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Self-focusing of laser beams in plasma is studied analytically using the thermal
(collision produced) and ponderomotive (nonlinear force produced) effects based on
the model of Zakharov with solutions of the nonlinear Schrodinger equation. A basic
difference appears if the electric field amplitude E is less than the threshold £th (at
which the electrodynamic energy density is equal to the gasdynamic pressure) from the
contrary case, E > Eth. The length of the filamentation process is evaluated and results
in large values for E below £th.

1. Introduction
The self-focusing of electromagnetic radiation in the laser plasma leads to the

appearance of a transverse inhomogeneity of density, temperature and local flow of
the radiation. As a result the (plane) compression symmetry breaks, and a Rayleigh-
Taylor instability of the target will be driven. The spatial inhomogeneity of the density
and of other plasma parameters is well known from experiments even for moderate
intensity of laser radiation (see, for example, Loipouch et al. [1]). The observed
results change essentially from experiment to experiment; it is difficult to distinguish
the range of occurrences directly connected with the self-focusing. Therefore the
theoretical investigation of this processes seems important, to enable us to interpret the
experiments.

Currently the modulation instability of the plane wave front has been well studied
(Bespalov et al. 1966; Litvak et al. 1975). As a result of its development beam
filamentation takes place. By the interpretation of experimental results it is natural to
suppose that, depending on the length ~c/ymax, a stationary structure with dimensions
of filaments ~Â max *s formed. Here, ymax is the maximum increment of the modulation
instability and Kmax the wave number of the corresponding perturbations. However,
the existence and stability of the self-focused waveguides, localized in the transverse
direction, in which the nonlinear interaction compensates by diffraction spreading, is
not obvious. Moreover, the characteristic time for observation in laser experiments
greatly exceeds the time of the instability development. Therefore, the stationary
nonhomogeneous structure can evidently be seen only if the filaments formed are
stable formations.

This paper is devoted to the investigation of the conditions of the existence and
stability of the localized filaments. The stationary self-focusing caused by ponderomo-
tive forces (Hora 1969) has been studied in more detail (Max 1981; Vlasov et al. 1978).
In the laser plasma, especially in experiments with shortwave radiation, the thermal
mechanism of self-focusing plays an essential role (Sodha et al. 1976). In this case the
possibility of the existence of stationary solutions, as well as that of their stability, is a
problem.

In the first section we shall obtain equations describing the self-focusing with the
simultaneous calculation of the nonlinear (ponderomotive) forces and thermal in-
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stabilities. In the second section we shall show that at any correlation between the
parameters of plasma there exist the stationary self-consistent distributions of the
electric field and variations of the density and temperature, localized in the transverse
direction. The properties of these solutions are investigated.

The problem of stability of the stationary solutions is naturaly divided into two parts.
At first it is necessary to elucidate the stability of the solutions, in the limits of the
stationary equations, relative to the variations of the amplitude and the distribution of
the field at the entrance to the medium. It is known that all stationary distributions are
unstable in the case of nonlinear-force self-focusing. We will show that for thermal
self-focusing the filaments are absolutely stable in terms of the statiojiary equations.
Moreover it is necessary to investigate the stability of the solutions relative to
nonstationary perturbations. The third section is devoted to these questions. We will
show that all stationary solutions are unstable. The instability is convective. The length
'ns ~ c/y over which it is developed is always much larger than the scale /st on which
breaking of the radiation into the filaments takes place in the frame of the stationary
problem. Therefore, when the dimensions of the plasma L is such that /ns > L > /st, it is
possible to observe stationary filamentation in the plasma. In concluding, on the basis
of the obtained results, we will discuss the experimental situation.

2. The basic equations
Let us consider the propagation of the quasimonochromatic wave in isotropic,

nonisothermal plasma. We will consider the case where characteristic times and scales
of the field modulation are much larger than the period and wavelength of the laser
light. By the usual method it is easy to obtain the equation for the envelope of the
electric field V (Zakharov 1974)

I f / ^^ /-I \

Here,

is the group velocity of the electromagnetic wave, a)" = d2a)/dz2, z axis is directed
along the wave propagation, n is the perturbation of the plasma density under the
action of nonlinear (ponderomotive) forces and the heating of the plasma.

The change of the local plasma temperature is described by the equation (Braginsky
1963)

Here, x thermal conductivity, generally speaking, can be less than the classical value,
x = 3(nT/m)v^1. The second term on the right side of (2) describes the heating of the
plasma due to collision damping of the electromagnetic wave. The third term describes
the loss of energy due to transfer to ions, radiative cooling and so on. Usually this term
is too small, <52«1, but its calculation is necessary to establish the steady state. As
follows from (2), in such a condition,

CO2
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Note that, because of the large group velocity of the laser radiation, it is enough to
take thermal conductivity into account only in the transverse direction.

The plasma motion caused by nonlinear forces and heating due to radiation
absorption can, as usual, be described in a linear approximation.

3n ,.
— + div nv0 = 0
at

(A)

n0 16nM

The term on the right hand side of the equation (4) (Miller's force or nonlinear
force) describes the plasma repulsion under the action of ponderomotive interaction.
Assuming, that the initial distribution of the density is homogeneous, and excluding it
from the system (4), we obtain:

TQ
C? = f o

Let us notice that only the derivatives across the radiation distribution can be left here.
Hence, it follows in particular that, the plasma motion does not influence the process
of the self-focusing.

Let us write the system of equations in (1), (3) and (5) in the nondimensional form,
introducing the variables
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As a result the system of equations acquires the form:

i(ip, + tpz) + &±1p + (Xztyzz = nty

<X\ — = Aj_T — t]2T + \ip\2 (7)

a2ntt - Ax(n + T) = Aji/>|2
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So our problem is characterized by four nondimensional parameters. Here a3 is
always too small owing to the suggestion about the quasimonochromatic character of
the wave and as will be shown below, the dispersion of the oscillations is practically
always not essential in the problems under consideration. Since x~no(v

2r/vei), the
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parameter ax ~ (c2/v^)(vei/cop). As a rule this value is too small in laser plasma but it
can be of order of unity for heavy targets.

The parameter JJ2 is always too small, various processes contribute to it and its value
is not clearly defined. However, as will be shown below, its value practically does not
influence the properties of the solutions and their stability. As a rule, the parameter

2 c2v2
T\coJ co2

is much greater than unity because of the great inertia of the ions.

3. Stationary filaments: Conditions for their existence
Consider stationary solutions (7), localized in the transverse direction. Neglecting

the dispersion, we obtain:

iipz + Axxp — nip = 0 (8)

A ± 7" — r)2T = — |i/»|2 (9)

« + r = -|</f (io)
Thus, the stationary solutions (8) to (10) are described by only one parameter—

external parameter rj2. The properties of the solutions (8) to (10) are quite different for
n » 1 and in the opposite limiting case. For n » 1 or for dimensional variables

n ^ c2n0vei / c ve,\
2

n0 KCO2 \vT co I

we can neglect the density change because of the plasma heating. Here n = — |i/;|2 and
the criterion (10) becomes:

\xp\2 ^veic
2n0

Then, the system (8) to (10) is reduced to the nonlinear Schrondinger equation:

n/>2 + Axi / / + |t/;|2i/; = 0 (13)

Its properties are well studied. Equation (13) has a set of the localized stationary
solutions—waveguides in which self-focusing compensates for a diffraction divergence
(Yankauskas 1966). However all of them are unstable (Zakharov & Rubenchik 1974).
The instability means that small deviations from the stationary distribution increase
during the advance deep into plasma. Development of the instability leads to formation
of local foci, in which the increase of the field is limited by nonlinear effects leading to
the dissipation of the radiation energy.

The characteristic scale of the filamentation of the incident radiation and focus
formation /y ~ l/|i/»|2 or in the dimensional variables is,

(On

\8jtnT/

The position of the foci changes strongly at small modifications of the intensity and
profile of the laser radiation. Since the characteristic times of the observation are
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usually very large as compared with l/vg, it is difficult to expect the observation of the
stationary transverse filamentation of the radiation in this case.

In the opposite limiting case n «1 or in the dimensional variables

n ^veic
2n0

2 >

n0 xco
the nonlinear (ponderomotive) forces do exert essential influence on the deformation
of the plasma profile. The density variation is conditioned by displacement of the
plasma from the most heated regions. In this case the contribution of the nonlinear
(ponderomotive) forces can be neglected in (9), n = —T and the concentration
distribution is defined by the constancy of the pressure in plasma. Self-focusing arises
because of strong heating of plasma in the zone of increasing intensity and its
corresponding displacement from the zone.

The equation describing the stationary self-focusing arrives at the form

ixpz + Aj.i/> - nil) = 0

A±n-r,2n = \y\2

As known (see e.g. Zakharov 1974) stable stationary localized solutions of the equation

exist for n < 2.
Since n~\rp\212

±, and the transverse dimension of the waveguide decreases with the
increase of \xp\2, n increases slower than \ip\2 and the system should have stable
stationary waveguide solutions.

This result was obtained by Turitsyn (1985) strictly for the system of (15). Let us
show that such solutions exist even in the limits of the more complete system (8) to
(40), if the radiation intensity is less than some critical value. The system (8) to (10) is
Hamiltonian and can be rewritten in the form: ixpz = 8H/8xp* with the additional
conditions 8H/66 = 0, n + 6 = |i//|2 where the Hamiltonian

]r (16)

Besides H, (10) conserves the number of quanta N = J \ip\2 dr.
Let us consider the stationary solutions (8) to (10) of the form

eii?z

V = T/j/oCrJ, n = no(rL), 6 = 00(r±)

where f0, n0, 60 satisfy equations
-A2/o+Ax/o = no/o

A x 0o- '7 2 0o=- i /o (17)

These solutions determine the structure of the stationary waveguides localized in the
transverse direction. The system (16) can be obtained from the variational principle

8(H + X2N) = 0 (18)

In other words, the stationary solutions of (17) show an extremum of the Hamiltonian
(16) for the fixed number of quanta and the additional condition 5H/88 = 0.
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Parameter A2 (nonlinear frequency shift) plays the role of the indefinite Lagrangian
multiplier. Therefore it is sufficient to prove the boundedness of H from the following
at fixed N for the proof of the existence of the solution.

Let us make use of the known inequality (Weinstein 1983):

(19)

where 7Vcr = 11,68 is the value Af[i/>] on the function i/>0, which is the principle solution
of the equation

-Vo + Aj.Vo + Vo = 0

Let us estimate the integral J 6 \ip\2dr with the help of the Hoelder inequality and
(19)

Now we substitute this estimate into H and if the condition N<Ncr is fulfilled,
then:

N3

64N2
cr\ r\2 ) _N_

Thus, we have proved the boundedness of H when the radiation intensity N is less
than Na. Stationary solutions exist also for N>Na. In this case they correspond to
local extremum of H, which is is not bounded below. For understanding of the solution
structure let us use the analogy of (17) with the equation for particle motion in the
two-dimensional potential:

/*, + -/* = - 4 £/(/o,0o)

a (20)

U(x,y) = -^x2-£y2 + kyx2 + lx4 (21)

Here r plays the role of time, and 60, f0, the role of the particle coordinates. The
potential form is represented in figure 1 (A = 1).

Availability of the dissipative terms (l/r)(dfo/dr) and (l/r)(30o/dr) (20) leads to the
energy decrease. This eliminates the possibility of closed limiting cycles in the potential
(21), and only limiting points 60=f0 = 0 and 60 = 0, fo= ±\/2 can serve as the
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FIGURE 1. The effective potential (21). The trajectory presented on the picture corresponds to
the basic most stable filament.

equilibrium positions. The trajectories ending in the points 60=f0 = 0 correspond to
the localized solutions. The trajectory corresponding to the basic waveguide (the
waveguide with the minimum power) is represented in figure 1.

It is clear that it corresponds to the temperature perturbation 0>O. As r)2 is too
small, the trajectory first goes quickly on the line/o = 0 during ~1/A and then slowly
reaches the limiting point during the time ~l/r/. It means, that the perturbation of
temperature and density decrease monotonically from the maximum on the scale ~1/A
so that the electric field drops practically to zero. The temperature distribution
decreases exponentially, and this decrease is very slow because r\ is too small.

It is obvious, that there exist a great number of nonmonotonic solutions of (17)
corresponding to trajectories, when the trajectory is multiply reflected from the walls
before reaching the limiting point. These solutions correspond to the local extrema of
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H; they are unstable and obviously are of no physical interest, as well as analogous
solutions for the nonlinear Schnodinger equation.

As was discussed above, the filaments with a high energy field density are unstable.
Boundedness of the Hamiltonian at N<Ncr guarantees the stability of the basic
waveguide according to the Lapunov theorem. This solution corresponds to the
absolute minimum of the Hamiltonian and therefore any change of the profile increases
H, but violates its preservation.

Thus we can suggest that for -—-<—^f- the radiation on the scale ls, will break
8nnT xco2

up into the stationary filaments.
If we substitute V ~ e'k2z in to (15) it is easy to see that

A A n0

If we introduce the field intensity in the center of a filament El as a parameter, then
from ratios (6) we have

X2 ( El W co2* V
\8:inTJ \veic

2n0)

and, hence, decomposition into filaments occurs over the length

, k0c
2 xco2 1

co2, v, -2•eic
2n0/ El \ V xco2 \i

\8nnT/ \c2vein0/

and characteristic transverse scale

\8nnT

4. Stability of the waveguides relative to nonstationary perturbations
Let us consider now the stability of the stationary solutions relative to perturbations

of the form ~e~ia"+'*z/(rx). First we note that the perturbation velocity differs greatly
from the group velocity because of the inertial character of the density and
temperature modulation. That permits us not to take into account the dispersion of the
electromagnetic wave later on. As was mentioned above, for n»l, when the
self-focusing is conditioned by ponderomotive effects, the stationary filaments are
unstable relative to small variations of the field distribution and, hence, the filaments
do not occur. Therefore it is sufficient to limit oneself to consideration of the solutions
with n/n0<vein0c

2/xco2, which are stable in terms of the stationary problem. Let us
linearize (7) on the background of stationary solutions assuming:

xp = ea2z(fQ+f + ig), T = 60 + 8T, n = no + 6n.

For perturbations of the form f, g, 6T, 6n ~ eikz-ia"+im<p we obtain the spectral
problem: , , , ^ / A „ ^f ^ n = 0

> = ° (22)
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In general, the solution of the problem (22) on the eigenvalues is impossible, but the
dispersion equation (o(K) can be obtained in the long wave limit K—*0, using the
method developed in by Zakharos et al. (1979). The idea of this method is the
following. For K = 0 there exist marginal stable solutions of (22) corresponding to the
derivatives of the stationary solution (7) with respect to the parameters. Let us
consider perturbations locally close to indifferent stable modes at small K and define
(o(K) using perturbation theory.

The increment of instability y = Im a>(K) represents the function of the wave vector
K of the perturbations. We define the main peculiarities of y(K) behaviour. In the
interval co « a1/a2 we neglect the member a2o)28n of the last equation of the system
(22). Using this fact we turn to the equation:

(to-k)2g. (23)

Here the operators Lo, Lx, 8L are

Lo = A± - «0 - A2, L1 = Lo + 2/oAo1/o.

(24)

Among the marginal stable modes one can separate the even modes along the
transverse coordinates and odd ones which correspond to the displacement of the
waveguide as a whole. From the result of Zakharov et al. (1974) it is clear that the odd
modes have to be instable in the medium with the inertia of non-linearity.
Indifferently, stable perturbations, i.e. solutions of the equation

£iLog = 0, (25)

are obtained by differentiation of the stationary solutions with respect to the transverse
coordinate. In the cylindrical coordinate system it corresponds to the perturbations
~eiq>. Therefore, with m = 1, we obtain in the zeroth order,

LiLogo = 0, go = U (26)

The zero eigenfunction of the conjugate problem is go =fi>r

= 0

The spectrum co(K) is obtained from (23) as the solvability condition for the first order
L-2.

• ^ \ / 0 \jOl ,7 /nn\

co = i — -kz (27)

\3r^JO

The sign ( ) denotes integration with respect to the transverse coordinates, A71 is the
operator inverse to the two dimensional Laplace operator. The expression (27) is valid
up to co ~ aja2 and k ** XajVai.- The following characteristic portion on the axis co
lies in the interval aj<x2 «co « XI\fcV2. In this case the spectral problem has the form
(25) as before where the operators Am, Ao are

Aw = — (Ax + a2co2), Ao=— Ax

Multiplying (25) by fOr from the left hand side and substituting it, we obtain after
transformations:

(ft, - kf = - 1 (/o/or |,4-i _ V | foU) = ~ ̂  C(A) (28)
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where C(A) = {fofOr \&l2\fofor) is the dimensionless structure factor. Equation (28) has
the solution describing the unstable branch

( 2 9 )

N

It is clear that in this region that the increment results in the linear increase by K.
The expression for the increment (29) is valid up to k ~ l/Aa-2.

For large k, characteristic times of the density modulation increase become
comparable with the acoustic ones. In this case it is necessary to take into account the
inertia in the sound equation. With the help of the arguments analagous to those cited
above, it can be shown that for <w > A/V^, the instability is absent. It means that the
instability increment remains approximately constant in the interval 1/A<*2 < K < I/A.
Instability stops when the perturbation wavelength becomes of the order of the
transverse size of the waveguide A. Figure 2 shows the dependence of the increment on
the wave vector of perturbation.

It should be noted that as well as for modulation instability the maximum increment,
y ~ A/Va^,

(or in dimensional variables y ~ a>BI - — - 1 I 7
S -, I I

\ \8jtnT/ \vTc / )

in the medium with pressure-nonlinearity is considerably less than the nonlinear
frequency shift. The meaning of the obtained nonlinearity is evident immediately. As
was mentioned above, the considered marginally stable mode corresponds to the shift
of the waveguide as a whole. Hence, the dependence e'kz denotes a waveguide being
bent along the axis z on the scale ~\/k. In the stationary state nonlinearity
compensates for diffraction divergence. In the case of waveguide shift due to inertia of
the medium, nonlinearity decreases in comparison with a stationary value, which leads
to nonlinearity. It is clear that nonlinearity leads to radiation splitting but not to the
local increase of the field. Therefore, due to the instability, neither amplification of
anomalous absorption nor radiation scattering should take place. The instability
obtained is convective. For its development it is necessary for the plasma size to exceed
the value ug/ymax. Let us emphasize that this size is much larger than the length of the
formation of the stationary waveguide vg/Aa>NL. It should be also noted that such
filamentation can only be observed at oblique incidence on the target. At normal
incidence due to self-focusing of incident and reflected waves, the instability becomes
absolute.

5. Conclusions
We have shown that self-focusing of laser beams in plasma differs greatly when E2 is

greater than E2
h from the inverse case. The value of

E2
h _ veic

2n0 c2 /tJeA2 ^ i 0_2

8:in0T0 xa>2 v\\u>)

for a neodymium laser, a polyethylene target (z ~ 5), n ~ nc and a temperature
~1 Kev. Therefore for most experiments with moderate radiation intensities ejection
of plasma under the action of the nonlinear (ponderomotive) forces plays a crucial role
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for self-focusing. Since E2
h ~ n2z2 ~ co4z2 the thermal mechanism of self-focusing is

essential for the short-wave radiation and targets of heavy materials.
For E2>E2

h self-focusing leads to the formation of local field maxima and can
increase anomalous absorption of the radiation. Self-focusing may even lead to more
homogeneous irradiation of the critical density surface. In fact, instability of self-
focusing leads to focus motion in the transverse direction and, as a result, to average
alignment of the target irradiation.

For E2<E2
h as was shown above, stationary filaments appear in the plasma. The

length of instability development is

y
Ymax p T 8jinT/

For energy densities E2 ~ E2
h, and plasma densities of the order of the critical length of

the instability, development exceeds several thousand wavelengths. Hence, in real
experiments where the plasma size is small, stationary filaments may be formed. Such
filaments are well observed in experiments (Limpouch et al. 1984). A value E2/E2

h =s 0, 2
is obtained for them, i.e. their existence is in good agreement with the results of this
paper. Let us emphasize once more that one can expect filament formation only in the
case of oblique incidence of radiation. Stretched along the light incidence directions,
the filaments differ by nature from "the jets" with normal orientation to the critical
density surface, the formation of which is conditioned by other mechanisms.

Filamentation of the radiation leads to increasing of anomalous processes; it can
explain, for example, generation of the harmonic \(o in the experiments with the 3rd
harmonic of the neodimium laser. In these experiments at a uniform energy
distribution along the spot, the collision threshold is hardly exceeded due to high
plasma density and due to collisions. Parametric instability can arise due to a local
increase of the field energy induced by self-focusing.

REFERENCES
BESPALOV, V. I. & TALANOV, V. I. 1966 Pis'ma JETP, 3, 471.
BRAGINSKY, S. I. 1963 Voprosy teoryi plasmy (Atomisdat, Moscow), 1, 183.
HORA, H. 1969 Z. Phys. 226, 156.

LIMPOUCH, I. & ROZANOV, V. B. 1984 Kvant, Elektr. 11, 1415.
LrrvAK, A. G., MIRONOV, V. A., FRAYMAN, G. M. & UNAKOVSKY, A. D. 1975 Fisica Plasmy,

1, 6071.
MAX, C. E. 1981 Lawrence Livermore National Laboratory, UCRL-53107.
SODHA, M. S., CHATAK, A. K. & TRIPATHI, V. K. 1976 Progress in Optics, E. Wolf, ed. (Acad.

Press, New York) Vol. 13, p. 171.
TURITSYN, S. K. 1985 Teor. Math. Phys. 64, 2.
VLASOV, S. N., PISKUNOVA, L. V. & TALANOV, V. I. 1978 JETP, 75, 5, 1602.

WEINSTEIN, M. I. 1983 Comm. Math. Phys. 87, 567.
YANKAUSKAS, V. 1966 Izv. Vuzov, Radiofizika, 9, 523.
ZAKHAROV, V. E. 1974 Izv. Vuzov, Radiofizika, 17, 43.
ZAKHAROV, V. E. & RUBENCHIK, A. M. 1974 Sov. Phys. JETP, 38, 494.


