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Abstract

We find the probability distribution of the fluctuating parameters of a soliton propagating through a medium with additive
noise. Our method is a modification of the instanton formalism (method of optimal fluctuation) based on a saddle-point
approximation in the path integral. We first solve consistently a fundamental problem of soliton propagation within the
framework of noisy nonlinear Schrödinger equation. We then consider model modifications due to in-line (filtering, amplitude
and phase modulation) control. It is examined how control elements change the error probability in optical soliton transmission.
Even though a weak noise is considered, we are interested here in probabilities of error-causing large fluctuations which are
beyond perturbation theory. We describe in detail a new phenomenon of soliton collapse that occurs under the combined
action of noise, filtering and amplitude modulation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Solitons play an important role in the dynamics and statistics of nonlinear systems in fields as diverse as hydrody-
namics, plasmas, nonlinear optics, molecular biology, solid state physics, field theory, and astrophysics. Presumably
the most impressive practical implementation of the fundamental soliton concept has been achieved in fiber optics,
where soliton pulses are used as the information carriers (elementary “bits”) to transmit digital signal at high bit
rates over long distances. Fiber optic applications of the soliton theory are governed by the integrable nonlinear
Schrödinger equation (NLSE) and its modifications related to different control elements introduced into the optical
line. The limitations on the error-free transmission distance are set mainly by the spontaneous emission noise added
by in-line optical amplifiers. Even though the noise is weak one cannot generally use a perturbation approach to
obtain the error probability because errors occur when signal changes substantially[2,3]. A priori it is not even clear
whether one may still consider signal as a soliton-like or fluctuations with a substantial change of the waveform
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determine the error probability. Large rare fluctuations in a nonlinear system are typically beyond the area of appli-
cability of usual Gaussian statistics[2–4]. On the other hand, neither experiment not direct numerical simulations
are presently capable to provide an adequate statistics of such rare errors so that theoretical methods are of utmost
importance here. The method to derive the probability of rare events was suggested in[2] as a maximum-likelihood
approach which boils down to finding an optimal fluctuation that provides a given large deviation of soliton param-
eters. The method is technically a saddle-point approximation in the path integral for probabilities and is indeed
known to describe the tails of the probability density function[5].

This paper presents a consistent development of the optimal fluctuation approach for soliton-bearing systems.
The brief sketch of this theory and main results have been reported in[6] and here we explain in more detail the
developed technique and present numerical evidence of the predicted effect of a soliton collapse. The conditions
on the noise level and propagation distance will be formulated for an optimal fluctuation to be close to a soliton
with slowly varying parameters. That makes it possible to reduce the formally infinite-dimensional problem to
the analysis of the finite set of soliton parameters and effectively find the error probability for a single soliton
transmission under different control schemes. The probability density function (PDF) is essentially Gaussian for
timing jitter [8–11]in systems without control and may have substantially non-Gaussian tails in systems with in-line
filtering and amplitude modulation. Here, we consider a single-soliton propagation, the effects related to soliton
interaction are described in[2,3,12–14].

Amplified spontaneous emission (ASE) noise added at each amplifier changes randomly the amplitude, position,
frequency and phase of the solitons. The fiber dispersion converts frequency variations in the arrival times jitter
known as the Gordon–Haus effect[8] (see also[9] where the mathematical theory of the effect has been developed).
Contribution of the Gordon–Haus effect to the total bit error rate (BER) is the probability that a soliton (corresponding
to elementary “one”) will arrive outside the detection window. Depending on the detector construction it may also
happen that the amplitude jitter will lead to a non-zero probability that some soliton with an amplitude lower
than the detection threshold will be registered as “zero”. Such rare events, nevertheless, can be of importance in
the modern communication systems operating with BER less than 10−9. Existing theoretical models of soliton
parameters fluctuations under the impact of ASE noise are based on the assumption of the Gaussian statistics. In this
case, one needs to know only standard deviations of moments under consideration to find BER. Widely employed
numerical method of evaluation of fiber transmission systems performance (the so-calledQ-factor method) in the
basic formulation assumes a Gaussian noise distribution on both the zero and one levels. Qualitative justification
of this assumption for a single pulse is based on the fact that in the NLS equation the first-order perturbations
are captured by the soliton. Effectively first-order perturbations only renormalize soliton parameters leading as a
result to the Gaussian statistics. It is not obvious, however, that statistics in the nonlinear models governing systems
with soliton control elements will still be Gaussian. In fact, as we will show below some in-line control leads to
substantially non-Gaussian statistics even for the distribution of soliton position (arrival time). Note also that to the
best of our knowledge, the Gaussian statistics for pure (without soliton control elements) NLSE soliton under effect
of additive noise has never been proved rigorously. We would like to emphasize once more that relatively small
deviations from the Gaussian distribution tails can result in a wrong estimate of BER (that must be less than 10−9).
Evidently, at such low level estimate of BER is very sensitive to correct determination of the distribution tails. To
be specific, we consider here a practical soliton transmission system, however, we would like to point out that our
basic purpose in this work is to introduce a powerful and rigorous mathematical method to analyze non-Gaussian
statistics in general soliton-bearing systems with additive noise. For this reason we also limit consideration by a
scalar model and focus only on the effects of the distributed additive noise.

The structure of the paper is as follows: We introduce the models and present some general relations for the
spectrum of soliton perturbations inSection 2. We pass to the reduced description in terms of the soliton parameters
and derive their probability distribution for a noisy nonlinear Schrödinger equation (NSE) inSection 3. The role of
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the continuous spectrum of perturbations is analyzed inSection 4where we formulate the conditions for optimal
fluctuation to be close to soliton.Section 5is devoted to the statistical analysis of different control schemes, here
we describe what is probably the most interesting physical phenomenon discovered in this work: soliton collapse
under the action of noise in the system with in-line filtering and amplitude modulation. Derivations of the main
results used through the paper can be found inAppendices A, B and C.

2. General relations

The evolution of nonlinear wave packet under the action of an additive noise is governed by the noisy NSE:

−i∂tΨ = ∂2
xΨ + 2|Ψ |2Ψ + ξ. (1)

In particular, in the fiber optic applicationst is the coordinate along the line,x is time, both expressed in dimensionless
units. We assume thatξ is a white noise characterized by the correlation function

〈ξ(t1, x1)ξ
∗(t2, x2)〉 = Dδ(t1 − t2)δ(x1 − x2), (2)

whereD is the amplitude of the noise.
In this paper we describe the statistics of noise-induced perturbations of a single soliton. We assume that att = 0

the ideal soliton signal occurs

Ψ(0, x) = 1

cosh(x)
. (3)

We will examine a probability distribution of different distortions of the signal at a finite “time”T > 0 (which is the
length of the communication line). Another important problem is to estimate the probability to detect a signal at a
finite ‘time’ T provided there is no signal att = 0. Answers can be obtained after studying statistics of noise-induced
fluctuations of the fieldΨ around the ideal signal form(2). We assume here that the “line length”T is longT � 1
and that the noise is weakD 	 1. More precise conditions will be introduced below.

To determine the probability of a wrong detection of digital bit, first one should specify a particular measuring
procedure. For example, the presence of the signal at a timet = T can be decided by comparing with the threshold
the value of the integral∫ l

−l
dxΨ∗(T, x)Ψ(T, x), (4)

taken over a window(−l, l) at t = T . If the value ofl is large enough then the integral(4) (playing the role of
energy) is close to 2 for the soliton(3). The value of the threshold is generally put smaller than 2 but larger than
the noise level. Errors in detection are due to events with the value of the integral(4) essentially smaller than 2.
There are two leading processes which can lead to such decay of the detected energy. The first process is a drastic
decrease of the amplitude that can be characterized by the integral

Q = 1

2

∫ ∞

−∞
dxΨ∗(T, x)Ψ(T, x), (5)

that is equal to unity for the ideal signal(2). The second effect is a shift of the soliton position. In other words, shift
of the soliton as a whole which is characterized by the quantity

Y = 1

2Q

∫ ∞

−∞
dx xΨ∗(T, x)Ψ(T, x), (6)
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giving the “mass center” position of the soliton. For the ideal signal(2) Y = 0. Therefore, below we focus analysis
on the joint probability distribution function (PDF)

P(Q, Y) =
〈
δ

[
Q− 1

2

∫
dxΨ∗(T, x)Ψ(T, x)

]
δ

[
Y − 1

2Q

∫
dx xΨ∗(T, x)Ψ(T, x)

]〉
. (7)

The averaging here should be performed over the statistics of the noise.

2.1. Modifications of the basic model by in-line control elements

As it is well known, one of the important effects leading to a loss of the soliton signal is the so-called Gordon–Haus
effect[8,9] that manifests itself as fluctuations of the soliton positionY (6). One can estimate the variance as〈Y2〉 ∼
DT3. To suppress this effect a number of techniques have been proposed that mathematically can be described
by adding different terms (corresponding to specific in-line control elements) to the right-hand side of the basic
equation (1). All the additional terms are assumed to be small. Therefore, below all coefficientsε in the equations
are treated as small parameters.

An attractive technique to suppress timing jitter is to use filtering control[15]. Under the presence of a shallow
parabolic filter and weak amplification (to offset the energy lost due to filtering), the equation for the light envelope
propagation down the line takes the following form[7]

−i∂tΨ = ∂2
xΨ + 2|Ψ |2Ψ + ξ − iεΨ − 3iε∂2

xΨ. (8)

We have chosen here the relation between filtering and amplification in a way to keep the amplitude of the stationary
soliton equal to unity. To suppress the generation of background that is inherent for this scheme, it was suggested
to use filters with sliding frequency[16]. The equation in this case takes the following form[7]

−i∂tΨ = ∂2
xΨ + 2|Ψ |2Ψ + ξ − iεΨ − 3iε(∂x + 2iλt)2Ψ. (9)

Note that filtering only suppresses the timing jitter, but does not stop its growth. To stabilize the timing jitter one
can apply in-line intensity modulation control which modifies the basic model in the following way:

−i∂tΨ = ∂2
xΨ + 2|Ψ |2Ψ + ξ − iε1Ψ − iε2∂

2
xΨ + iε3x

2Ψ. (10)

An alternative way to suppress the Gordon–Haus effect is to use in-line phase modulation that mathematically can
be described in terms of the following model

−i∂tΨ = ∂2
xΨ + 2|Ψ |2Ψ − εx2Ψ. (11)

2.2. Separation of the discrete spectrum

An important issue in the consideration of the soliton statistics is to analyze the effect of radiation and a possibility
to separate discrete spectrum from continuum. There are four degrees of freedom corresponding to the deformations
of a single soliton. Let us introduce parametersα, β, η, y describing those degrees of freedom:

Ψ = ηexp(iβx+ iα+ iτ)[ cosh−1(z)+ v], (12)

z = η(x− y), dτ = η2 dt, (13)

whereα, β, η, y are arbitrary functions of time, and we defined the “internal time”τ. We have also introduced the
field v(z, t) which accounts for the continuous spectrum. This part of the perturbation can be expanded overfk

which are the eigenfunctions of the linearized equation introduced inAppendix A:



G. Falkovich et al. / Physica D 195 (2004) 1–28 5(
v

v∗

)
=
∫ +∞

−∞
dk

2π
[skf−k(z)+ s∗k f̄−k(z)].

It is possible now to rewrite the original equation forΨ in terms of the new variablesα, β, y, η, sk, s∗k . Substituting
(12) and (13)into (1) one gets

U1 = U2 + Uξ + Uε, (14)

U1 = −i
∫ +∞

−∞
dk

2π
[∂tskf−k + ∂ts

∗
k f̄−k] + (∂tβx+ ∂tα)

(
v

−v∗
)

− i∂tζ(1 + z∂z)

(
v

v∗

)
+ i∂ty∂z

(
v

v∗

)

+(∂tβy + ∂tα)f0(z)+ η−1∂tβf2(z)+ i∂tζf3(z)− iη∂tyf1(z), (15)

U2 = η2L̂z

(
v

v∗

)
− β2f0 − 2iβηf1 − β2

(
v

−v∗
)

+ 2iβη∂z

(
v

v∗

)
+ 2η2

cosh(z)

(
v2 + 2vv∗

−2vv∗ − (v∗)2

)

+2η2vv∗
(

v

−v∗
)
, (16)

Uξ = −η−1 exp(iα+ ixβ + iτ)ξ∗
(
η−1 exp(−iα− ixβ − iτ)ξ

−η−1 exp(iα− ixβ + iτ)ξ∗

)
, (17)

whereζ = ln η and the functionsf0, f1, f2, f3 and the operator̂L are introduced inAppendix A. Here we denoted
byU1 the sum of the terms with time derivatives, byU2 those generated by dispersion and nonlinearity and byUξ

the sum of the noise-generated terms. For different control schemes, one must add to the right-hand side of(14) the
terms that originate from the additional terms in the right-hand sides ofEqs. (8), (9), (11) and (67), we shall call the
sum of such termsUε (see section below).

Now, to derive the equations forα, β, η, y, sk, s∗k one should find projections ofEq. (14)onto the discrete and
continuous spectra using relations given inAppendix A. This is done in the next sections.

3. Truncated model

Our main goal in the present paper is to compute probabilities of large deviations of the soliton parameters from
their initial values. In general, this requires to take into account the complete setα, β, η, y andv. However, atT � 1
such probabilities are shown here to be determined by fluctuations of the discrete variables. This is because the
discrete modes are localized on the “core” of soliton and the integral effect of their fluctuations (continued in time)
can be significant. On the other hand, dynamics of the fieldv spread its fluctuations over the whole space and
only weakly influences the soliton. In the subsequent section it will be shown that the influence of the fluctuations
attributed to the continuous spectrum on the statistics of the “soft” variablesα, β, η andy is negligible in the limit
DT2 	 1. The variablesη, y andα, β are dynamically coupled (and this interaction plays the key role in the soliton
statistics). This means that we can restrict our consideration by an analysis of the discrete modes given byα, β, η

andy. Those variables have to be introduced nonlinearly to avoid growing in time contribution from them into the
dynamics of continuous spectrum (so that neglecting the latter is justified).

In this section we consider the situation described by the basicequation (1). An impact of the terms corresponding
to in-line control elements will be examined in the subsequent sections.
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3.1. Truncated action

First, we consider the casev = 0,Uε = 0. In physical terms this corresponds to soliton propagation in system
without in-line elements and we neglect interaction of the soliton with the continuum radiation. The later assumption
is discussed and justified inAppendix C. Then the projection ofEq. (14)onto the functionsf0, f1, f2 andf3 (written
in Appendix A) gives the following set of ODEs:

∂tζ = Ξ0, ∂tβ = Ξ1, ∂ty − 2β = Ξ2, ∂tα+ y∂tβ + β2 = Ξ3, (18)

Ξ0 = −
∫

dx
1

cosh(z)
I, Ξ1 = η

∫
dx

tanh(z)

cosh(z)
R, Ξ2 = −η−1

∫
dx

z

cosh(z)
I,

Ξ3 = −
∫

dx
z tanh(z)− 1

cosh(z)
R, (19)

R = Re[ξ exp(−iα− ixβ − iτ)], I = Im[ξ exp(−iα− ixβ − iτ)]. (20)

The projection introduces new noise termsΞ0, Ξ1, Ξ2, Ξ3 which depend both on our initial noiseξ and the soliton
parameters. Unambiguous definition of the mean values and variances of the new noises requires regularization
and is presented inAppendix B. Here we directly apply the results obtained there with the only difference is that
the summation overµ should be replaced by the integration overx. Calculating the pair correlation functions in
accordance withEq. (B.13)we get zero cross-correlations ofΞ0, Ξ1, Ξ2, Ξ3 and

〈Ξ0(0)Ξ0(t)〉 = D

η
δ(t), 〈Ξ1(0)Ξ1(t)〉 = 1

3
Dηδ(t), 〈Ξ2(0)Ξ2(t)〉 = π2

12

D

η3
δ(t),

〈Ξ3(0)Ξ3(t)〉 = 1

3

(
1 + π2

12

)
D

η
δ(t). (21)

Next, we calculate the average values ofΞ0–Ξ3 in accordance withEq. (B.12). The average values ofΞ1, Ξ2 and
Ξ3 are zero and forΞ0 we get

〈Ξ0〉 = D

2η
, 〈Ξ1〉 = 0, 〈Ξ2〉 = 0, 〈Ξ3〉 = 0. (22)

It is interesting that there is a single non-zero average〈Ξ0〉 that means a systematic increase of the soliton amplitude
due to the noise. Although, in physical terms this is not a surprise to have such a growing amplitude in the system
with a permanent pump of the energy (through noise), to the best of our knowledge this mathematical fact has not
yet been pointed out in the literature. Note that the corresponding amplitude increase factor is small in the limit
DT2 	 1 considered here.

As a result of the previous analysis we obtain a closed description of the dynamics ofα, β, y andη with the
relations(21) and (22). The correlation functions of those parameters can be examined applying the effective action
constructed in accordance withEq. (B.17)

iI = 2
∫

dt

[
−iµ0

(
∂tζ − D

2η

)
+ iµ5∂tβ − iµ6(∂ty − 2β)− iµ3(∂tα+ y∂tβ + β2)

]

−D
∫

dt

η

[
2µ2

0 + 2η2

3
µ2

5 + π2

6η2
µ2

6 + 2

3

(
1 + π2

12

)
µ2

3

]
, (23)

whereµ0, µ5, µ6, µ3 are auxiliary fields andζ = ln η. For instance, the pair correlation function ofy can be written
as the following functional integral

〈y(t1)y(t2)〉 =
∫
DαDβDζDyDµ0Dµ5Dµ6Dµ3 exp(iI)y(t1)y(t2). (24)
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In a similar way one can present the PDF(7). Next step is to dropv in Eq. (12). Then the integrals(5) and (6)are
simplyQ = η(T) andY = y(T). Therefore, we can rewriteEq. (7)as

P(Q, Y) =
∫
DαDβDζDyDµ0Dµ5Dµ6Dµ3 exp[iI]. (25)

Due to causality, the integral overt in Eq. (23)can be taken fromt = 0 to t = T . The integral here is over the
quantities which are arbitrary functions of time on the interval(0, T) with the following boundary conditions

t = 0 : η = 1, y = 0, β = 0, α = 0, (26)

t = T : Q = η(T), Y = y(T), µ6 = µ3 = 0. (27)

The integration overα in Eq. (25)and the boundary condition(27) give µ3 = 0 for all timest. Therefore, this
degree of freedom can be dropped in the following consideration. Next, the term with linear drift ofζ in Eq. (23)
does not play any essential role in the subsequent analysis (since we are interested in valuesζ � Dt) and can be
neglected. Then,P(Q, Y) reads

P(Q, Y) =
∫
DβDζDyDµ0Dµ5Dµ6 exp(iIb),

Ib =
∫ T

0
dt

{
2µ0∂tζ − 2µ5∂tβ + 2µ6(∂ty − 2β)+ iD

η

[
2µ2

0 + 2η2

3
µ2

5 + π2

6η2
µ2

6

]}
. (28)

We can now integrate overβ which yields the relation∂tµ5 = 2µ6. Substituting the relation intoEq. (28)we get
an action fory andη. Recall that we are interested in timest � 1. This allows us to neglect in this integral the term
(∂tµ5)

2 compared toµ2
5. One should be careful since in this case we have to impose the condition∂ty = 0 att = 0.

The resulting effective action is

Ĩ =
∫ T

0
dt

{
[2µ0∂tζ + ∂tµ5∂ty] + iD

[
2µ2

0 e−ζ + 2

3
eζµ2

5

]}
, (29)

where eζ = η. To find the PDFP(T,Q, Y) one has to calculate the functional integral

P(T,Q, Y) =
∫
DζDyDµ0Dµ5 exp(iĨ), (30)

where now the functionsζ andy must satisfy the boundary conditions

ζ(0) = 0, y(0) = 0, ∂ty(0) = 0, exp[ζ(T)] = Q, y(T) = Y, µ5(T) = 0. (31)

3.2. Saddle-point calculations

We shall calculate the integral(30) in the saddle-point approximation. This approximation is justified by a
smallness of the probability to observe deviations of order unity[5]. In this approximation, the probability of a rare
event is determined by a single realization that realizes probability maximum:

lnP ≈ iĨsaddle, (32)

whereĨsaddleis the saddle-point value of the effective action(29). Thus, the original problem is reduced to deter-
mination of a saddle-point, which has to be computed by extremum conditions for the effective action.

The extremum conditions for the action(29)are given by the following differential equations

i∂tζ + 2Dµ0 e−ζ = 0, i∂tµ0 +Dµ2
0 e−ζ − 1

3D eζµ2
5 = 0, (33)

i∂2
t y = 4

3D eζµ5, ∂2
t µ5 = 0. (34)
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The saddle-point value of the action(29)can be rewritten using these equations as

iĨsaddle= 2D
∫ T

0
dt

[
µ2

0 exp(−ζ)+ 1

3
exp(ζ)µ2

5

]
. (35)

A solution of the ODEs(34)with the boundary conditions(31)can be found as

µ5 = 3iλ

D
(T − t), y = 4

∫ t

0
dt′
∫ t′

0
dt′′ λ(T − t′′)exp[ζ(t′′)], (36)

whereλ is a parameter to be determined from the other boundary conditions. This leads to

∂2
t eζ/2 = −λ2(T − t)2 eζ/2, µ0 = − i

2D
∂t e

ζ. (37)

A solution ofEq. (37)for eζ/2 is

eζ/2 = √
T − t{C1J1/4[ 1

2λ(T − t)2] + C2J−1/4[ 1
2λ(T − t)2]}, (38)

where the constantsC1 andC2 have to be determined from the boundary conditions. For example,
√

2C2 = Γ(3
4)λ

1/4
√
Q.

Below we assume thatη ∼ 1 (though the differenceη− 1 can be much larger than its average value). Then we can
estimate fromEqs. (34) and (36)λ ∼ Y/T 3. Therefore, if we are interested in the valuesY 	 T (since we assumed
T � 1 thenY can be much larger unity), thenλT 2 	 1. Under this condition only first terms of the expansion of the
Bessel functions inEq. (38)are relevant and we can use in the analysis only first terms of this expansion. Moreover,
under the conditionY 	 T an alternative perturbation scheme is applicable. Namely, at the conditionY 	 T the
contribution to the effective action(29)associated withµ5, y can be treated as a perturbation. Therefore we can first
solve the problem forζ, µ0, neglectingµ5, y, and then examine the dynamics ofµ5, y on the background of this
zero solution forζ, µ0. Then the correction to the action related toµ5, y can be found by substituting those solution
for µ5, y into theµ5, y-dependent part of the effective action(29)or (35). Indeed this scheme is realized below.

After neglecting the term withµ5 in Eq. (33)the set of equations forζ andµ0 can be easily solved and we get
for eζ/2 an explicit expression

exp

(
ζ

2

)
= 1 + t

T
(
√
Q− 1), (39)

which solves the zero approximation problem for the dynamics ofζ, µ0. Next, substituting the expression(39) into
the double integral(36) for y we get

Y = y(T) = 4λT 3(1
5 + 1

10

√
Q+ 1

30Q). (40)

Eq. (37)allows us to rewrite e−ζµ2
0 asD−2[∂t exp(ζ/2)]2. Using the explicit expressions(36) for µ5 and(39) for

eζ/2 and expressingλ from Eq. (40)we obtain:

lnP(T,Q, Y) ≈ − 2

DT

(√
Q− 1

)2 − R(Q)
9Y2

8DT3
, (41)

R(Q) = [1/10+ (4/5)
√
Q+ (1/10)Q]

[3/5 + (3/10)
√
Q+ (1/10)Q]2

. (42)

Recall that the expressions(41) and (42)are valid only forY 	 T .
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It is seen that forDT 	 1 the PDF(41) has a sharp maximum atη = 1. Considering fluctuations ofy under
conditionη ≈ 1 yields the Gaussian statistics with

〈Y2〉 = 4DT3

9
.

Besides for 1− Q ∼ 1 we get a non-trivial tail corresponding, roughly speaking, to a Gaussian distribution for√
Q − 1. Distribution ofY at a givenQ is qualitatively the same as forQ = 1. Namely, the same estimate

Y ∼ D1/2T 3/2 is correct, but the coefficients are different.

3.3. Probability to generate soliton from noise

Let us consider a probability to observe a soliton-like pulse(3) at a timet = T provided no signal exists att = 0.
ConsiderΨ = 0 att = 0. Assume that the corresponding optimal fluctuation is close to a soliton. Then it is natural
to start from the reduced action(29) derived in the previous section. Correspondingly, we can use the instanton
(saddle-point)Eqs. (33) and (34). However, we should impose different boundary conditions. Namely,η = 0 at
t = 0 andη = ηf at t = T . As toµ5 we should takeµ5 = 0 since we are not interested in the initial position and
the initial “velocity” ∂ty of the soliton. Extrema conditions over the initial positiony and over the initial “velocity”
∂ty giveµ5(0) = 0, ∂tµ5 = 0. Thenµ5 = 0 as a consequence ofEq. (34). Therefore the equation forη is Eq. (37)
with λ = 0. It can be easily solved and we get a solution

√
η = t

T

√
ηf , (43)

satisfying the boundary conditions. Next, we obtain fromEq. (37)for µ0

µ0 = −i
t

DT2
√
ηf . (44)

SubstitutingEqs. (43) and (44)into the action(29)we get

iĨsaddle= − 2

DT
ηf . (45)

The probability to have a unit signal at zero input can be estimated as exp(iĨsaddle), it grows with increasingT .

4. Role of continuous spectrum

The crucial point in the above analysis is that the contribution of the continuous spectrum to the PDFP(T,Q, Y)
is neglected providedT � 1. This is a manifestation of adiabaticity and of the fact that the first-order perturbations
are incorporated into the discrete modes.

We describe here the role of the continuous spectrumsk, s∗k in terms of an effective action similar to the one
examined above. The starting point of the description is the equation fors following from Eq. (14). Let us introduce
the auxiliary fieldsνk, ν∗k conjugated tos∗k , sk. Then the second-order term in the effective action determined by the
termsU1 andU2 in Eq. (14)can be written as

iI(2)cont = −
∫ ∞

0
dτ
∫ +∞

−∞
dk

2π
[iνk∂τs

∗
k − (k2 + 1)νks

∗
k ] −

∫ ∞

0
dτ
∫ +∞

−∞
dk

2π
[iν∗k∂τsk + (k2 + 1)ν∗ksk]. (46)

Here we used the relation

L̃z

(
v

v∗

)
=
∫ +∞

−∞
dk

2π
(k2 + 1)[skf−k − s∗k f̄−k].
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To analyze the role of the noise termUξ in Eq. (14)it is convenient to introduce the objects(
m∗

m

)
= σ̂3

∫ +∞

−∞
dk

2π

{(
k + i

k − i

)2

νkϕk −
(
k − i

k + i

)2

ν∗k ϕ̄k

}
, (47)

(
µ∗

µ

)
= σ̂3

(
µ0f0 + iηµ5f1 +

(
µ6

η

)
f2 + iµ3f3

)
. (48)

Then in the main approximation overv this noise term is written as

iIξ = −D
∫ ∞

0

dτ

η3

[
2µ2

0 + 2η2

3
µ2

5 + π2

6η2
µ2

6 + 1

3

(
1 + π2

6

)
µ2

3

]

−D
∫ ∞

0

dτ

η3

∫ ∞

−∞
dz(m∗µ+ µ∗m+m∗m)+ · · · , (49)

where dots mean terms linear inm andµ, origin of which is explained inAppendix B. These terms can be neglected
due to the same reason as the linear drift term inEq. (23).

4.1. Linear coupling

Next we analyze the linear coupling between the discrete and the continuous spectrum, related to the cross terms
in Eq. (49). Such coupling formally can change the saddle-point equations for the discrete modes. Let us consider
the extended saddle-point equations that include both the discrete and continuous degrees of freedom.

Due to the presence of the contribution(46) in the effective action the saddle-point equations fors andν contain
terms like(k2 + 1)sk and(k2 + 1)νk. There are terms of the orderv andm in the saddle-point equations. In the
equation forv one can identify the terms that can be estimated asv2, v3, ∂tη, Dm, Dµ. The terms∂tη, Dµ can be
estimated as 1/T that gives an estimatev ∼ 1/T which justifies neglecting the high-order terms likev2, v3 in the
equation forv. Recall that the initial condition forv at t = 0 is v = 0 that does not contradict estimatev ∼ 1/T .
Next we examine terms of the order ofvm andm∂tη in the equation form. The above estimate shows that these
terms can be neglected in comparison with the linear term giving the oscillations ofsk ands∗k . Thus we conclude that
the only “dangerous” (or relevant) contribution is related to the term∝ Dm in the right-hand side of the equation
for v since it can produce a secular growth compensating the smallness of 1/T (see the analysis below). Therefore,
one ought to check thatm 	 µ. Actually this inequality is guarantied ifm 	 µ at t = T . In general, it is enough
to check it only for a final boundary condition imposed on the auxiliary fieldm, µ.

To prove the assertion, one has to verify the conditionm 	 µ at t = T . The final boundary condition for the
complete saddle-point equations (including both the discrete and continuous degrees of freedom) corresponding to
the PDF(7) is as follows(

m+ µ

m∗ + µ∗

)
= u1η

[(
1

1

)
cosh−1(z)+

(
v

v∗

)]
+ u2

Q
ηx

[(
1

1

)
cosh−1(z)+

(
v

v∗

)]
. (50)

Hereu1 andu2 are Lagrange multipliers which should be chosen to ensure the relations(5) and (6). Thus we get at
t = T

µ0 =
(
u1 + u2y

Q

)
η, µ6 = u1, µ5 ∼ µ3 ∼ m ∼ µ0v (51)

It is seen that the conditionv 	 1 is self-consistent and this justifies the application of the reduced description.
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4.2. Perturbation theory

In this section we examine perturbation effects related to the continuous spectrum. It is convenient to start from
the formally exact expression for the effective actionĨ:

exp(iĨ) =
∫
DvDv∗DmDm∗ exp(iI), (52)

whereI is the complete effective action. It can be written as

I = Idisc + Iint + Icont,

whereIdisc depends onα, β, η, y, µ0, µ5, µ6, µ3 only; Icont depends ons, s∗, ν, ν∗ solely, andIint is a cross term
which involves both sets of variables. Our strategy is to calculate the integral(52)expanding bothIcontandIint overs,
s∗ and to use the perturbation theory. The main term in the expansion ofIcontcan be extracted fromEqs. (46) and (49).

Let us introduce the Green function

Ĝ(τ1 − τ2, z1, z2) =
〈(

v(τ1, z1)

v∗(τ1, z1)

)
( m∗(τ2, z2) m(τ2, z2) )

〉
. (53)

In the first non-vanishing approximation, any average quantity can be calculated in accordance with the
definition

〈O〉 ≡
∫
DvDv∗DmDm∗ exp(iI(2)cont)O, (54)

whereO is an arbitrary functional of our fields. Then we get from(46)

Ĝ(τ, z1, z2) = i
∫ +∞

−∞
dk

2π

[(
k − i

k + i

)2

exp(iτ + ik2τ)f−k(z1)ϕ̄
T
k (zz)

−
(
k + i

k − i

)2

exp(−iτ − ik2τ)f̄−k(z1)ϕ
T
k (z2)

]
σ̂3. (55)

The expression(55) is applied to the intervalτ > 0, since atτ < 0 the Green functionG = 0 due to causality.
Similarly, in the main order we get from(54) and (49)〈(

v(τ1, z1)

v∗(τ1, z1)

)
( v(τ2, z2) v∗(τ2, z2) )

〉
= −D

∫ ∞

0
dτ
∫ ∞

−∞
dz Ĝ(τ1 − τ, z1, z)σ̂1Ĝ

T(τ2 − τ, z2, z). (56)

We look for the principal contribution to the correlation function(56)at τ1, τ2 � 1. Substitution of the expression
(55) into (56)yields an expression containing the integrals like∫ ∞

−∞
dz ϕ̄T

k (z)σ̂1ϕq(z) = 2πδ(k − q)+ · · · ,

where dots mean terms regular overk, q. Only suchδ-functions make the principal contribution to(56) since they
produce terms which do not oscillate withτ. The total contribution can be found as〈(

v(τ1, z1)

v∗(τ1, z1)

)
( v(τ2, z2) v∗(τ2, z2) )

〉
≈ Dτ∗

∫ +∞

−∞
dk

2π
{exp[i(k2 + 1)(τ1−τ2)]fk(z1)f̄

T
k (z2)+c.c.}, (57)

where the factorτ∗ = min(τ1, τ2) originates from the integral overτ.
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The most important contribution tõI is related to the third-order interaction term which can be presented as

iIint = −2
∫ ∞

0
dτ
∫ ∞

−∞
dz cosh−2(z)

{(
µ0 + µ6z

η

)
(v2 − (v∗)2)

+ i[ηµ5 tanhz+ µ3(z tanhz− 1)](v2 + 4vv∗ + (v∗)2)
}
, (58)

Let us, for instance, consider as an example the first contribution fromEq. (58)

iIint,1 = −2
∫ ∞

0
dτ
∫ ∞

−∞
dz cosh−2(z)µ0(v

2 − (v∗)2). (59)

In the second-order of the perturbation theory the term(59)produces the following contribution4I to Ĩ:

i4I = 1
2〈(iIint,1)

2〉,
where averaging is determined in accordance with(54). Substituting here the expression(59)we get

i4I = 4
∫ ∞

0
dτ1

∫ ∞

0
dτ2

∫ ∞

−∞
dz1

cosh2(z1)

∫ ∞

−∞
dz2

cosh2(z2)
K(τ1, τ2, z1, z2)µ0(τ1)µ0(τ2), (60)

K = 〈v1v2〉2 + 〈v∗1v∗2〉2 − 〈v1v
∗
2〉2 − 〈v∗1v2〉2, (61)

wherev1 = v(τ1, z1), v2 = v(τ2, z2). The explicit expression for the principal contribution to the kernel(61) can
be extracted from(57). Such a contribution(60)can be estimated as

i4I ∼ (DT)2
∫

dτ µ2
0, (62)

provided there are no divergences. The factors cosh−2 in (60) ensure convergence of the integrals overz1 andz2.
Therefore the most “dangerous” divergence is related to a slow decrease of the kernel asτ = τ1 − τ2 increases. To
examine such a possibility we calculate the integral∫

dτ K = D2T 2
∫ +∞

−∞
dk

2π|k| {f̄
T
k (z1)σ̂3fk(z1)f

T
k (z2)σ̂3f̄k(z2)+ f̄T

−k(z1)σ̂3fk(z1)f
T
−k(z2)σ̂3f̄k(z2)}. (63)

Note that only localized parts of the eigenfunctionsfk(z) contribute to(63). Using the expressions(A.4) and (A.5)
one can easily check that the integral(63) converges both for small and for largek. The property confirms the
estimate(62). This fluctuation contribution has to be compared with the bare term in(23) containingµ0. Then we
conclude that the fluctuation contribution is negligible if

DT2 	 1. (64)

It is also worth estimating the modification of the effective action i4I′ produced by theµ5-dependent term in(58).
It can be written in the form analogous to(61) whereµ0 is substituted byµ5 and the new kernel̃K along with the
terms of the same structure as inK contains the term|〈v1v

∗
2〉|2. This is potentially “dangerous” because this term

has non-oscillating part so that the corresponding integral over dk analogous to(63) is not convergent at smallk.
However, this diverging part is even with respect to two independent transformationsz1 → −z1 andz2 → −z2

and its integration with the odd functions tanhz1 and tanhz2 vanishes. Physically it is transparent since smallk

correspond to large distances where the presence of the soliton is unimportant. In this limit the correlation function
〈v1v

∗
2〉 is simply the Green function of a free Schödinger particle with the factorDmin(τ1, τ2). Its square modulus

does not depend onz1 andz2 and is obviously even. The contribution to
∫

dτ K̃, which is localized on the soliton,
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has the same estimate as(63)and this confirms the criterion(64). We can see also that there are no such cancellations
for the contribution∼ ∫

dτ µ2
3 to the effective action. However, the signal statistics does not depend on the dynamics

of the variablesµ3 andα.

5. Statistics of soliton in the modified models

In this section we analyze the additional terms describing different modifications of the basicequation (1)and
their impact on soliton statistics. The modifications are described inSection 2.1.

Instead of(18), we get for the system with in-line filtering

∂tη = 2εη− 6ε(β2 + 1
3η

2)η+Ξ0, ∂tβ = 4εη2β = Ξ1, ∂ty − 2β = Ξ2, ∂tα+ y∂tβ + β2 = Ξ3.

(65)

Without the noise term, the only possible steady-state values areηs = 1 andβs = 0. The frequency and amplitude
dispersions saturate:〈(η − 1)2〉, 〈β2〉 ∼ Dε1[1 − exp(−8εt)]—see (5.149–50) from[7]. Therefore,〈y2〉 ∝ DT so
the Gordon–Haus effect is suppressed. Since the background grows exponentially∝ exp(2εt) then it is this growth
that sets the limit to the transmission distance.

In the case of sliding frequency filter control the equations governing evolution of the soliton parameters are

∂tη = 2εη− 6ε[(β + 2λt)2 + 1
3η

2]η+Ξ0, ∂tβ + 4εη2(β + 2λt) = Ξ1,

∂ty − 2β = Ξ2, ∂tα+ y∂tβ + β2 = Ξ3. (66)

Now, without the noise we have a soliton drifting over frequencies:

βs = −2λt + λ

2εηs
, η2

s + 3

(
λ

2εηs

)2

= 1 (67)

with an accelerationy = −2λt2 + λt/εηs—see (5.226–30) from[7]. Such state is stable forλ2 < 2ε/3 [7]. The
dispersions ofη andy are given by (5.276) and (5.284) from[7].

Below, we analyze two principal in-line control schemes: the phase modulation and the intensity modulation.

5.1. Phase modulation control

First, we consider the phase modulation case which is described byEq. (11). An additional term withε leads to
a modification of the basic equations for the discrete spectrum. To examine the corresponding changes in the PDF
we can apply the same procedure as above.

Let us introduce a modified reduce action for the case of phase modulation control.Eq. (11)contains an extra
term in comparison with(1) and that leads to the corresponding additional termUε in the right-hand side ofEq. (14)

Uε = −ε
(
z

η
+ y

)2
(

1

−1

)
1

cosh(z)
+ · · · ,

where dots mean terms proportional tov. Corresponding additional contribution to the reduced action reads

iĨε = 4iε
∫

dt µ5y + 2iε
∫

dt µ3

(
π2

12η2
− y2

)
.
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Again, we can omit the term related to the dynamics of the phaseα so the only new contribution to the action will
beĨε = ∫

dt µ5y. Varying the sum̃I+ Ĩε we get the following saddle-point equations

∂ty = 2β + iD
π2

6η3
µ6, ∂tβ = −2εy − 2i

3
Dηµ5, ∂tµ5 = 2µ6, ∂tµ6 = −2εµ5. (68)

Equations of motion forη andµ0 are the sameEq. (33).
Eq. (68)for µ5,6 have a harmonic solution. Taking into account the final conditionµ5(T) = 0 we obtain:

µ5(t) = 3iλ

2D
sin [Ω(T − t)], (69)

whereΩ = 2
√
ε, and the amplitudeλ has to be defined from the final conditiony = Y .

For small enoughY it is possible to treat the terms withµ5, µ6 in the effective action(28) as a perturbation and
to repeat the scheme developed inSection 3.2. First, we neglect the term withµ5 in Eq. (33). Then we get the
same answer(39), that isη(t) = (1 + Bt)2, whereB = (

√
Q− 1)/T . The equations fory andβ should be solved

on this background. For smallε we can neglect the term proportional toµ6 in the right-hand side of the evolution
equation (68)for y. Substituting then(69) into the equation of motion forβ in (68) we readily solve the system of
equations forβ andy (it is harmonic oscillator with time-dependent external force having resonance frequency in
its spectrum). Finally we get atT � ε−1/2:

y(T) = λ

Ω
T

(
1 + BT+ 1

3
B2T 2

)
. (70)

Equatingy(T) to Y we find the expression forλ:

λ = ΩY

T

1

1 + BT+ B2T 2/3
. (71)

A leading contribution to the logarithm of the PDF is given again by the expression(35). Theµ0-dependent part
expressed in terms ofB andλ is not changed:

2D
∫ T

0
dt µ2

0 exp(−ζ) = − 2

DT
(BT)2 + λ2BT

DT

(
1 + 1

5
BT

)
. (72)

The term withµ2
5 should be, however, recalculated. Using the expression(69)we obtain:

2D

3

∫ T

0
dt eζµ2

5 = −3λ2

4D
T

(
1 + BT+ B2T 2

3

)
. (73)

Rewritingλ via Y andQ according to(73), returning fromΩ andB to ε andQ, and adding the term(72) we get
finally:

lnP(T,Q, Y) ≈ − 2

DT

(√
Q− 1

)2 − Rph(Q)
3εY2

DT
, (74)

Rph(Q) = 3

1 + √
Q+Q

. (75)

Now we should establish an applicability condition for the expression(74). For that purpose, we estimate an effect
related to the term withµ5 in Eq. (33)omitted at treating the dynamics ofη, µ0. We find a correction toµ0:

4µ0 ∼ D

∫ T

0
dt eζµ2

5 ∼ εY2

DT
. (76)
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Comparison of this expression with the terms containingµ0 ∼ 1/(DT) (that follows fromEq. (37)) leads to the
conclusion that this variation can be neglected if we consider fluctuations ofY less than 1/

√
ε.

Estimate of the impact of the continuous spectrum on the reduced dynamics proceeds in the same way as in
Section 4.2. Actually, the perturbation∼ x2Ψ of the evolution equation does not introduce any dissipation (in
contrast to the case of intensity modulation control) and the linear in time Brownian growth of the mean square
fluctuations amplitude remains. The modification affect long-distant properties of eigenfunctions of the linearized
operator and slightly changes their frequencies. Namely, if we write the correlation function of the fieldv for t1 > t2

as

〈v1v
∗
2〉 = Dt2 ei(t1−t2) G(t1 − t2; z1, z2) (77)

then at distancesx ∼ ε−1/2 where the perturbation becomes essential we can forget about the presence of the soliton
and forG we can use the expression(C.6)of the oscillator Green function with the real frequencyΩ = 2

√
ε. For

scalesz ∼ 1 the perturbation of the evolution equation is negligible and we return to the formula(57) for 〈v1v
∗
2〉,

〈v1v2〉. Modification of dynamics of variablesµ0 andη is described by expressions(60) and (61)with the modified
correlation function of the fieldv. Note that the structure of the kernelK is such that at distancesz � 1 it oscillates
in time (see(77)) and an integration overτ results in a negligible quantity. The only substantial contribution comes
from z ∼ 1 for which the analysis made in(63)works. Thus, dynamicsµ0 andη remains unaffected by continuous
spectrum fluctuations atDT2 	 1. The contribution∼ ∫

dτ µ2
5 to the effective action is proportional to∫

dτ
∫

dz1 dz2 tanhz1 tanhz2|G(τ; z1, z2)|2.

The distancesz ∼ ε−1/2 do not contribute this integral because the square modulus|G(τ|z1, z2)|2 is even both in
z1 andz2 (see(C.6)) while the functions tanhz1,2 are odd. The only contribution which remains is that from the
scales∼ 1 where the perturbation∼ x2 can be neglected and we return to the analysis ofSection 4.2. Thus, it is
seen that the continuous spectrum is irrelevant under the conditionDT2 	 1.

5.2. Intensity modulation control

In this section, we analyze the statistics of soliton in systems with intensity modulation control which is governed
by Eq. (10). Below we assumeε1 ∼ ε2 ∼ ε3 	 1.

In the intensity modulation scheme, the steady state without noise hasβ = y = 0 andε1 = ε2η
2
s/3+ ε3π

2/12η2
s.

It is linearly stable for 4ε2η
2
s > π2ε3η

−2
s . Another condition on parameters is imposed by requiring the stability of

zero:ε3 > 2ε2
2η

4
s/9—see (5.211) from[7]. Those two conditions are not contradictory. It is stated in[7] that the

amplitude fluctuations saturate at the same level as for(8) while the timing variance is given by (5.192–3) and it
saturates at

〈Y2〉 = D

2ηsε3
+ 3Dηs

2π2ε3ε2ε1
. (78)

Let us introduce a modified reduce action for the intensity modulation control case. There are additional terms in
Eq. (10)comparing toEq. (1)and they produce an additional termUε in Eq. (14)

Uε = −iε1

(
1

1

)
1

cosh(z)
− iε2η

2

(
1

1

)
∂2
z

1

cosh(z)
+ iε2

(
1

1

)
β2

cosh(z)
+ 2ε2ηβ

(
1

−1

)
∂z

1

cosh(z)

+iε3

(
z

η
+ y

)2
(

1

1

)
1

cosh(z)
. (79)
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Extracting contributions to the equations forα, β, y andη corresponding toEq. (79)we get an additional contribution
to the reduced action

iĨε ≡ −
∫

dt dz(µ∗µ)Uε = 4iε1

∫
dtµ0 − 4

3
iε2

∫
dt µ0η

2 − 4iε2

∫
dt µ0β

2 + 8i

3
ε2

∫
dt µ5η

2β

−2iε3

∫
dt µ0

(
π2

6η2
+ 2y2

)
− 2π2

3
iε3

∫
dt
µ6y

η2
. (80)

The term(80)must be added toEq. (23). As previously we can pass fromEq. (23)into Eq. (28). VaryingĨ+ Ĩε we
get the following saddle-point equations

∂ty = 2β − π2

3
ε3
y

η2
+ iD

π2

6η3
µ6, ∂tβ = −4

3
ε2η

2β − 2i

3
Dηµ5, (81)

∂tζ = 2

(
ε1 − 1

3
ε2η

2 − ε2β
2
)

− ε3

(
π2

6η2
+ 2y2

)
+ 2iDη−1µ0. (82)

LinearizingEqs. (81) and (82)we conclude that〈ζ2〉 ∼ D/ε due to the noise term in the right-hand side ofEq. (81).
The probability of larger fluctuations ofζ is related to the term∝ y2 in the right-hand side ofEq. (81). So, to
investigate the deviations, we can omit the term with the noise in the right-hand side ofEq. (81). Then, fluctuations
of ζ will be forced by fluctuations ofy. If y 	 1 thenζ 	 1 also. The case is irrelevant for us if we are interested
in a probability of the signal lost. Ify � 1 then a new phenomenon of soliton collapse takes place. Namely, in this
caseη → 0. Let us reiterate that we describe here an optimal fluctuation which gives the maximum probability
of a giveny. If y is large enough, that is the soliton deviated too much into the region of high dissipation, then it
indeed may disappear in a finite time. To describe the regime of decreasingη we can keep only the term∝ η−2 in
the right-hand side ofEq. (81). Then we have

∂tη
2 = −1

3ε3π
2,

what leads toη → 0 for a finite time. Therefore largey inevitably leads to the collapse. This effect can also be
described in terms of the corresponding features ofP(Q, Y). Namely, there is a critical valueYcr ∼ 1 so thatP(Q, Y)
falls into δ(Q) if |Y | > Ycr. Of course,Ycr is a complicated function ofQ, ε1, ε2, ε3.

Collapse existence can be understood from the following simple analysis of a reduced system. The saddle-point
equations (81) and (82)admit a solution withν1 = ν2 = β = y = 0. This simplest case can be analyzed in more
details. Since the equations follow from the minimal action principle, they can be rewritten in the usual Hamiltonian
form

∂tν0 = −∂H
∂ζ
, ∂tζ = ∂H

∂ν0
, (83)

H = D

2π
ν0 + D

η
ν2

0 + 2ε1ν0 − 2

3
ε2ν0η

2 − ε̄3
ν0

η2
, (84)

whereε̃3 = π2ε3/6. In the explicit form theequations (83)read

∂tν0 = D

2η
ν0 + D

η
ν2

0 + 4

3
ε2ν0η

2 − 2ε̃3
ν0

η2
, (85)

∂tζ = D

2η
+ 2D

η
ν0 + 2ε1 − 2

3
ε2η

2 − ε̃3
1

η2
= H

ν0
+ D

η
ν0. (86)
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Note that for non-zero Hamiltonian and positiveη the sign of the continuous functionν0(t) cannot be changed during
evolution, because the integral of motionH = const. is directly proportional toν0. Considering, initial condition
with ν0(0) < 0 we can easily estimate the derivative of the fieldη as

∂tζ = H

ν0
+ D

η
ν0 < −2

√
HD

η
.

The equation inevitably produces the collapse ifH > 0 since

∂tζ < −2

√
HD

η
→ √

η < 1 −
√

HDt.

We conclude from this inequality that the collapse timet0 is bounded from above as:t0 < 1/
√

DH. Note that the
caseν0 < 0 corresponds to positive HamiltonianH > 0. Numerically found collapsing solutions are presented
below.

Let us examine now the region of parameters|Y | < Ycr,Q ∼ 1 that isy ∼ 1 andζ ∼ 1. Then the life time of the
corresponding instanton can be estimated asε−1. Next, we come to estimates

β ∼ ε, Dµ5 ∼ ε2, µ0 ∼ µ6 ∼ εµ5.

It is a motivation to introduce rescaled fields and time:

t̃ = ε1(T − t), β = ε1β̃, µ0 = −i
ε3

1

D
µ̃0, µ5 = −i

ε2
1

D
µ̃5, µ6 = −i

ε3
1

D
µ̃6.

Omitting irrelevant terms, we find an effective action

iĨ = ε3
1

D

∫ ∞

0
dt̃

{
2µ̃0

∂ζ

∂t̃
− 2µ̃5

∂β̃

∂t̃
+ 2µ̃6

(
∂y

∂t̃
+ 2β̃

)
+ 2η

3
µ̃2

5

}

+ε
3
1

D

∫ ∞

0
dt̃

{
4µ̃0

(
1 − 1

3
ε̃2η

2
)

− 2µ̃0ε̃3

(
π2

6η2
+ 2y2

)
+ 8

3
ε̃2µ̃5η

2β̃ − 2π2

3
ε̃3µ̃6

y

η2

}
, (87)

whereε̃2 = ε2/ε1, ε̃3 = ε3/ε1. Extrema of this effective action can be examined only numerically.
So, we can assert only that at|Y | < Ycr

lnP(Q, Y) = −ε
3
1

D
F

(
ε2

ε1
,
ε3

ε1
,Q, Y

)
, (88)

whereF is a function of order unity. Probably, the functionF(Y) has a minimum at aY ∼ 1. Let us explain the
existence of the minimum at 1−Q ∼ 1. Remember, thatQ, Y coincide practically with the final values ofη and
y. As is seen fromEq. (82)(where the term withµ0 should be omitted in the approximation we use) to achieve
a value 1− Q ∼ 1 at t = T the value ofy2 should be of order unity during the evolution (since the life time of
the instanton is∼ ε−1). Therefore smallY means that the behavior ofy is non-monotonic: First it grows from 0 to
y ∼ 1 and then returns to a small value.

It is natural to expect, that such non-monotonic evolution costs more than a monotonic evolution atY ∼ 1.
ThereforeF seems to diminish at growingY . Next, it is natural to expect thatF grows whenY goes toYcr.
Therefore there should be a minimum in between. Of course, the conclusion has to be confirmed by numerics.

Let us describe briefly the region|Y | > Ycr. There is no instanton solution corresponding to the effective action
(87)with the final conditionsy(T) = Y , η(T) = Q. Therefore to “draw”η up toQ we should take into account the
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fieldµ0 in the right-hand side ofEq. (82). Of course it costs much more (in terms of diminishing probability) than
the instanton corresponding to the effective action(87). To estimate the corresponding contribution to the effective
action one should take into account the term∝ µ2

0 from Eq. (28)besides the action(87). The contribution can be
estimated in the Gaussian approximation over variations near the instanton solution corresponding to the effective
action(87). The answer is as follows

− lnP(Q, Y) ∼ ε

D
(Y − Ycr)

2. (89)

This expression leads to the conclusion that atY > Ycr the probability decreases fast with increasingY . Therefore
the regionY > Ycr practically does not contribute to the probability of the signal lost.

The possibility of the collapse leads to the following interesting phenomenon. There appears to be a contribution
to the probability distribution functionP(Q, Y) proportional toδ(Q). During the collapseη2 ∝ t∗ − t (wheret∗ is
the time when the collapse finishes). Substituting that intoEq. (81)for y we conclude thaty → 0 also att → t∗.
Thus the contribution we discuss is proportional toδ(Y) as well. Of course the contribution must be proportional
to the “observation time”T since we consider an escape from the stability region due to a leak through the barrier
with a constant rate and no return. The probability to escape the barrier can be found balancing the noiseξ1 (which
indirectly influencesη through pumpingβ andy) by other terms inEq. (82)for η. The probability can be estimated
in terms of the effective action(87). The result is as follows:

P(Q, Y) = Tδ(Q)δ(Y)exp(−Fcol)+ Preg(Q, Y), Fcol ∼ ε3

D
,

wherePreg(Q, Y) is the regular contribution discussed above and we assumeTε � 1. For largeT the probability
of loosing the signal is simply proportional toT exp(−Fcol).

The computations inAppendix Cshow that the probability to have a significant contribution of the continuous
spectrum to the observable signal is strongly suppressed and thus negligible, ifD 	 ε1/4. Another criterion follows
from the estimation of influence of the continuous spectrum on dynamics of our reduced set of variablesβ, y, η.
Repeating procedure which lead us to the formula(62) with the correlation functions from theAppendix Cwe
obtain the estimation for the term modifying the reduced effective action due to interaction with the continuous
spectrum:

i4I ∼ D2

√
ε

∫
dτ µ2

0,

We can conclude that the continuous spectrum is irrelevant at the condition

Dε−1/2 	 1. (90)

6. Error probability

In this section we apply the above results to calculate error probability in soliton-based data transmission.
A common way (see[7, Section 5.5]) to make a decision concerning a received bit is to compare the “energy” of

the signal in some window

E(l, η, y) =
∫ l

−l
dx|Ψ |2 ≈ η2{ tanh [η(l− y)] + tanh [η(l+ y)]} (91)
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with some decision threshold 2s tanhl (usuallys � 1, for instance,s = 1/2). The probability of making an error
(in this case, treating unity as zero)P1(s, T) is the integral ofP(η, y) over the region defined by the inequality
E(l, η, y) < 2s tanhl.

This integral cannot be calculated analytically, but can easily be computed numerically. Comparing two terms
in the PDF and substitutingl for y one sees that forl 	 T the answer is the same as for Gaussian PDF as it is
determined byy-dependence ofP(η, y) and does not depend onη-dependence. If, however,l is comparable withT
(it is not clear if it is practical) thenη-dependence is crucial. If we neglecty in tanh, our region is given byη < s1/3

Fig. 1. Probability density function in normal (a) and logarithmic scale (b).



20 G. Falkovich et al. / Physica D 195 (2004) 1–28

and the error probability is exp[−(1 − s2/3)2/DT]—similar to (45) for signal from noise. Using this simple model
of the receiver one can easily apply derived PDFs to the evaluation of the corresponding contributions to BER.

7. Numerical simulations

In this section we present the results of numerical simulations. We focus on the most non-trivial case of in-line
amplitude modulation and filtering. The parameters usually used in the numerical modeling are as follows:N = 2;
ε2 = 0.1; ε1 = ε2(N + 1)/3N; ε3 = 4ε2/

√
πN.

Fig. 1 shows two-dimensional PDFP(Y,Q) calculated for the system with in-line amplitude modulation and
filtering. Fig. 1a depicts the PDF in the normal scale andFig. 1b in the logarithmic scale. It is seen fromFig. 1b
that probability does not cover the whole plane(Y,Q).

There is a forbidden zone that is also presented inFig. 2 showing a contour plot ofP(Y,Q). Existence of such
zones where probability to observe soliton with corresponding parameters is zero is attributed to the stabilizing
action of the amplitude modulators and in-line filters. Note that formal numerical solutions of the saddle-point
equations can be double-valued in some regions in the plane(Y,Q) as it is illustrated byFigs. 3 and 4. These figures
demonstrate that the same point in the plane(Y,Q) can be obtained with two different trajectories.Fig. 3illustrates
the dynamics of one instanton fieldηwhereasFig. 4shows ‘phase portrait’ of the two different trajectoriesη versus
y corresponding to the same parameters in double-valued zone. Single-valued PDF in such regions should be formed
by taking the larger values ofP(Y,Q).

Fig. 5describes collapse of the instanton trajectories under specific initial conditions.Figs. 4–6have been obtained
by integration of the reduced model(85) and (86). Recall that the reduced model corresponds to the particular case

Fig. 2. Contour plot of PDF showing a fold and a forbidden zone.
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Fig. 3. Dynamics of the instanton fieldη corresponding to the two different trajectories.

Fig. 4. Phase portraity vs.η.
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Fig. 5. Collapsing dynamics of the instanton fieldsη (a) andν (b) corresponding to the reduced modelEqs. (85) and (86). Different curves
correspond to different values ofν0(0) = −10 (solid);ν0(0) = −20 (dashed);ν0(0) = −30 (dot-dashed);ν0(0) = −80 dotted.
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Fig. 6. Collapse time vs.ν(0).

of instanton fields(ν1 = ν2 = β = y = 0). Results presented inFigs. 5 and 6have been computed for the same set
of parameters except differentν0(t = 0). Fig. 5depicts evolution ofη (a) andν0(t) (b) with time. Different curves
in these two pictures correspond to different values ofν0(0) = −10 (solid);ν0(0) = −20 (dashed);ν0(0) = −30
(dot-dashed);ν0(0) = −80 (dotted). Collapse has been found for all the negativeν0(0) < 0 and the collapse time
has been defined as the point where the both fields become zero.Fig. 6 shows how the collapse time depends on
ν0(0) suggesting that the collapse occurs only for negativeν0(0) (or positive HamiltonianH).

Appendix A. Auxiliary relations

Recall some well-known[1] properties of the perturbations near a soliton described by the nonlinear Schrödinger
equation. The perturbations can be examined in terms of the linear equation

i∂t

(
v

v∗

)
+ L̂

(
v

v∗

)
= 0, (A.1)

where the operator̂L is

L̂ = (∂2
x − 1)σ̂3 + 2

cosh2[x]
(2σ̂3 + iσ̂2). (A.2)

Evidently

L̂∗ = L̂, σ̂1L̂σ̂1 = −L̂, L̂T = σ̂3L̂σ̂3. (A.3)
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The spectrum of the linear problem is determined by the equationL̂f = λf . A general solution of this equation
reads

fk = exp[ikx]

{
1 − 2ik exp[−x]

(k + i)2 cosh [x]

}(
0

1

)
+ exp[ikx]

(k + i)2 cosh2[x]

(
1

1

)
, λk = k2 + 1. (A.4)

Due to the property(A.3) the functionsf̄k = σ̂1f
∗
k are also eigenfunctions ofL̂:

f̄k = exp[−ikx]

{
1 + 2ik exp[−x]

(k − i)2 cosh [x]

}(
1

0

)
+ exp[−ikx]

(k − i)2 cosh2[x]

(
1

1

)
, λk = −(k2 + 1). (A.5)

Another set of the eigenfunctionŝLϕ = λϕ can be written as

ϕk = exp[−ikx]

{
1 − 2ik exp[x]

(k + i)2 cosh [x]

}(
1

0

)
+ exp[−ikx]

(k + i)2 cosh2[x]

(
1

1

)
, λk = −(k2 + 1), (A.6)

andϕ̄k = σ̂1ϕ
∗
k :

ϕ̄k = exp[ikx]

{
1 + 2ik exp[x]

(k − i)2 cosh [x]

}(
0

1

)
+ exp[ikx]

(k − i)2 cosh2[x]

(
1

1

)
, λk = k2 + 1. (A.7)

Hereϕk(x) = f̄−k(−x) andϕ̄k(x) = f−k(−x).
There are also bound states corresponding to the marginally stable modes:

f0 = 1

cosh [x]

(
1

−1

)
, λ0 = 0; f1 =

(
1

1

)
tanh [x]

cosh [x]
, λ1 = 0, (A.8)

Double poles atk = ±i mean that two more functions must be added for closure, namely

f2 = x

cosh [x]

(
1

−1

)
, L̂f2 = −f1; (A.9)

f3 = x tanh [x] − 1

cosh [x]

(
1

1

)
, L̂f3 = −f0. (A.10)

Note that due to the property(A.3) the left eigenfunctions of the operatorL̂ can be written asfT
k σ̂3, f̄T

k σ̂3, ϕT
k σ̂3,

ϕ̄T
k σ̂3. That leads to a set of orthogonality conditions for the eigenfunctions. In an explicit form the conditions can

be written as∫ +∞

−∞
dx ϕT

k σ̂3f̄q = 2π

(
k − i

k + i

)2

δ(k + q), (A.11)

∫ +∞

−∞
dx ϕ̄T

k σ̂3fq = −2π

(
k + i

k − i

)2

δ(k + q), (A.12)

∫ +∞

−∞
dx fT

2 σ̂3f1 = 2,
∫ +∞

−∞
dx fT

0 σ̂3f3 = −2. (A.13)
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Let us give the values of some integrals

∫ +∞

−∞
dz z2 sinh2(z)

cosh4(z)
= 1

3

(
1 + π2

6

)
,

∫ +∞

−∞
dz

z2

cosh2(z)
= π2

6
,

∫ +∞

−∞
dz

exp(2αz)

cosh(z)
= π

cos(πα)
,

∫ +∞

−∞
dz

exp(2αz)

cosh2(z)
= 2πα

sin(πα)
,

∫ +∞

−∞
dz

exp(2αz)

cosh3(z)
= 2π(1/4 − α2)

cos(πα)
,

∫ +∞

−∞
dz

exp(2αz)

cosh4(z)
= 4πα(1 − α2)

3 sin(πα)
.

Appendix B. Contact terms

Here, we explain an origin of the “contact terms” in the stochastic equations, discussed in the main body. Let us
consider the following equation for anN-component fieldφ = (φ1, . . . , φN):

∂tφ
α = Fα(φ)+ Aαµ(φ)ξµ, 〈ξα(t1)ξβ(t2)〉 = 2Dαβδ(t1 − t2), 〈ξα〉 = 0, (B.1)

whereF is the “deterministic force” andξ is theM-component white noise. Summation over repeated indices is
assumed here and below. The matrixD̂ is assumed to haveφ-independent matrix elementsDαβ. GenerallyN �= M

and we can assume an arbitrary numbersN andM. Therefore the situation is generic. The case considered in the
main body of the paper corresponds to a substitution of the summation over the components of the noise by an
integration over the continuous variable.

If the matrixAaµ(φ) has a non-trivialφ-dependence, then the continuousequation (B.1)is not unambiguously
defined. It is completely fixed in the discretized form. We assume the following discretization:

φan+1 − φan = εFa(φn)+ 1
2ε(A

aµ
n+1 + Aaµn )ξ

µ
n , (B.2)

〈ξnξT
m〉 = 2D̂

ε
δnm, 〈ξn〉 = 0, (B.3)

whereε is the value of time steps. Such a regularization has physical justification:δ-function in the noise correlation
function(B.1) is the limit of a narrow symmetrical distribution. That is the reason why the coefficient atξ

µ
n is taken

at the middle of the intervaltn, tn+1 (see also an alternative scheme at the end of this appendix).
To recastEq. (B.3)in the standard retarded form we expand:

εAaµ
(
φn+1 + φn

2

)
ξµn = εAaµ(φn)ξ

µ
n + ε

2
(φbn+1 − φbn)

∂

∂φbn
Aaµξµn (B.4)

= εAaµ(φn)ξ
µ
n + ε2

2
Abν

∂

∂φbn
Aaµξµn ξ

ν
n + · · · . (B.5)

Here the equation of motion(B.3) was used in iterations to express the differenceφbn+1 − φbn in terms ofφn andξ
again. The term∼ ε2ξ

µ
n ξ

ν
n in (B.5)should be taken into account because its expectation value is∼ ε. One can easily

verify that the omitted in(B.5) terms give negligible effect in the limitε → 0. Thus,Eq. (B.3)can be rewritten as

φan+1 − φan = εFa(φn)+ εΞan, (B.6)

Ξan = Aaµ(φn)ξ
µ
n + ε

2
Abν

∂

∂φbn
Aaµξµn ξ

ν
n. (B.7)
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After solution of the evolution equation for the variablesφ the new noisesΞ becomes complicated functionals of
the initial oneξ. This makes statistics ofΞ non-trivial.

To avoid this difficulty we can formally substitute solvingEq. (B.6)by an integration over all functionsφn with
the weight, which is the functionalδ-function ensuring that only solutions ofEq. (B.6)are taken into account. Then
the value of any functionalO of φ on the solution ofEq. (B.6)is written as∏

j

dφj δ(φ
a
n+1 − φan − εFa(φn)− εΞan)O. (B.8)

The retarded discretization ofEq. (B.6)leads to the absence of an additional Jacobian inEq. (B.8). Then averaging
ofOwith respect toξ can be considered as the functional integration of the expression(B.8)overξ with the measure:∏

j

∫
dξj exp(−ξT

j D̂
−1ξj). (B.9)

We can change the order of integration overφ andξ. After that, integrating with respect toξ, we can treat the field
φ as a parameter. Then this Gaussian integration overξ can be treated as a Gaussian integration overΞ with the
averages

〈Ξan〉 = DµνA
bν(φn)

∂

∂φbn
Aaµ(φn), (B.10)

〈ΞanΞbm〉c = DµνA
aµ(φn)A

bν(φn)
2

ε
δnm. (B.11)

Here the designation〈. . . 〉c means connected (irreducible) correlation functions. A continuous version ofEqs. (B.10)
and (B.11)has the form:

〈Ξa(t)〉 = DµνA
bν ∂

∂φb
Aaµ, (B.12)

〈Ξa(t1)Ξb(t2)〉c = 2DµνA
aµAbνδ(t1 − t2). (B.13)

The non-zero expectation value ofΞ in (B.11)–(B.13)is just the “contact term”. It is worth noting that the last term
in (B.7) at fixedφ produces only non-zero〈Ξ〉 and does not affect any irreducible correlation function ofΞ.

Returning to the expression(B.8), it is convenient to rewrite theδ-functions there as

δ(φan+1 − φan − εFa(φn)− εΞan) =
∫

dpn
2π

exp[ipn(φ
a
n+1 − φan − εFa(φn)− εΞan)]. (B.14)

In the continuous limit the product of theδ-functions inEq. (B.8)is written as∏
j

δ(φan+1 − φan − εFa(φn)− εΞan) →
∫
Dpexp

[
i
∫

dt pa(∂tφ
a − Fa −Ξa)

]
. (B.15)

Performing explicitly the Gaussian integration overΞ we get finally

〈O〉 =
∫
DφDpexp(iI)O, (B.16)

iI = i
∫

dt pa

(
∂tφ

a − Fa(φ)−DµνA
bν ∂

∂φb
Aaµ

)
−
∫

dt DµνAaµA
bνpapb, (B.17)

Here〈O〉 designates the value of the functionalO on the solutions ofEq. (B.1)averaged over the statistics of the
noiseξ.
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Let us give an alternative derivation ofEqs. (B.12) and (B.13). To obtain the ‘contact terms’(B.12) one may
consider the noiseξ in Eq. (B.1)to have a small but finite correlation time:

〈ξα(t1)ξβ(t2)〉 = 2Dαβ(t1 − t2), Dαβ =
∫ ∞

−∞
dtDαβ(t). (B.18)

We assume thatD(t) is an even function oft. Then, solvingEq. (B.1)on a time intervalτ which is much larger than
the noise correlation time but much smaller that the characteristic time of varyingφ, we get (keeping only relevant
terms)

φ(t0 + τ) = φ(t0)+
∫ t0+τ

t0

dt′(F +Ξ), (B.19)

Ξα(t) = Aαµ(t0)ξµ(t)+
∫ t

t0

dt′Aβν(t0)ξν(t′)
∂

∂φβ
Aαµ(t0)ξµ(t). (B.20)

The relation(B.19)can be treated as an elementary step in time and then, usingEqs. (B.18) and (B.20)we get the
relations(B.12) and (B.13).

Appendix C. Estimations of the noise amplitude in continuous spectrum

Let us consider the linear equation

−i∂tψ = ∂2
xψ + iξx2ψ + ξ, (C.1)

which is a simplified version of the linearized equation of motion of fluctuations belonging to the continuous
spectrum. It can be used to estimate their stationary averaged amplitude and, thus, their contribution to the error
probability.ξ is our noise. Let us compute two-point simultaneous correlation function of the fieldψ. This can be
done using the formal solution of the evolutionEq. (C.1):

ψ(t, x) =
∫ t

0
dτ e−iĤ(t−τ)ξ(τ, x), (C.2)

where the operator̂H has the form of the Hamiltonian of the harmonic oscillator with the imaginary frequency:

Ĥ = −∂2
x − iεx2. (C.3)

Averaging with respect toξ (see the expression for its correlation function) we get:

〈ψ(t, x1)ψ
∗(t, x2)〉 = D

∫ t

0
dτ
∫

dy G(τ; x1, y)G
∗(τ; x2, y), (C.4)

whereG(τ; x, y) is the propagator satisfying

i∂τG(τ; x, y) = ĤG(τ; x, y), G(0; x, y) = δ(x− y). (C.5)

It can be taken from the book of Feynmann and Hibbs and has the form:

G(τ; x, y) =
(

Ω

4iπ sinΩτ

)1/2

exp

[
iΩ

4 sinΩτ
((x2 + y2) cosΩτ − 2xy)

]
, (C.6)

whereΩ = (1 − i)
√

2ε. To estimate〈|ψ(0)|2〉 we need only the asymptotics ofG(τ; x, y) at largeτ:

G(τ; x, y) ≈
(
(1 − i)

√
2ε

π

)1/2

exp

[
−τ(1 + i)

√
ε

2
− (1 − i)

√
2ε

4
(x2 + y2)

]
. (C.7)
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Taking the final timet to infinity, we perform all the integrations in the formula(C.4)easily and obtain the desired
estimation:

〈|ψ(x)|2〉 ∼ D

ε1/4
exp

(
−x2

√
ε

2

)
. (C.8)
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