the second-order term in the effective action determined by the
termsU; andU> in Eq. (14)can be written as

L (2) o0 oo dk . 2 N o0 toodk ., 5 N
II(COm = - dr —[ivedesy — (k° + Dvesy] — dr —[iv;drsk + (k° + Dyvise]. (46)
0 —00 2n 0 —00 2
Here we used the relation

o0 }
L. ( ! ) =/ I 2+ s fr — 5 Fil.

v* oo 2T
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To analyze the role of the noise tedf in Eq. (14)it is convenient to introduce the objects
m* oo gk [k +i)? k—i\?
_5 ok _ o 47
(m) 03/_00 271{(1(—1') Vk @k <k+i> Vi Pk (47)
w* . : M6 ,
L) rofo+inusf1+ o fa+iusfs). (48)

Then in the main approximation ovetthis noise term is written as

. ® dr 272 w2 1 2
i =D —|22+2e ™ 20 (142
i=-p n3[“°+ e g3 (145 )8

—D/ —3/ dzm*u + w*m +m*m) +-- -, (49)
0 M J-co

where dots mean terms linearinand, origin of which is explained ilppendix B These terms can be neglected
due to the same reason as the linear drift terfadn (23)

4.1. Linear coupling

Next we analyze the linear coupling between the discrete and the continuous spectrum, related to the cross term
in Eqg. (49) Such coupling formally can change the saddle-point equations for the discrete modes. Let us consider
the extended saddle-point equations that include both the discrete and continuous degrees of freedom.

Due to the presence of the contributi@) in the effective action the saddle-point equationssfandv contain
terms like (k2 + 1)s; and (k2 + 1)v. There are terms of the orderandm in the saddle-point equations. In the
equation forv one can identify the terms that can be estimatedfas®, 3,5, Dm, Du. The termsd;n, Du can be
estimated as/IT' that gives an estimate~ 1/7 which justifies neglecting the high-order terms lie v® in the
equation forv. Recall that the initial condition fov ats = 0 isv = 0 that does not contradict estimate~ 1/T.

Next we examine terms of the order @h andma,n in the equation forn. The above estimate shows that these
terms can be neglected in comparison with the linear term giving the oscillatiopards; . Thus we conclude that
the only “dangerous” (or relevant) contribution is related to the terf@dm in the right-hand side of the equation
for v since it can produce a secular growth compensating the smallnes¥ ¢éde the analysis below). Therefore,
one ought to check that « . Actually this inequality is guarantied it < w att = T. In general, it is enough
to check it only for a final boundary condition imposed on the auxiliary fielgk.

To prove the assertion, one has to verify the conditiors n atr = T. The final boundary condition for the
complete saddle-point equations (including both the discrete and continuous degrees of freedom) corresponding te
the PDK(7) is as follows

B NG SN T o B
m* + u* 1 v* 0 1 v*

Hereu1 andu» are Lagrange multipliers which should be chosen to ensure the rel&ipaisd (6) Thus we get at
t=T

uzy
Ho = (u1 + 6) , e = ui, W5~ JA3 ™~ M~ LoV (51)

It is seen that the condition« 1 is self-consistent and this justifies the application of the reduced description.
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4.2. Perturbation theory

In this section we examine perturbation effects related to the continuous spectrum. It is convenient to start from
the formally exact expression for the effective action

expliZ) = / DvDv*DmDm* expliZ), (52)
whereZ is the complete effective action. It can be written as

T = Tgisc + Zint + Zcont

whereZgisc depends o, B, n, y, 1o, 15, e, 13 only; Zeont depends on, s*, v, v* solely, andZiy; is a cross term

which involves both sets of variables. Our strategy is to calculate the in{gg)aixpanding botfconandZin: overs,

s* and to use the perturbation theory. The main term in the expansizg@fan be extracted frolgs. (46) and (49)
Let us introduce the Green function

G(t1 — 12,21, 22) = <( v 2) ) (m*(t2,z2) m(z2, 22) )>- (53)

v*(11, 21)

In the first non-vanishing approximation, any average quantity can be calculated in accordance with the
definition

(0) = / DvDv* DmDm* expliZEn) O. (54)

whereO is an arbitrary functional of our fields. Then we get fr¢48)

R +oo gk —i\?
G(T,u,zz):i/ d [(k l) expit + ik?0) foi (20} (22)

—00 21 k+i
k+i\> o - .
_ (k J_r i) exp(—it — Isz)f—k(Z1)¢Z(Z2):| G3. (55)

The expressiofb5)is applied to the intervat > 0, since at < 0 the Green functioi’ = 0 due to causality.
Similarly, in the main order we get fro(4) and (49)

v(t1, 21) o0 o A AT
(v(t2,22) Vv*(12,22)) ) = —D/ dT/ dzG(r1 — 7,21, 261G ' (12 — 7,22, 2).  (56)
v¥(11, 21) 0 —00

We look for the principal contribution to the correlation functi@®) at r1, 2 > 1. Substitution of the expression
(55) into (56) yields an expression containing the integrals like

o
/ dz @Z(Z)(?lqu(z) =2n8tk—q)+---,
—0o0

where dots mean terms regular oeg. Only suchs-functions make the principal contribution ¢86) since they
produce terms which do not oscillate withThe total contribution can be found as

, +% dk . -
<( v 20 ) (v(t2,22) v*(12, 22) )> ~ Df*/ > {expli(k? + 1)(r1—2)] fi(z) f{ (z2)+c.c.), (57)

v*(11, 21) 0

where the factot, = min(z1, t2) originates from the integral ovet
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The most important contribution tbis related to the third-order interaction term which can be presented as
o0 o0
iZint = —2 / dr / dz cosh~2(z) {(Mo - @> W? — (93
0 —00 n
+ i[nustanhz + u3(ztanhz — 1)](v2 + dov* + (v*)z)} , (58)
Let us, for instance, consider as an example the first contribution Egpni58)
o o
iZint,1 = —2/ dt/ dz cosh™2(z)po(v? — (v%)?). (59)
0 —00

In the second-order of the perturbation theory the t58) produces the following contributionZ to Z:
IAT = 3((iZin D)),

where averaging is determined in accordance {@#). Substituting here the expressi(B®) we get

iAI—4foodr /wdf /Oo din [T %2 o mmormo() (60)

2 2

K = (v102)? + (Viv3)2 — (v103)? — (viv)?, (61)

wherevi = v(t1, z1), v2 = v(12, z2). The explicit expression for the principal contribution to the ke(i6&) can
be extracted fron57). Such a contributio60) can be estimated as

iAZ ~ (DT)? / dr u2, (62)

provided there are no divergences. The factors cdsh (60) ensure convergence of the integrals ayeandzs.
Therefore the most “dangerous” divergence is related to a slow decrease of the keraetas- 7 increases. To
examine such a possibility we calculate the integral

T dk - R .- - R -

f dr K = D*T? / m{fﬁ (2063 fk (@) f{ (22)83fi(22) + [, (2083 k(1) f11 (2263 fk(z2)}.  (63)
—0o0

Note that only localized parts of the eigenfunctigfigz) contribute to(63). Using the expressior{&.4) and (A.5)

one can easily check that the integ(@B) converges both for small and for large The property confirms the

estimatg62). This fluctuation contribution has to be compared with the bare tei23containinguo. Then we

conclude that the fluctuation contribution is negligible if

DT? « 1. (64)

It is also worth estimating the modification of the effective actiafiproduced by the.s-dependent term i(68).

It can be written in the form analogous@@1) wheres is substituted by:s and the new kernek along with the

terms of the same structure askncontains the ternn(v1v§>|2. This is potentially “dangerous” because this term

has non-oscillating part so that the corresponding integral dvandlogous t@63) is not convergent at smail
However, this diverging part is even with respect to two independent transformatiehs —z1 andzo — —z2

and its integration with the odd functions tanhand tanh, vanishes. Physically it is transparent since srhall
correspond to large distances where the presence of the soliton is unimportant. In this limit the correlation function
(v1v3) is simply the Green function of a free Schodinger particle with the fatmin(zy, 72). Its square modulus

does not depend an andz; and is obviously even. The contribution faiz K, which is localized on the soliton,
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has the same estimate(@8) and this confirms the criterigi4). We can see also that there are no such cancellations
for the contribution~ [ dt M% to the effective action. However, the signal statistics does not depend on the dynamics
of the variablest3 anda.

5. Statistics of soliton in the modified models

In this section we analyze the additional terms describing different modifications of theelasitton (1)and
their impact on soliton statistics. The modifications are describ&ation 2.1
Instead of(18), we get for the system with in-line filtering

o = 2en — 6e(B? + 307+ Eo, WP =4den’B=E1, dy-28=2E2  da+ydhB+p°=Es
(65)

Without the noise term, the only possible steady-state valuegatel andgs = 0. The frequency and amplitude
dispersions saturatén — 1)2), (8%) ~ Del[1 — exp(—8er)]—see (5.149-50) frorfi7]. Therefore(y?) o DT so
the Gordon—Haus effect is suppressed. Since the background grows exponengigiii?er) then it is this growth

that sets the limit to the transmission distance.
In the case of sliding frequency filter control the equations governing evolution of the soliton parameters are

9 = 2en — 6e[(B+ 2207 + 3nPln+ Bo, 8,8+ den?(B+ 201) = &,
dy—2B=25s  da+yB+p>=Es (66)

Now, without the noise we have a soliton drifting over frequencies:

Bs = —2xnt + * 2 4 3(2 2—1 (67)
° 2ens’ s 2ens B

with an acceleratiory = —2ir? + At/ens—see (5.226-30) frorfv]. Such state is stable fo < 2¢/3 [7]. The
dispersions ofy andy are given by (5.276) and (5.284) frdf.
Below, we analyze two principal in-line control schemes: the phase modulation and the intensity modulation.

5.1. Phase modulation control

First, we consider the phase modulation case which is describBd.bi{L1) An additional term withe leads to
a modification of the basic equations for the discrete spectrum. To examine the corresponding changes in the PDF
we can apply the same procedure as above.

Let us introduce a modified reduce action for the case of phase modulation c&atr¢l1l)contains an extra
term in comparison witlil) and that leads to the corresponding additional t&¢rin the right-hand side dq. (14)

Ve —e(24y) (1 L
=€ n Y —1/ cosh(z) ’

where dots mean terms proportionabtaCorresponding additional contribution to the reduced action reads

2
.= . . b
|IGZ4|€/dtM5y+2|€/dtM3(W— 2>.
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Again, we can omit the term related to the dynamics of the phasethe only new contribution to the action will
beZ. = [ dr usy. Varying the sun¥ + Z. we get the following saddle-point equations

2 .
N 1 2i
&y =28+ IDG—nsue, WP =—2ey — 3 Dnus. d s = 2ue, die = —2€us. (68)

Equations of motion fon and g are the samé&q. (33)
Eq. (68)for us 6 have a harmonic solution. Taking into account the final conditigé?) = 0 we obtain:

3ix .
s () = 5 sin [(T — 1], (69)

wheref2 = 2,/¢, and the amplitudé has to be defined from the final conditign= Y.

For small enougly it is possible to treat the terms wiihs, 1 in the effective actiorf28) as a perturbation and
to repeat the scheme developedSection 3.2 First, we neglect the term withs in Eq. (33) Then we get the
same answe(39), that isn(r) = (1 + Bt)2, whereB = (/O — 1)/T. The equations fop and 8 should be solved
on this background. For smallwe can neglect the term proportionalg in the right-hand side of the evolution
equation (68for y. Substituting ther{69) into the equation of motion fg8 in (68) we readily solve the system of
equations foB andy (it is harmonic oscillator with time-dependent external force having resonance frequency in
its spectrum). Finally we get 4t >> ¢~ 1/2:

=—T(1+BT+ =BT?). 70
o0 = 57 (14874 35°72) (70)
Equatingy(7) to Y we find the expression for.
2Y 1
A= (72)

T 1+BT+ B272/3

A leading contribution to the logarithm of the PDF is given again by the expre§3%)nThe no-dependent part
expressed in terms df andA is not changed:

12BT 1

r 2
2 A = = 2 ~r= -
2D fo dr g exp(—0) = — o= (B + = <1+SBT>. (72)

The term Withué should be, however, recalculated. Using the expreq§i®ywe obtain:
2D (T 312 B?T?
= | dtfui=-""—r1(1+BT : 73
3 /0 M5 1D ( +Bl+ 3 ) (73)

Rewriting A via Y and Q according ta(73), returning froms2 and B to € and Q, and adding the terr{v2) we get
finally:

2 2 3ey?

NPT 0.1~ —== (\/E— 1) - Rph(Q)%, (74)
3
1+/0+ 0

Now we should establish an applicability condition for the expres&idh For that purpose, we estimate an effect
related to the term witlus in Eq. (33)omitted at treating the dynamics gf uo. We find a correction tgo:

Rpn(Q) = (75)

A D/Tdte{ 2 €V (76)
Mo 0 Mg DT
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Comparison of this expression with the terms containigg~ 1/(DT) (that follows fromEq. (37) leads to the
conclusion that this variation can be neglected if we consider fluctuationsesss than 1./e.

Estimate of the impact of the continuous spectrum on the reduced dynamics proceeds in the same way as in
Section 4.2 Actually, the perturbation~ x2¢ of the evolution equation does not introduce any dissipation (in
contrast to the case of intensity modulation control) and the linear in time Brownian growth of the mean square
fluctuations amplitude remains. The modification affect long-distant properties of eigenfunctions of the linearized
operator and slightly changes their frequencies. Namely, if we write the correlation function of thedield >
as

(v1v3) = Dtp €172 G(11 — 12; 21, 22) (77)

then at distances ~ ¢~1/2 where the perturbation becomes essential we can forget about the presence of the soliton
and forG we can use the expressi¢@.6) of the oscillator Green function with the real frequerey= 2,/¢. For

scales ~ 1 the perturbation of the evolution equation is negligible and we return to the foi@itiéor (v1v3),

(v1v2). Modification of dynamics of variablgsy andp is described by expressio(80) and (61)with the modified
correlation function of the field. Note that the structure of the kernilis such that at distancess 1 it oscillates

in time (seg77)) and an integration overresults in a negligible quantity. The only substantial contribution comes
from z ~ 1 for which the analysis made {63) works. Thus, dynamicgo andn remains unaffected by continuous
spectrum fluctuations &T? « 1. The contribution~ [dt M% to the effective action is proportional to

/dr/dzl dzz tanhzs tanhzz|G(T; 21, 22)12.

The distances ~ ¢~1/2 do not contribute this integral because the square moddlus 1, z2)|? is even both in

z1 andzz (see(C.6)) while the functions tanhy » are odd. The only contribution which remains is that from the
scales~ 1 where the perturbatior x? can be neglected and we return to the analysiSeaftion 4.2 Thus, it is
seen that the continuous spectrum is irrelevant under the con@ifidrg 1.

5.2. Intensity modulation control

In this section, we analyze the statistics of soliton in systems with intensity modulation control which is governed
by Eg. (10) Below we assume; ~ €2 ~ €3 < 1.

In the intensity modulation scheme, the steady state without noisg¢sags= 0 ande; = ezn§/3+ 63712/12773.
Itis linearly stable for 42?75 > nzegngz. Another condition on parameters is imposed by requiring the stability of
Zeroiez > Zegn‘s‘/g—see (5.211) fronfi7]. Those two conditions are not contradictory. It is statefVinthat the
amplitude fluctuations saturate at the same level aé8jowhile the timing variance is given by (5.192-3) and it
saturates at
D 3Dns

T 2nse3 2mPezener

(Y?) (78)

Let us introduce a modified reduce action for the intensity modulation control case. There are additional terms in
Eqg. (10)comparing taEq. (1)and they produce an additional tefifa in Eq. (14)

U——ill—i21321+ilﬂ2+2f}lal
¢ =7\ 1 ) coshm) ¥\ 1) %coshm) T2\ 1) coshiz) T 2"\ _1) % coshz)

s = (2 ! 79
+le3 (5 + y) 1 COSh(Z) . ( )
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Extracting contributions to the equations §o18, y andn corresponding t&q. (79)we get an additional contribution
to the reduced action

iZ, = —/dtdz(u*u)Ue = 4i61/dtuo - giGZ/dtuonz —4i62/dtuo,32+ %Q/dt,uwzﬁ
2 2
—ZIES/dIMO <6_r]2 +2y ) - TIES/dt?' (80)

The term(80) must be added tBq. (23) As previously we can pass froly. (23)into Eq. (28) VaryingZ + Z. we
get the following saddle-point equations

2 2 P
. n° oy .7 4, 2i
&y =2p— R + |D6—n3N«6, p = —geanp — 5 Dius, (81)
1 2 .
=2 (61 — 562;72 — 62ﬂ2> — €3 (6—”2 + 2y2> + 2iDn Y po. (82)

LinearizingEgs. (81) and (82)ve conclude thatz?) ~ D/e due to the noise term in the right-hand sidéof (81)

The probability of larger fluctuations af is related to the termx y? in the right-hand side oEq. (81) So, to
investigate the deviations, we can omit the term with the noise in the right-hand stde @1) Then, fluctuations

of ¢ will be forced by fluctuations of. If y « 1 then¢ « 1 also. The case is irrelevant for us if we are interested

in a probability of the signal lost. If > 1 then a new phenomenon of soliton collapse takes place. Namely, in this
casen — 0. Let us reiterate that we describe here an optimal fluctuation which gives the maximum probability
of a giveny. If y is large enough, that is the soliton deviated too much into the region of high dissipation, then it
indeed may disappear in a finite time. To describe the regime of decrepsiegan keep only the term 1~2 in

the right-hand side dEg. (81) Then we have

2 1,2
on® = —3€3m",

what leads toy — O for a finite time. Therefore large inevitably leads to the collapse. This effect can also be
described in terms of the corresponding featurg3(@, Y). Namely, there is a critical valu&, ~ 1 sothatP(Q, Y)
falls into 8(Q) if |Y| > Y. Of course Y, is a complicated function of, €1, €2, €.

Collapse existence can be understood from the following simple analysis of a reduced system. The saddle-point
equations (81) and (82dmit a solution withy = vo = 8 = y = 0. This simplest case can be analyzed in more
details. Since the equations follow from the minimal action principle, they can be rewritten in the usual Hamiltonian
form

oH oH

g = ——, =, 83
V0 o 79 o (83)
D D 2
H = EUO + ;v% + 2€1vg — :—gezvonz — ES%’ (84)
whereés = 72e3/6. In the explicit form thequations (83jead
D D 4 Vo
dvo = — iy SR 2 _ 23—, 85
o= 5 Vot g+ geavon €z (85)

D 2D 2 .1 H D
¢ = o+ ——vo+2e1— S’ —&5 = — + —w. (86)
27 3 n
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Note that for non-zero Hamiltonian and positiythe sign of the continuous functieg(¢) cannot be changed during
evolution, because the integral of motiéh= const is directly proportional tayg. Considering, initial condition

with vp(0) < 0 we can easily estimate the derivative of the figlas
H D HD
0l =—+—vy < —2[—.

Vo n n

The equation inevitably produces the collaps# i 0 since

[HD
9t <—-2|— — /n<1—+HDs
n

We conclude from this inequality that the collapse timés bounded from above ag; < 1/+/DH. Note that the
casevg < 0 corresponds to positive Hamiltoniaih > 0. Numerically found collapsing solutions are presented
below.

Let us examine now the region of parametéfs< Y¢r, O ~ 1thatisy ~ 1 and¢ ~ 1. Then the life time of the
corresponding instanton can be estimateeds Next, we come to estimates

B~ e, Dus ~ €, 1o ~ e ™~ EUS.

It is a motivation to introduce rescaled fields and time:

63 62 63
t=e(T —1) B = eB 1o = —i—*fio s = —i-tiis e = —i-=fie.
. . 7 Ao, 7 Hs, D

Omitting irrelevant terms, we find an effective action

¢ 9P Ny |z 2n 5
- 2i0= — 25— + 2jig | = +2B) + ="
/ {Mo 5= + M6<8t+ ﬂ>+3M5

61 (. 1. 5, e 5 8 . 2m?_ y
—= dr {4 1-- -2 —+2 = - — 87
2/ { fLo ( 32N fioés | gz T2 + 3€2hsn ’B ) 2 (87)
whereés = €2/€1, €3 = €3/€1. Extrema of this effective action can be examined only numerically.
So, we can assert onIy that|at] < Y,

InP(Q, m——— (2 S o, y) (88)
D €1 €1

where F is a function of order unity. Probably, the functiéiiY) has a minimum at & ~ 1. Let us explain the

existence of the minimum at4 Q ~ 1. Remember, thap, Y coincide practically with the final values gfand

y. As is seen fronEq. (82)(where the term withig should be omitted in the approximation we use) to achieve

avalue 1- Q ~ 1 atr = T the value ofy? should be of order unity during the evolution (since the life time of

the instanton is- €~ 1). Therefore smalt means that the behavior ofis non-monotonic: First it grows from 0 to

y ~ 1 and then returns to a small value.

It is natural to expect, that such non-monotonic evolution costs more than a monotonic evolution dt
Therefore F seems to diminish at growing. Next, it is natural to expect thal grows whenY goes toY,.
Therefore there should be a minimum in between. Of course, the conclusion has to be confirmed by numerics.

Let us describe briefly the regigif| > Y. There is no instanton solution corresponding to the effective action
(87) with the final conditions/(T) = Y, n(T) = Q. Therefore to “draw’ up to QO we should take into account the
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field uo in the right-hand side dtq. (82) Of course it costs much more (in terms of diminishing probability) than

the instanton corresponding to the effective ac{®n). To estimate the corresponding contribution to the effective
action one should take into account the tekrwg from Eg. (28)besides the actio(87). The contribution can be
estimated in the Gaussian approximation over variations near the instanton solution corresponding to the effective
action(87). The answer is as follows

—InPQ, Y) ~ %(Y — Yo (89)

This expression leads to the conclusion thal at Y, the probability decreases fast with increasihgrherefore
the regionY > Y, practically does not contribute to the probability of the signal lost.

The possibility of the collapse leads to the following interesting phenomenon. There appears to be a contribution
to the probability distribution functiof(Q, Y) proportional to$(Q). During the collapsg? o ., — ¢ (wherer, is
the time when the collapse finishes). Substituting that ifgqo(81)for y we conclude thay — 0 also atr — .
Thus the contribution we discuss is proportionabt®) as well. Of course the contribution must be proportional
to the “observation timeT since we consider an escape from the stability region due to a leak through the barrier
with a constant rate and no return. The probability to escape the barrier can be found balancing the(wbish
indirectly influenceg through pumping andy) by other terms ifEq. (82)for 5. The probability can be estimated
in terms of the effective actiof87). The result is as follows:

3
P(Q. Y) = T5(Q)8(Y) eXp(— Feol) + Preg( Q. V), Feol ~ %

wherePreg(Q, V) is the regular contribution discussed above and we asdimge 1. For largeT the probability
of loosing the signal is simply proportional Toexp(— Feo).

The computations il\ppendix Cshow that the probability to have a significant contribution of the continuous
spectrum to the observable signal is strongly suppressed and thus negligibke;, #/4. Another criterion follows
from the estimation of influence of the continuous spectrum on dynamics of our reduced set of vaiables
Repeating procedure which lead us to the form®@) with the correlation functions from th&ppendix Cwe
obtain the estimation for the term modifying the reduced effective action due to interaction with the continuous
spectrum:

D2
iIAT ~ — [ dr i,
ﬁ/ Ho

We can conclude that the continuous spectrum is irrelevant at the condition

DeY? « 1. (90)

6. Error probability
In this section we apply the above results to calculate error probability in soliton-based data transmission.

A common way (se§7, Section 5.5]to make a decision concerning a received bit is to compare the “energy” of
the signal in some window

)
Ed.n,y) = / @slw 2~ P (tanh (- )] + tanh -+ ) (91)
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with some decision threshold fanhi (usuallys < 1, for instances = 1/2). The probability of making an error

(in this case, treating unity as zer®) (s, T) is the integral ofP(n, y) over the region defined by the inequality
E(,n,y) < 2stanhi.

This integral cannot be calculated analytically, but can easily be computed numerically. Comparing two terms
in the PDF and substitutingfor y one sees that far « T the answer is the same as for Gaussian PDF as it is
determined by-dependence dP(», y) and does not depend grdependence. If, howevéiis comparable with
(itis not clear if it is practical) then-dependence is crucial. If we negledn tanh, our region is given by < s%/3

0.9~
0.8~

0.7~

06~

(b) 1 Y

Fig. 1. Probability density function in normal (a) and logarithmic scale (b).
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and the error probability is exp[(1 — s%/3)?/DT]—similar to (45) for signal from noise. Using this simple model
of the receiver one can easily apply derived PDFs to the evaluation of the corresponding contributions to BER.

7. Numerical smulations

In this section we present the results of numerical simulations. We focus on the most non-trivial case of in-line
amplitude modulation and filtering. The parameters usually used in the numerical modeling are as folie\#s:
€2=0.1;¢1 = e2(N + 1)/3N; €3 = 4ep/\/TN.

Fig. 1 shows two-dimensional PDP(Y, Q) calculated for the system with in-line amplitude modulation and
filtering. Fig. l1a depicts the PDF in the normal scale dfid. 1b in the logarithmic scale. It is seen frofig. 1b
that probability does not cover the whole plaiieQ).

There is a forbidden zone that is also presentefign 2 showing a contour plot oP(Y, Q). Existence of such
zones where probability to observe soliton with corresponding parameters is zero is attributed to the stabilizing
action of the amplitude modulators and in-line filters. Note that formal numerical solutions of the saddle-point
equations can be double-valued in some regions in the plaud®) as it is illustrated byrigs. 3 and 4These figures
demonstrate that the same point in the plafg?) can be obtained with two different trajectori€sy. 3illustrates
the dynamics of one instanton fiejdvheread-ig. 4shows ‘phase portrait’ of the two different trajectoripgersus
y corresponding to the same parameters in double-valued zone. Single-valued PDF in such regions should be forme
by taking the larger values dt(Y, Q).

Fig. 5describes collapse of the instanton trajectories under specific initial condRiges4—&have been obtained
by integration of the reduced mod@5) and (86)Recall that the reduced model corresponds to the particular case

Fig. 2. Contour plot of PDF showing a fold and a forbidden zone.
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Fig. 3. Dynamics of the instanton fieldcorresponding to the two different trajectories.
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(b)
Fig. 5. Collapsing dynamics of the instanton fielgdéa) andv (b) corresponding to the reduced modejs. (85) and (86)Different curves
correspond to different values o§(0) = —10 (solid);vp(0) = —20 (dashed)po(0) = —30 (dot-dashed);o(0) = —80 dotted.
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Fig. 6. Collapse time vs:(0).

of instanton fieldgv; = v, = 8 = y = 0). Results presented Figs. 5 and éhave been computed for the same set
of parameters except differepd(r = 0). Fig. 5depicts evolution of) (a) andvg(?) (b) with time. Different curves

in these two pictures correspond to different valuesg@®) = —10 (solid);vo(0) = —20 (dashed)yg(0) = —30
(dot-dashed)pp(0) = —80 (dotted). Collapse has been found for all the negaij¥®) < 0 and the collapse time
has been defined as the point where the both fields becomeFigré.shows how the collapse time depends on
vo(0) suggesting that the collapse occurs only for negati¢®) (or positive HamiltoniarH).

Appendix A. Auxiliary relations

Recall some well-knowfil] properties of the perturbations near a soliton described by the nonlinear Schrédinger
equation. The perturbations can be examined in terms of the linear equation

v ~ v
(1) (1) "
v v

where the operatat is

L=(?-163+ (263 +i62). (A.2)

2
cosh?[x]
Evidently

L*=1L, 61L61 = —L, LT = 63L6s. (A.3)
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The spectrum of the linear problem is determined by the equatipr= Af. A general solution of this equation
reads

— exnfi _ 2ikexp[=+] 0 explikq 1 o
i = expliky {1 %+ DZcosh i } <1> + kT iZcosLd (1> . Me=k"41 (A.4)

Due to the propertyA.3) the functionsf; = o1 [ are also eigenfunctions af:

- = 2ik exp[—x] 1 exp[—ikx] 1 2
fi = exp[—ikx {1+ & hZcoshfl } (O) + *—h2cosid <1) , = —(k“+1). (A.5)

Another set of the eigenfunctiordsy = A¢ can be written as

_ , 2ik explx] 1 exp[—ikx 1 2
or = exp[—iky {1 ~ &+ )2cosh i } (O) + &+ 2 cosela] cosh?[x] <1) , A= —(k"+ 1), (A.6)

andgy = 619

> — expli 2ik explx] 0 explikx] 1 o
or = expliky {1+(k_i)zcosh[x]}<1)+m<l>, M=k + 1. (A.7)

Heregi(x) = fox(—x) and@e(x) = f—(=x).
There are also bound states corresponding to the marginally stable modes:

1 1 1\ tanhx]
= . Ao = O; == ) A= 07 A'8
fo cosh |x] ( —1) 0 h ( 1) cosh [x] ! (A-8)

Double poles at = +i mean that two more functions must be added for closure, namely
a ! i : A9
xtanhfx] -1 (1 .

= = = . Lfs=—f. A.10
/3 cosh ] (1) fa=—/fo (A.10)

Note that due to the properf.3) the left eigenfunctions of the operatbrcan be written ay, o3, },I&g, <pZ63,
@,183. That leads to a set of orthogonality conditions for the eigenfunctions. In an explicit form the conditions can
be written as

+00 _ k—i 2
f dx ] 63f, = 2w (—) 8k +q), (A.11)
o0 k+i
+oo ki 2
/ dx @ 63f, = —2n <$) 8k +q), (A.12)
o0 k—i
+o0 T +o00 T
/ dx f,63f1 =2, / dx fy63fz = —2. (A.13)
oo oo
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Let us give the values of some integrals

/+Ood ZM_} 1_,_”_2 /+Oodz—2_”_2
o % Costh(z) T 3 6 )’ o CcOStP(z) 6

Too exp(2az) 14 too expl2az)  2ma
/ dz = , / dz - )
oo cosh(z) ~ cos(wa) e cOSR2(z)  sin(ma)
/*OO d exp2az)  2m(1/4 — o?) /+°° d exp2az)  Ama(l— o?)
o cosh3(z)  cos(ma) o cosht(z)  3sin(ma)

Appendix B. Contact terms

Here, we explain an origin of the “contact terms” in the stochastic equations, discussed in the main body. Let us
consider the following equation for avi-component fieldp = (¢1, ... , ¢/):

P = F*(d) + A" ()&, (E(11)EP (12)) = 2Dopd(t1 — 12),  (€%) =0, (B.1)

whereF is the “deterministic force” and is the M-component white noise. Summation over repeated indices is
assumed here and below. The maifixs assumed to havgindependent matrix elemeni,g. GenerallyN # M
and we can assume an arbitrary numb¥rand M. Therefore the situation is generic. The case considered in the
main body of the paper corresponds to a substitution of the summation over the components of the noise by an
integration over the continuous variable.

If the matrix A“*(¢) has a non-trivialp-dependence, then the continuaegiation (B.1)s not unambiguously
defined. It is completely fixed in the discretized form. We assume the following discretization:

Ppp1— Py = €F(@n) + ze(An+1 + AOE,, (B.2)

2D
(nkp) = —Onm, (&) =0, (B.3)
wheree is the value of time steps. Such a regularization has physical justificatfanction in the noise correlation
function(B.1) s the limit of a narrow symmetrical distribution. That is the reason why the coefficigfjtiattaken
at the middle of the interva),, t,+1 (See also an alternative scheme at the end of this appendix).
To recasEq. (B.3)in the standard retarded form we expand:

€A (d””l—;"b”)s“ €A (P)EL + (¢n+1 )5 ¢,, AEl (B.4)
— c AW n 62 Abv 0 AN (B 5)
= AT @nE) + AT AN, &+ :

Here the equation of motiofB.3) was used in iterations to express the differeql:ﬁgl - ¢f’l in terms ofg,, andé
again. The term- 625,’,‘5,”, in (B.5) should be taken into account because its expectation value.i©ne can easily
verify that the omitted ir{B.5) terms give negligible effect in the liméit— 0. Thus,Eq. (B.3)can be rewritten as

Bry1 — On = €F(Pn) + €5y, (B.6)
=0 __ Ad E by 9 a
B = A (¢y)E" + 2A a¢bA Rglgy, (B.7)
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After solution of the evolution equation for the variablethe new noises€ becomes complicated functionals of
the initial onet. This makes statistics & non-trivial.

To avoid this difficulty we can formally substitute solviig. (B.6)by an integration over all functiorg, with
the weight, which is the functionatunction ensuring that only solutions Bfy. (B.6)are taken into account. Then
the value of any functionad of ¢ on the solution oEg. (B.6)is written as

[ [do;see,1 — 2 — eF*(dn) — €EDO. (B.8)
J

The retarded discretization &fy. (B.6)leads to the absence of an additional Jacobidtgin(B.8) Then averaging
of O with respect t& can be considered as the functional integration of the expre@di8jovers with the measure:

I / dé; exp(—¢] D71E)). (B.9)
j

We can change the order of integration ogeandé. After that, integrating with respect £ we can treat the field
¢ as a parameter. Then this Gaussian integration ®e¢an be treated as a Gaussian integration @&evrith the
averages

d
(83) = DyvA” ($n) 5 A ($), (B.10)
@)
2
(E8n)e = DuvA® () A” (@) ~bnm (B.11)

Here the designatioh. . )c means connected (irreducible) correlation functions. A continuous versifso(B. 10)
and (B.11)has the form:
d
oa _ bv_Y  pap

(E°(1) = DA a¢bA ) (B.12)

(BU11) B (1)) e = 2D, AW APVS(11 — 12). (B.13)
The non-zero expectation value 8fin (B.11)—(B.13)is just the “contact term”. It is worth noting that the last term
in (B.7) at fixed¢ produces only non-zer&') and does not affect any irreducible correlation functiortof

Returning to the expressidB.8), it is convenient to rewrite th&functions there as

dpn
2

In the continuous limit the product of thiefunctions inEq. (B.8)is written as

8Py — Fp — €F(dn) — €& = / explipn (¢, 1 — ¢y — €F(dn) — €5})]. (B.14)

HS(¢Z+1 — ¢y — €FU(py) — €5y) — /Dp exp[i / dr pa(3;9" — F* — E“)] . (B.15)
J

Performing explicitly the Gaussian integration ov&rve get finally
(0) = / D¢Dpexpil) O, (B.16)
iI:i/dtpa <a,¢“ — FU¢) — DWAb”%AaH) —/dt DyuvAau A paps, (B.17)

Here (0O) designates the value of the functiortalon the solutions oEq. (B.1)averaged over the statistics of the
noises.
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Let us give an alternative derivation Bfys. (B.12) and (B.13)To obtain the ‘contact termgB.12) one may
consider the noisg in Eq. (B.1)to have a small but finite correlation time:

(Ea(1)E5(12)) = 2Dap(t1 — 12),  Dap = / d Das (1), (8.18)

We assume thd@®(r) is an even function of. Then, solvingeg. (B.1)on a time intervat which is much larger than
the noise correlation time but much smaller that the characteristic time of vapyimg get (keeping only relevant
terms)

o+t

$(to + 1) = ¢(20) + f di'(F + &), (B.19)

fo

! a
(1) = A% (10)&.(1) +f d’ Aﬁ”(to)éu(t/)WA“"(IO)SM(I)- (B.20)

fo
The relation(B.19) can be treated as an elementary step in time and then, BgsmgB.18) and (B.20)e get the
relations(B.12) and (B.13)

Appendix C. Estimations of the noise amplitude in continuous spectrum

Let us consider the linear equation
—i0y = Y +iEx%Y + &, (C.2)

which is a simplified version of the linearized equation of motion of fluctuations belonging to the continuous
spectrum. It can be used to estimate their stationary averaged amplitude and, thus, their contribution to the error
probability.£ is our noise. Let us compute two-point simultaneous correlation function of the/fiéltiis can be

done using the formal solution of the evolutiBn. (C.1)

t A
W(t, x) = /0 dre =g, x), (C.2)

where the operatafl has the form of the Hamiltonian of the harmonic oscillator with the imaginary frequency:

A

H=—9—iex? (C.3)
Averaging with respect té (see the expression for its correlation function) we get:
t
(Y, x)¥* (t, x2)) = D/O df/dy G(t; x1, )G (73 x2, ¥), (C.4)
whereG(t; x, y) is the propagator satisfying
i9:G(t; x, y) = HG(1; x, y), GO; x,y) =8(x —y). (C.5)

It can be taken from the book of Feynmann and Hibbs and has the form:

G(tix, y) = $2 1/zex 12 (x? + y%) cosR2t — 2xy) (C.6)
BV =\ Girsiner Pl Zsing2c* 17 ’ Vi '

wheref2 = (1 — i)+/2¢. To estimate|y(0)|2) we need only the asymptotics @tr; x, y) at larger:

. 1/2 .
1-i)/2 1-1)/2
G(r:x.y) ~ (%) exp[—r(1+ N yz)} . (€7
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Taking the final time to infinity, we perform all the integrations in the formyla.4) easily and obtain the desired
estimation:

D €
(Y (x)[%) ~ v exp(—xz\@) : (C.8)
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