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Vector dark solitons
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It is shown that a novel class of optical soliton is possible in the form of vector dark solitons. These nonlinear

waves describe bound states of two gray solitons with different background intensities in each mode that are

strongly coupled through cross-phase modulation.

As is well known, optical pulses may propagate in
nonlinear media, e.g., in nonlinear optical fibers,1'2

without dispersive broadening in the form of bright or
dark solitons when nonlinearity, which results from
the nonlinear refractive index, exactly compensates
for the group-velocity dispersion (GVD). For various
optical applications, such as ultralong-distance soli-
ton transmission and switching devices, it is impor-
tant to understand the nature and general features of
the interaction between soliton pulses. The interac-
tion between closely spaced solitons belonging to one
optical mode may be understood by analyzing inter-
action forces between solitons (see, e.g., Refs. 3-6).
However, soliton interactions in the case of a few
coupled optical modes seem more complicated, and
they are not well understood yet. The problem of
the intermode interaction of solitons naturally ap-
pears, e.g., in highly birefringent optical fibers, as
that of nonlinear attraction between pulses of two
polarization modes. This effect has been recently
studied experimentally and theoretically for possible
applications to soliton switching. 7 -9

There exist four principally different cases of the in-
termode interaction between solitons: (i) two bright
solitons propagate in the anomalous dispersion re-
gion (see, e.g., Ref. 7), (ii) one bright soliton in the
anomalous GVD region interacts with a dark soliton
in the normal GVD region (the normal case; see, e.g.,
Ref. 10), (iii) one bright soliton in the normal GYD
region interacts with a dark soliton in the anomalous
GVD region (the so-called inverted case; see, e.g.,
Ref. 11), and (iv) two dark solitons propagate in the
normal dispersion region. All these cases may be
described by a system of two nonlinear Schr6dinger
(NLS) equations, coupled as a result of cross-phase
modulation. In the case of attraction, partial soliton
pulses may form a two-component (vector) soliton as
a bound state of the pulses belonging to different
polarization modes.1 0' 12

Most theoretical and experimental studies have
considered the interaction of two bright solitons7 '10
or bright and dark solitons,1 0' 13' 14 but interaction of
two dark solitons belonging to different optical modes
has not been analyzed yet. However, recent experi-
mental results in which stable propagation of dark
solitons has been already observed"5- 7 make this
problem real.

The purpose of this-Letter is-to analyze the inter-
action of two dark solitons coupled through cross-

phase modulation and to present a novel class of
soliton solutions in the form of vector dark solitons.
We also show that the partial dark solitons, which
are composed to form the vector dark soliton, are
strongly coupled, and in the small-amplitude limit
they are described by a single Korteweg-de Vries
(KdV) equation.

The interaction of two optical modes, t, and
T2 , through cross-phase modulation is governed
by the system of the incoherently coupled NLS
equations 18 ' 19 :
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where v1 and v2 are the group velocities of the
two optical polarization modes and a (a > 0) is the
coefficient of the normal GVD, which for simplicity
we assume equal for both modes. The cross-phase
modulation coefficient o- depends on the ellipticity of
the fiber eigenmode (see, e.g., Ref. 19) and, in partic-
ular, o- = 2/3 for linearly polarized modes, . = 2 for
circular polarized modes, and, in the general case,
2/3 • a- 2 for elliptical eigenmodes. With the
change of variables, (t - zlv)lto - a7, z(a/2to2) -i
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where
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one obtains the system of two dimensionless
equations,

. aU a2U + + 2)U= O
-a aT2 ± (1U2 ± o-1V12)U= 0

.aV -2 .JY+(If rU12)V = 0,
ae aT2 12+0

(4)

(5)

which describe coupled optical polarization modes-
operating in the normal GVD region. For o- # 1,
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Fig. 1. Intensities of the two components, IU12 and 1112,
of the vector dark soliton, with U0 and V0 being the
asymptotic values of the intensities of the orthogonal
polarization modes.

these equations are not integrable,20 but for o- = 1
they have a set of integrals of motions so that one may
naturally expect to find the integrability property and
exact soliton solutions as in the case of anomalous
GVD.2 1

For the case of anomalous GVD, exact soliton solu-
tions to the system [Eqs. (4) and (5)] may be obtained
by a simple substitution, and they are either of equal
amplitudes, U = V, or of partial orthogonal polariza-
tions, U = 0, V = O and U 0 O, V= O. However, in
the case of the normal GVD, a general dark soli-
ton solution may have different intensities for two
polarization modes. It means that such a solution
cannot be obtained by simple substitutions like those
mentioned above. However, we have found that the
vector dark soliton does exist in the form of two par-
tial dark solitons excited on different cw backgrounds.
This solution may be written in the form

U = Uo(cos 01 tanh Z + i sin 01)exp(i01), (6)

V = Vo(COS 0(2 tanh Z + i sin 0 2)exp(iE 2 ), (7)

where Z = Y({r + 1/W - TO) and

01 = klr + (Uo2 + a-V02 + k1
2)f,

02 = k2r + (VO2 + a-U02 + k2
2)6,

and the parameters Uf, Vlw, n, W, k, and k2 are
coupled by the following relations:

UO COS 01 = Vo COS 0 2 , v2 == 2 U0 cos 2 A1 ,

(8)

W-il = U o - + a- sinCO1 02) + (k1 +k 2),
2 COS '12

k2 - ki = U0 + -2sin(qS1 - 02)
COS 102

(9)

The pulse intensities in each mode may be calculated
to be

I2(1 -cosh ' )

IV12 = U0
2 (1 - cosh2 Z) (10)

Solutions (6) and (7) describe two coupled dark (gray
or black; see the terminology in Ref. 22) solitons in
the case for which the asymptotic values of the cw
backgrounds are different, i.e., IUI U- Uo and 111 - VO
provided that Irl - - (see Fig. 1).

The partial dark solitons described by the solu-
tions (6) and (7) are indeed strongly coupled owing
to mutual trapping. To demonstrate such a trap-
ping analytically, we use a variational (Lagrangian)
approach14 to introduce a time delay into one of the
pulse components, e.g., by putting

V(Z)I 2 I 0 I[ cosh 2(Z (11)

Then the pulse interaction results in the system
Lagrangian from the integral,

f dr(1 U12 - V0
2)(1U12 - U0

2),

which yields the effective interaction energy between
the soliton pulses,

Ueff(A) = -4V2U0 3 a- Cos3 1 cosh A(A - tanh A).v 1 + - sinh3AAah)

The effective interaction energy [Eq. (12)] has a sense
either for small o- (small intermode coupling) when
A -~ 1 or for small A (small time delay) when a- - 1,
and it corresponds to an effective attraction of partial
dark solitons.

The strong coupling between partial dark solitons
may be also confirmed in another way, by consider-
ing the small-amplitude limit of the vector soliton
[Eqs. (6) and (7)]. Following to the approach devel-
oped for the one-component NLS equation,2 3 we look
for solutions of the coupled system (4) and (5) in the
form

U = (Uo + a)exp[i(U0 2 + a-V0
2)e + i.0], (13)

V= (VO + b)exp[i(V0
2 + a-U0

2)6 + id], (14)

assuming that a, b and derivatives of '1 and if
are small. Substituting Eqs. (13) and (14) into the
system (4) and (5), one may obtain four coupled
equations for the functions a, b, 1, and ai. This
system of equations may be investigated by the
asymptotic method,23 and it shows that even in the
small-amplitude limit the optical modes are strongly
coupled if waves propagate along the finite-amplitude
backgrounds. In the linear limit such excitations are
described by the dispersion relation

K 2U0
2f 2 - { K4)(K2

- 2Vn2 fi2 _

= 4a-2 U0
2V0

2fQ4 , (15)

with K and fl being the wave number and wave
frequency, respectively, of linear waves. In this ap-
proximation, the modes dynamics may be simplified
by introducing normal variables as linear combina-
tions of a and b. This result simply means that for
a- - 1 any dip on the cw background pulse of one
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mode will immediately create a similar dip in the
other mode strongly coupled to the primary pulse.
This situation drastically differs from the case of
intermode interaction of bright solitons.

Such a strong interaction between the polarization
modes also remains valid in the nonlinear case, and
in the limit of small amplitudes the mode dynamics
is described by a single KdV equation but not by the
coupled equations. For example, in the case U0 =

V0, the asymptotic expansions (which are similar to
those for the one-component NLS equation23) yield
the simple relation a a b, and in the zero-order ap-
proximation the evolution of the pulse amplitude a is
given by the KdV equation

aa ~~~aa a3a
2C a + 12Uo(1 + a-)a T - = °- , (16)

ay aT aT3

where slow variables y and T (see details in Ref. 23)
are connected with the reference frame moving at the
sound velocity C, with C2 = 2(1 + a)U 0

2.

The strong coupling between the partial dark pulses
means that optical switching involving dark pulses is
not possible in the way already proposed for bright
solitons.2 4 To support such a conclusion by a clear
example, let us consider the model of a nonlinear
directional coupler (see, e.g., Ref. 25 and references
therein), which in dimensionless units is described
by the coupled equations

AU aU + (1U12 + a-1112)U = KV (17)

iaV a2V + (1V12 + a-IU12)V= KU. (18)
ae ar2

In the case a = 1 the system (17) and (18) has exact
solutions (which may be found analogously to the
bright soliton case26 ); the simplest one is

JUI
2, 1112 U0

2[1 ± sin(2,/)cos(2KW)]tanh 2 (UoT),

(19)

where p is an arbitrary constant. The result
[Eq. (19)] looks like that of the linear theory except
for the T-dependent factor describing the dark-profile
envelope. Thus, as follows from Eq. (19), the optical
switching in this case is realized through background
pulses themselves but not through dark solitons.

In conclusion, we have found a new class of solu-
tions of the two coupled NLS equations in the form
of a vector dark soliton that describes mutual trap-
ping of two dark-profile pulses. We have shown that
these waves correspond to strongly coupled states
that in the small-amplitude limit may be described
by a single KdV equation. We have also pointed
out that a strong coupling of the partial solitons
with their backgrounds does not allow one to use
dark solitons for optical switching in the way already
proposed for bright solitons.
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